
-Geometric Image Correspondence Verification by Dense Pixel Matching-

Appendix
In this appendices we show additional qualitative and

quantitative results of the proposed approach. In Sec. B we
provide an ablation study and analyze the influence of dif-
ferent design choices of our method to the localization per-
formance. We demonstrate the benefits of the unified cor-
respondence map decoder (UCMD) compared to the archi-
tecture with multiple decoders in Sec. C Finally, qualitative
localization and pixel correspondence estimation results are
shown in Sec. E.

A. Additional Baselines
In this work, we propose two similarity functions for ge-

ometric verification, i.e.:

S =
C

I
· exp

(
−W ·H

C

)
, (1)

SF =

R︷ ︸︸ ︷
log10 (SL · S) · 10−G︸ ︷︷ ︸

Q

(2)

where I and C is the number of inliers and cyclically con-
sistent inliers between two (W,H) images (A,B), respec-
tively; SL =

∑
a (f

a
A · faB)ma is the local similarity be-

tween each hypercolumn (faA and faB) of the NetVLAD [1]
image descriptor at location a; G is the global similarity
value.

We compare our method with two baselines: i) recently
proposed geometric verification pipeline Inloc [10], and ii)
a neural network based method that learns the scoring func-
tions, S and SF given {C, I}, and {C, I, SL, G} as input.
We present more details about the baselines next.
Inloc. Inloc is a indoor localization pipeline consisting
of three primary stages: i) ranking of database images
by measuring global representation similarity with a given
query. The global representations are obtained from the
image retrieval pipeline, e.g. NetVLAD [1]; ii) a short-
list of top ranked database images are re-ranked based on
geometric verification using dense CNN descriptors. The
dense descriptors are obtained from different layers of the
NetVLAD pipeline followed by a coarse to fine matching
using nearest-neighbor search. The geometric verification
is done using a standard RANSAC based inlier count. The

final score is the sum of global similarity and inlier count;
iii) the top ranked geometrically verified database images
are fed into a pose verification stage. The final stage first
estimates candidate query poses w.r.t. the current shortlisted
database images. The estimated pose is then verified using
view synthesis, a process requiring dense database depth
maps. Our proposed geometric verification pipeline is sim-
ilar to Inloc components i) and ii). The pose verification
stage requires depth maps which is not always available.
Therefore, we evaluate Inloc pipeline until the geometric
verification stage and report results in Tab. 1b.
Learnt similarity functions. Since both Eq. 1 and Eq. 2
are hand-crafted we provide a FCNN-based model that can
learn the similarity function. More specifically, we experi-
ment with two independent models (for S and SF ) which
can predict whether two images similar or not based on
C, I , SL, and G. Both models have similar architec-
tures FC(N, 128) − ReLU − FC(128, 128) − ReLU −
FC(128, 1), where the shorthand notation is used was the
following: FC is a fully connected linear layer; N is the
number of input units (2 {C, I} for S and 4 {C, I, SL, G}
for SF , respectively). We refer to these models as S-FCNN
and SF -FCNN. Both models have been trained by minimiz-
ing binary cross-entropy loss function in a supervised man-
ner.

Results. We now compare S and SF with Inloc geo-
metric verification pipeline on Tokyo247 dataset. Results
demonstrate that our proposed function S and SF outper-
form Inloc across all Recall rates as shown in Tab. 1a. We
observed that for many query-database image pairs, Inloc
fails to find any inliers. This can be attributed to signifi-
cant clutter, illumination change (day-night) and occlusion
in this challenging dataset. The learnt similarity functions
S-FCNN and SF -FCNN have very promising results and
perform better than NetVLAD. In particular, S-FCNN has
comparable performance to the proposed S. However, SF -
FCNN could not achieve any improvement compared to S-
FCNN. We leave further analysis for future work.

B. Ablation study

In this section we perform an ablation study on the pro-
posed equations Eq. 1 and Eq. 2 for geometric verification.



