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APPENDIX A: Additional Data Information
0.1. Dataset A.

The dataset consists of flight-lines from the “Four Cor-
ners Campaign” survey. It is split into flight-lines repre-
senting individual contiguous images strips acquired by the
AVIRIS-NG instrument as it flew over the terrain. AVIRIS-
NG is a push-broom imaging spectrometer with 598 across
track elements of 1mrad instantaneous field of view (FOV)
covering a total FOV of 34◦ . AVIRIS-NG measures re-
flected solar radiance at the nadir viewing geometry at a
100Hz readout rate across 432 channels between 380nm
and 2510nm with a spectral sampling of 5nm. Each flight-
line is associated with three files-two files provides the meta
data and one file represents the manually identified and la-
beled location of the Ch4 plume.

1. A header file that provides META data, with a file-
name suffix * cmf v1f img.hdr : This file describes
the specific dimensions and layout of the flight-line,
and embeds geographic projection information. This
files allows to read the data from second input file

2. The imaging spectrometer data, with a filename
suffix * cmf v1f img : A binary file representing the
CH4 image data, with four channels:

(a) Radiance in visible red wavelengths

(b) Radiance in visible green wavelengths

(c) Radiance in visible blue wavelengths

(d) Estimated CH4 enhancement above the back-
ground in ppm(parts per million meters). This
keeps the image in rectangular shape with the
pheriphery filled with ”−9999.0” values.

The data is in Band Interleaved by Line (BIL) ordering.
BIL ordering signifies the 3D matrix is indexed first by
image row, channel and image column. The data is 32
bit IEEE little endian floating point format.
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3. The label file from manual source analysis, with a
filename suffixed *.png : An image file in .png for-
mat, representing a human labeling of the methane
source in the flightline. It has three channels with
values in [0 − 255] range, code according to : Red
(255,0,0) : plume, associated with a point source. Blue
(0,0,255): plume, associated with a diffused source.
Black (0,0,0): no plume (or unlabeled).

0.2. JPL Creation of Dataset A (χA)

In dataset A, each data array represents a flight-line
of the aircraft with the AVIRIS-NG instrument. The
*cmf v1f img image file holds 4-bands data in ENVI for-
mat. Dimensions of the *cmf v1f img are in range 22000
pixels × 1400 pixels × 4 bands. The gas plume informa-
tion is available in the fourth band in the form of ppm×km
(part per million per meter) values. The value at each pixel
represents the amount CH4 at that location. The ratio of
plume to image pixels counts is very small (i.e., small-pixel
footprint challenge), which addressed by the proposed data
pre-processing and sampling method.

0.3. Dataset B.

The data consists of flightlines from the Four Corners
campaign. It contains approximately 700 flightlines, where
only 46 human-annotated data are available for this study.
Each flight-line is associated with the following four files:

1. A header file the provides the META data, with
the filename suffix * rdn v1f clip.hdr : describes the
specific dimensions and layout of the flight-line, and
embeds geographic projection information. It enables
reading data from the corresponding image file.

2. Imaging spectrometer data (suffix * rdn v1f clip):
A binary file, representing the radiance values(units
µWcm−2nm−1sr−1) at each wavelengths. The file
has 432 channels, each channel represent the wave-
length the image is captured by the imaging spectrom-
eter with spectral resolution of 5nm, starting from
channel 0 at wavelength 380nm goes up to channel



431 at wavelength 2510nm. Each of the image files
are of approximately 50 Gigabytes.

3. Metadata Header (suffix * rdn glt.hdr): This file de-
scribes dimensions and serves as header file to read the
corresponding glt image file.

4. GPS data (name suffix * rdn glt): This file has the
map of geo-reference co-ordinates of each and every
pixel of * rdn v1f clip file. This file is used to ortho-
correct the processed match-filtered output and reduce
the image distortion caused by aircraft.

APPENDIX B: Matched Filter
0.4. Matched Filter Derivation

The output of the H-mrcnn implementation of the
matched filter is a representation of CH4 signal strength.
It assumes that the observed spectrum of background pixel
is xB ∈ Rd, then ξ(xB) is the spectrum of that pixel if
the signal of interest for CH4 is added to background pix-
els. In linear Adaptive matched Filter, the effect of signal is
modeled as additive perturbation given by:

ξ(xB) = xB + εt, (1)

where t is the signal/gas spectrum or target signature and ε
represents the chemical properties of the gas.

The matched filter is a vector α ∈ R and the output of the
matched filter is a scalar value αT xB . The filter α becomes
αT ξ(xB) and differs from αT xB .

If t is the signal of interest, then αT t is the effect of
matched filter on the signal. If xB ∈ Rd is a hyperspec-
tral pixel value without signal, then αTx is the effect of the
matched filter on the background pixel spectrum. The aver-
age Gas-to-Terrain-Ratio (GTR) is given by:

GTR =
|αT t|2

Var(αT xB)
, (2)

where Var is the variance, is computed from:

V ar(αT xB) = 〈(αT xB − αTµ)〉 = αTKα, (3)

with µ = 〈x〉mean and K = 〈(x−µ)T (x−µ)〉 covariance.
Since the magnitude of α does not affect the GTR in Eq. 3,
so constraint can be imposed on the magnitude of α. This
optimizes the GTR in Eq. 2, which is equivalent to maxi-
mizing αT t subject to the constraint αTKα. Using αTKα
= 1, leads to the following Lagrangian formulation:

l = −αT t + λ(αTKα− 1) (4)

