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Abstract

In this supplementary material, we first provide mathe-
matical derivation to the sub-problems proposed in the pa-
per [9]. For reference, we provide few qualitative compari-
son of our method in comparison to Dai et.al. approach [4].
Additional experimental results on real and synthetic dense
dataset using our algorithm are also supplied. Lastly, we
provide some general discussions on our algorithm.

1. Mathematical Derivations
The augmented form of the optimization is as follows:
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Taking the derivative of Eq:(2) w.r.t S and equating it to
0 gives
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Figure 1: Convergence Curve

The Eq:(4) is solved by using the thresholding operator

S (o) = sign(o).max(|o| — 7,0). Let [U, X, V] be the sin-

gular value decomposition of (¢g(S) — %) then the solution

to S* is given by 8¢ = USe. (X)V, with © as the weight
P

assigned to singular values.

2. Convergence Curve

Figure 1(a) show the convergence curve of our proposed
optimization for solving non-rigid shape matrix.

3. Qualitative Comparison

At last, we provide the visual comparison of our algo-
rithm in comparison to the targeted baseline [4] in Figure
2. The results clearly shows that by simple yet powerful
rectification to simple prior free idea, we can achieve a sig-
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Figure 2: Qualitative comparison of our algorithm with the classical baseline BMM [4] under the same model complexity value (K). The
first row and the second row shows the 3D reconstruction using Dai et al. and our approach respectively on the benchmark dataset.(Best

viewed in color)

nificant boost in the reconstruction quality'.

4. More Experimental Results
4.1. Results on Dense Datasets

In contrast to Dai et al. [4], we also performed experi-
mental analysis on Dense dataset [7]. Table (1) show the
performance comparison of our algorithm on synthetic face
sequence. The proposed algorithm performs reasonably
well even on the dense dataset.

Data | DS[3] | DV[6] | PTA[1] | MP[17] | Ours

Seq.1 | 0.0636 | 0.0531 | 0.1559 | 0.2572 | 0.0591
Seq.2 | 0.0569 | 0.0457 | 0.1503 | 0.0640 | 0.0478
Seq.3 | 0.0374 | 0.0346 | 0.1252 | 0.0611 | 0.0281
Seq4 | 0.0428 | 0.0379 | 0.1348 | 0.0762 | 0.0308

Table 1: Average 3D reconstruction error (e3p) comparison on
dense synthetic face sequence[6]. Note: The code for DV [6] is
not publicly available, we tabulated its results from DS [3] work.
BMM [4] evaluation on this dataset is not available.

'Our claims are easy to verify and test using Dai et al. [4] publicly
available code at http://users.cecs.anu.edu.au/ yuchao/publication.htm

4.2. Results on Missing Datasets

For more rigorous test on the missing dataset, we used
Garg et al. real dense dataset sequence [6]. This dataset
comprises of Face, Back and Heart sequence with 28332,
20561, and 68295 feature points tracked over 120, 150, and
80 images. Figure (3) show the qualitative results on the
missing data for the available categories. The percentage
of missing trajectories used for the experiments for Back,
Face and Heart sequence are 29.87%, 41.17% and 43.93%
respectively.

4.3. Timing details of the method

Run time of our algorithm for a typical sparse setting say
50 points, 300 frames is 39.46s in comparison to BMM [4]
which is 34.24s.

5. Ablation Test

An ablation test is performed to show the contribution
of smooth motion assumption and weighted nuclear norm
minimization to 3D reconstruction accuracy. Table (2) pro-
vides the statistics, which clearly show the contribution of



(a) Back Sequence (29.87 %)

Figure 3: Qualitative results on Garg et al. [6] real dense sequence. (1) Input image sequence (2) The

(b) Face Sequence (41.17%)

(c) Heart Sequence (43.93%)

and red dot show the complete

and missing trajectory respectively. (3) The qualitative results on the Back, Face and Heart sequence with 29.87%, 41.17% and 43.93%

missing data sequence respectively.

our approach to improve the prior-free approach.

Data D.R.+NN | D.R.+ WNN O.R+NN | O.R+WNN
Drink 0.0266 0.0119 0.0266 0.0119
Pickup 0.1731 0.0622 0.1517 0.0198
Yoga 0.1150 0.0129 0.1150 0.0129
Stretch | 0.1034 0.0547 0.0910 0.0144

Table 2: Ablation study to show the contribution of both the
step. D.R stands for Dai et al. rotation [4], O.R stands for Our
rotation. NN and WNN refers to Nuclear and Weighted Nuclear
Norm based optimization respectively to estimate shape.

6. Discussion

Note: The term «regularity» in the section(2) paragraph
“plausible rectification” to the solution of rotation, in the
main paper, is used in a loose sense. Kindly, ignore this
if it’s not mathematically precise to use it to convey the
intuition.

Q. Why the assumption of «smooth» deformation of an ob-
ject over frames is reasonable in solving NRSfM?

In many real world scenario’s the transition of a non-rigidly
moving object from one state to another over frames is not
arbitrary but is well ordered or regular in terms of rigid-
ity. Such assumption successfully captures the general no-
tion about the global behavior of a deforming surface, at
the same time maintains the local attribute of the surface.
Therefore, to assume smooth motion is a reasonable choice

and works well for most non-rigidly moving object [18].
Q. In some applications, we have more prior knowledge
about the shape in addition to its low-rank matrix assump-
tion, for example: exact rank of the clean shape matrix. In
such cases, one may choose to minimize partial sum mini-
mization of singular values optimization i.e.,

. 8 1 2
minimize p|rank(S*) — T| + §||W —RS||5 3)
st,8

where, T is the target rank of the shape matrix. However,
such an optimization needs an introduction to new opera-
tor known as PSVT [16] to optimize the problem. Never-
theless, PSVT can be regarded as special case of solving
the weighted nuclear norm minimization [2, 5]. Therefore,
the point is, depending on the application, the proposed ap-
proach can be modified or changed, hence, its flexible.
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