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In this document, we provide additional details, discus-
sions, and experiments to support the original submission.
First, we give an overview of the mathematical symbols
used in the original draft (Sec. 1). In Sec 2, we enumerate
the parameters that we used for the optimization and Patch-
match steps shown in Sec 3.2 of the original submission. In
Sec. 3, we show additional implementation details as well
as extra experiments for our pre-processing steps (Sec. 3.3,
Sec. 3.4), and show how our optimization effects the pho-
tometric consistency. In Sec. 3.2, we discuss the runtime of
our approach. Finally, in Sec. 4, we provide extra experi-
mental results in both qualitative and quantitative manners.


Note that we demonstrate various 4D animation exam-
ples created from few images by using our NRMVS frame-
work in the attached supplementary video.


1. List of Mathematical Symbols


Symbol Description
Di deformation from canonical pose to image i
v,x point in R3


n normal vector in R3


ui SIFT keypoint in image i
Ci consistency mask ∈ {0, 1} for point xi


ρr,s weighted NCC value for images r and s [5]
Ii greyscale image i
di depthmap for image i


2. Parameter choices


Parameter Value
wsparse 1000
wdense 0.01
wreg 10
dmax 0.1 cm . . . 0.5 cm
ρmax 0.9
τ 0.9


dmax is chosen depending on the scale of the scene geom-


etry; e.g., we choose 0.1 cm for the face example and 0.5 cm
for the globe example. In case of the synthetic ground truth
data, we use dmax = 0.01, with the rendered plane having a
size of 6.


The parameter filter min num consistent in
the implementation of COLMAP’s PatchMatch [5] as well
as our non-rigid PatchMatch is set to 1 (default 2). Besides
that, we use COLMAP’s default parameters throughout our
pipeline.


3. Approach


3.1. Deformation Estimation


In Fig. 1, we show an example of the photometric consis-
tency before and after the estimation of the non-rigid defor-
mation. As shown, the photometric error gets reduced and
some inconsistent regions (not satisfying a user-specified
threshold ρmax) get masked out by the consistency map Ci.


(a) Initial state (b) After optimization


Figure 1: Photoconsistency cost including consistency
mask Ci · (1 − NCC) between Fig. 4(a) and (c). Masked
out pixels are transparent in (b).


Fig. 2 shows a visualization of the reconstruction along
with the deformation nodes for the globe example. The
color is based on the id and is used to indicate correspond-
ing nodes.
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Figure 2: Visualization of deformation graph: For the globe example, we show the deformation nodes and their movement
across the different views.


3.2. Performance


In Table 1, we report the run-time for the face exam-
ple (Fig. 4) with 100 deformation nodes, depending on the
number of iterations N used for the sparse correspondence
association.


Step Time (N = 1) Time (N = 5)
Total 154 min 422 min
Filter 0.2% 0.4%


Optimize 92.3% 96.9%
Depth 7.5% 2.7%


Table 1: Computation time (in minutes) needed for differ-
ent steps to process the example in Fig. 4 depending on the
number of iterations N (see main paper for more details):
Filtering of sparse correspondences, Joint hierarchical opti-
mization and depth estimation; file I/O not included.


3.3. Camera Pose Estimation


In Fig. 3, we show an example result for the estimated
camera poses using Agisoft PhotoScan [1]. As can be seen,
the camera poses for the input images have been success-
fully recovered.


3.4. Canonical View Selection


To pick the canonical views, we analyze how many
matches result in a faithful static reconstruction. I.e.,
we triangulate each match (after doing the ratio test with
r = 0.7 [4]) and reject those with a reprojection error
above 1 pixel. As can be seen in Table 3, the image pair (a)-
(b) dominates the ratio of static inliers. Therefore, our algo-
rithm chooses these views to reconstruct the initial canoni-
cal surface.


4. Additional Results
4.1. Quantitative Evaluation


In Table 2, we provide further evaluation of our method
for ground truth data. In addition to the measurements pro-


Figure 3: Screenshot of Agisoft PhotoScan


(a) (b) (c)


(d) (e) (f)


Figure 4: Input images for the face example


vided in the main paper, we compute the mean relative
depth error (MRE) without rejecting outliers; i.e., resulting
in depth images with a completeness of 100%.


4.2. Comparison against State-of-the-Art MVS


In Fig. 6, we show an example result comparing our al-
gorithm with a state-of-the-art MVS approach that performs







Table 2: Evaluation for ground truth data: (a) using COLMAP, i.e., assuming a static scene, (b) applying our dense photo-
metric optimization on top of an implementation of non-rigid ICP (NRICP), and (c) using different variants of our algorithm.
S denotes sparse, D denotes dense, photometric objective. N equals the number of iterations for sparse correspondence
association (see paper for more details). We compute the mean relative error (MRE) for all reconstructed values as well as
the overall completeness. The last row (w/o filter) shows the MRE, with disabled rejection of outlier depth values, i.e., a
completeness of 100 %.


Ours


COLMAP [5] NRICP [3] S (N = 1) S (N = 10) D S (N = 1) + D S (N = 10) + D


Completeness 68.74 % 99.30 % 97.24 % 97.71 % 96.41 % 98.76 % 98.99 %
MRE 2.11 % 0.53 % 1.48 % 1.50 % 2.37 % 1.12 % 1.11 %


MRE w/o filter 6.78 % 0.74 % 2.16 % 2.05 % 3.32 % 1.63 % 1.34 %


Figure 5: Comparison against NRSfM: We run the globe dataset on an NRSfM method (Dai et al. [2])


(b) (c) (d) (e) (f)
(a) 10.3% 0.42% 0.00% 0.00% 0.83%
(b) 0.17% 0.24% 1.14% 0.00%
(c) 0.00% 0.00% 0.65%
(d) 0.28% 0.88%
(e) 0.26%


Table 3: Confusion matrix for static inlier ratio for all 2-
view combinations (see Fig. 4).


best in a recent survey [6]. As can be seen, the geometry of
the deforming region can not be reconstructed successfully,
if the method assumes static geometry.


4.3. Comparison against NRSfM


In Fig. 5, we run one of our datasets (globe) on the prior-
free NRSfM method of Dai et al. [2]. It is, however, in-
tended to be run on videos of ≈ 300 frames with ≈ 40 fea-
ture tracks that are visible throughout the sequence. As can
be seen, the reconstruction result differs from our objective
as both only a sparse set of points is reconstructed and the
points do not accurately resemble the 3D geometry. This
example result illustrates that common NRSfM methods are
not applicable out of the box to our kind of setup and input
data.


(a) COLMAP (b) Ours


Figure 6: Comparison with COLMAP [5]: a state-of-the-
art MVS algorithm for static scenes fails to reconstruct im-
ages undergoing non-rigid motion (Fig. 4).
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