Minimizing the loss function l is equivalent to maximiz-
ing the GTR, Let’s:

u = 2λK1/2α−K−1/2t, (5)

where the scalar value can be written as:

uTu = (2λK1/2α−K−1/2t)T (2λK1/2α−K−1/2t) (6)

= 4λ2αTKt− 4λαT t + tTK−1t (7)

so Eq. 4 becomes:

l(α;λ,K, t) =
1

4λ
uTu− λ− 1

4λ
tTK−1t (8)

and it is clear that this is minimized when u = 0, from which
Eq. 5 implies α = 1

2λK−1t. Setting αTα = 1 yields λ =
1
2 (t

TK−1t)− 1
2 with (final) matched filter response as:

α =
K−1t√
tTK−1t

. (9)

Figure 1: Architecture of Naive Mask-RCNN

0.5. Overview of Mask-RCNN

Mask RCNN has been the new state of art in terms of in-
stance segmentation. There are two stages of Mask RCNN.
First, it generates proposals about the regions where there
might be an object based on the input image. Second, it
predicts the class of the object, unlike regular Mask-RCNN
we are not using the bounding box representation of it. Fig-
ure 1 shows a simple block diagram architecture of Mask-
RCNN model used in Naive detector and H-mrcnn. The
Backbone used is Resnet-101 in Naive detector. The final
outputs as shown in the Figure 1 are segmentation mask of
plume and class.

APPENDIX C: Additional Experimental Re-
sults Visualizations
0.6. Distance between Centroids

This section shows sample results for the distance be-
tween the centroid locations of the ground truth and the



predicted plume as shown in Figure 2, where two black dots
inside the plume masks are the computed centroids.

Figure 2: Sample results of distance between the centroids
of ground truth and prediction by our model. Red represents
the human expert generated ground truth and Green+yellow
is the prediction from the network. The 2 black dots repre-
sents the centroids of ground truth and prediction and line
connecting them is distance between the centroids.

0.7. Predictions by Ensemble method

Sample predictions are shown in Figures 5] and 6, which
are the outputs of the Ensemble-Mask-RCNN (Regional
Convolution Neural Network). Column 1 is the ground truth
generated by human experts. Column 2 is a visualization of
ground terrain of the same area where the plume is shown
in ground truth. Column 3 is overlay of ground truth on ter-
rain from column 2. Columns 4, 5, and 6 show H-mrcnn
predictions with different band-window sizes, each config-
uration uses a 50% overlap (i.e., stride). Column 4 repre-
sents the highest IOU value for plume overlap. Similarly,
columns 5 and 6 show results for band-window size of 100
and 200 respectively with stride of 50%. Figure 6 shows a
unique example where the ratio of number of plume pixel
to number of image pixel is lowest. This means that the
plume covers approximately 50 pixels from an image with
dimensions 3.08 × 107 pixels, which is used to represent
true negative predictions.

Total number of Plumes Correctly detected Plumes Not detected plume Fasle positive
∼80 ∼70 ∼5 3

Table 1: General Statistics of Detection

0.8. Prediction observation

The total number of plumes in the whole dataset are ap-
proximately around 80 in number. By 80 plumes means that

one data point can have multiple plumes. The H-mrcnn de-
tected approximately 70 plumes with a good accuracy. The
few of the cases where the method fails to detect plume is
when the plume size is 10−6 times smaller then number of
pixel in the image containing the plume. There are only
3 cases of false positives detection. Those are when there
is no plume in the whole image and the method detects a
plume in that location. Other cases of false positives are
as follows. When the plume is very big, then the edges
of the big plume have tiny plumes on the sides. These are
the cases when the ensemble network computes a weighted
sum to predict the final plume. In some cases, when there is
plume but because of a wet field on the ground or any water
body on the ground, in those cases the magnitude of radi-
ance values is very low in those pixel, in such cases even if
the plume is present but the model is not able to completely
detect it. This is a drawback of the AVIRIS-NG sensor as
it is not able to record the correct radiance values in those
areas.

Enhanced Visualization of the Methods. Enhanced re-
sult visualizations are shown in Figure 3 and 4 for the naive
single-band detector (method 1) and ensemble H-mrcnn
(method 2), respectively.



Figure 3: Data munging and fine-tuning processing diagram for the naive single-band and binary plume detector. From
top-left to bottom-right: the input arrays (top-left) are locally and globally normalized (top-center). The processed 3-channel
array is tiled (top-right) to deal with small-pixel footprint plumes. The tiles are used to fine-tune a naive binary plume detector
(bottom-center), which produces a binary estimate of the gas plume overlayed on the observed terrain (bottom-right).

Figure 4: H-mrcnn ensemble structure. Bank of detectors fine-tuned on matched filter outputs. The ensemble network
produces better estimates of the plume shape and a concentration analog.



Figure 5: Sample results for Ensemble H-mrcnn. Columns 1, 2, and 3 are ground truth and ground terrain, columns 4, 5, and
6 show the prediction output from the H-mrcnn method. The best results are shown in column 4 for a 50 bands window and
25 bands stride. Note that the predictions are overlaid on the terrain and that each tile has 256× 256 pixel dimensions.



Figure 6: Sample results for Ensemble H-mrcnn. Columns 1, 2, and 3 are ground truth, terrain, and ground on terrain;
columns 4, 5, and 6 show the predicted outputs from the H-mrcnn ensemble method. The best results are shown in column
4 for a band-widow of size 50 and stride of 25. Note that the predictions are overlaid on the terrain. Row 1 in columns 4, 5,
and 6 (circled in red) depict a true negative detection sample case.


