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In this document, we provide additional materials to supplement our main submission. We show additional qualitative
results on Cityscapes validation set especially for small and less-occurring objects, e.g., rider, bicycle, bus etc. Fig. 1 and
Fig. 3 illustrates such cases for GTA-V to Cityscapes and SYNTHIA to Cityscapes respectively. Similarly, in Fig. 2 and 4, we
provide a qualitative comparison with [1] and [2], and also provide error maps for each segmentation output. To highlight
the performance gap with fully-supervised (Oracle) baseline models, we trained ResNet-38 in a fully-supervised manner
on Cityscapes training set having 2-images per mini-batch. Table. 1 and Table. 2 provides a detailed performance gap
comparison of oracle and adaptation method, for proposed and existing state-of-the-art methods.
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Figure 1. Qualitative results for GTA-V → Cityscapes adaptation. Column (a) (top) shows target image and a selected sub-image along
with corresponding segmentation ground truth labels of sub-image and whole image (bottom) respectively. Column (b), (c), (d) and (e)
shows the segmentation results for selected sub-image produced by different approaches.



(a) Target Image + GT (b) ResNet-38 [1] (c) CBST-SP [2] (d) Ours (SISC) (e) Ours (SISC+PWL)

Figure 2. Qualitative results for GTA-V → Cityscapes adaptation. Column (a) shows target image along with corresponding segmentation
ground truth labels. Column (b), (c), (d) and (e) shows the segmentation results (bottom) and corresponding error maps produced by
different approaches (top). In each error map, the black region shows the segmentation error, white region shows the don’t care region and
they grey region as the correctly segmented region respectively.
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Table 1. Performance (mIoU) gap between the fully-supervised (Oracle) models and adapted models from GTA-V to Cityscapes. Despite
high Oracle limits, the proposed UDA methods have lower performance gap compared to other state-of-the-art methods.

GTA → Cityscapes
Methods Oracle UDA Algo. mIoU gap

FCN in the wild [3] 64.6 27.1 -37.5
Curriculam DA [4] 60.3 28.9 -31.4
AdaptSetNet [5] 65.1 42.4 -22.7
Saleh et al [6] 65.1 42.5 -22.6
MinEnt [7] 65.1 42.3 -22.8
CLAN [8] 65.1 43.2 -21.9
All Structure [9] 65.1 45.4 -19.7
CBST-SP [2] 67.6 46.2 -21.4
Ours (SISC) 67.6 48.7 -18.9
Ours (SISC+PWL) 67.6 49.0 -18.6

(a) Target Image + GT (b) ResNet-38 [1] (c) CBST-SP [2] (d) Ours (SISC) (e) Ours (SISC+PWL)

Figure 3. Qualitative results for SYNTHIA → Cityscapes adaptation. Column (a) (top) shows target image and a selected sub-image along
with corresponding segmentation ground truth labels of sub-image and whole image (bottom) respectively. Column (b), (c), (d) and (e)
shows the segmentation results for selected sub-image produced by different approaches.

Table 2. Performance (mIoU* (13 common classes)) gap between the fully-supervised (Oracle) models and adapted models from SYN-
THIA to Cityscapes.

SYNTHIA → Cityscapes
Methods Oracle UDA Algo. mIoU* gap

FCN in the wild [3] 73.8 22.9 -50.9
Curriculam DA [4] 69.6 34.8 -34.8
AdaptSetNet [5] 71.7 46.7 -25.0
MinEnt [7] 71.7 44.2 -27.5
CLAN [8] 71.7 47.8 -23.9
All Structure [9] 71.7 48.7 -23.0
CBST [2] 73.7 48.4 -25.3
Ours (SISC) 73.7 50.8 -22.9
Ours (SISC+PWL) 73.7 51.0 -22.7
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(a) Target Image + GT (b) ResNet-38 [1] (c) CBST-SP [2] (d) Ours (SISC) (e) Ours (SISC+PWL)

Figure 4. Qualitative results for SYNTHIA → Cityscapes adaptation. Column (a) shows target image along with corresponding segmenta-
tion ground truth labels. Column (b), (c), (d) and (e) shows the segmentation results (bottom) and corresponding error maps produced by
different approaches (top). In each error map, the black region shows the segmentation error, white region shows the don’t care region and
they grey region as the correctly segmented region respectively.
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