Methods Recall
r@1 r@5 r@10

Inloc [10] 62.54 67.62 70.48
NetVLAD-Pitts [1] 61.27 73.02 78.73
DenseVLAD [11] 67.10 74.20 76.10
S-FCNN 67.94 81.90 85.08
SF -FCNN 63.49 81.59 85.71
Proposed (S) Pitts 71.43 82.54 85.08
Proposed (SF ) Pitts 77.14 84.44 86.67

(a) The proposed similarity functions S and SF perform better
strong baseline methods.

Methods Recall
r@1 r@5 r@10

NetVLAD-Pitts [1] 61.27 73.02 78.73
I (inliers) 56.83 78.41 83.81
C (cyclically consistent inliers) 70.16 82.86 85.71
C/I 64.76 82.54 85.71
Proposed (S) Pitts 71.43 82.54 85.08

(b) Localization performance on the Tokyo247 dataset (higher is
better).

Methods Recall
r@1 r@5 r@10

NetVLAD-Pitts [1] 61.27 73.02 78.73
log10(SL ∗ S) 73.65 83.49 86.67
G 69.84 80.95 85.08
Proposed (SF ) Pitts 77.14 84.44 86.67

(c) Localization performance on the Tokyo247 dataset (higher is bet-
ter).

R
Q

5/G 10−G

SL 77.78 81.34
SL ∗ S 82.04 83.70
log10 (SL ∗ S) 85.37 85.94

(d) Localization performance (Recall@1) on the Pittsburgh test
dataset (higher is better). We analyze the performance of differ-
ent Q and R of the original similarity function (2). The baseline,
NetVLAD achieves 81.59 % Recall@1

Table 1: Ablation study. We evaluate the proposed similar-
ity functions S and SF with different settings on Tokyo24/7
and Pittsburgh datasets.

For Eq. 1, we analyze the impact of each variable, C, I on
retrieval performance on Tokyo247 dataset independently.
The results are presented in Tab. 1b.
Results. First we provide the ablation study for Eq. 1. Re-
sults demonstrate that simple Inlier count performs worse
than the baseline NetVLAD and our proposed S at Re-
call@1. However, the retrieval performance improves over
NetVLAD for Recall@5 and Recall@10. Cyclically con-
sistent inliers C outperform NetVLAD across various Re-
call rates. Similarly, the ratio C/I performs marginally bet-
ter but it falls slightly behind of C for Recall@1 (by about
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Figure 1: AEPE averaged over all HPatches [2] se-
quences versus memory footprint. Accuracy of both pro-
posed methods (DGC-NC-Net and DGC-NC-UCMD-Net)
is about on par, however, UCMD allows to decrease mem-
ory footprint by 30%.

6 %). Both C and C/I perform on par with the proposed
S across Recall@5 and Recall@10. However, S has a clear
performance advantage over C and C/I for Recall@1 as
shown in Tab. 1b.

Now, we perform an ablation study for Eq. 2. As men-
tioned in the main manuscript, the proposed SF is used to
re-rank the top 20 database images in the shortlist, L as
ranked by S. Here, we perform the final re-ranking using
just the local descriptor similarity component, log10(SL ∗
S), and global representation distance, G. Results in Tab.
1c demonstrate that re-ranking with G decreases retrieval
performance compared to the initial ranking by S. On the
other hand, local descriptor similarity SL weighted by S
significantly improves over the baselines and initial rank-
ing by S. However, the proposed combination of local and
global representation similarity outperforms each individual
component across all Recall rates.

The key idea here is to combine the similarity functions,
SL, S and G. It is important to note that SL and S are sim-
ilarity functions, while G is a distance function, hence, it
is inversely proportional to global similarity. The inversely
proportional functions, R(SL, S) and Q(G) can be com-
bined in many different ways. We present a few in Tab. 1d.
The co-efficient (5 and 10) associated withG in the columns
of the Tab. 1d have been obtained using a grid search over
the range (1, 10000) on Pittsburgh test dataset. In addition,
we found ŜF = R ∗ Q performs clearly better than ŜF =
R+Q. Hence, we only present results for various R and Q
for ŜF = R ∗Q in Tab. 1d. The precise form of the combi-
nation of these similarity functions has been obtained based
on validation experiments on test set of Pittsburgh dataset.
Tab. 1d shows that various possible combinations give bet-
ter performance than NetVLAD which achieves 81.59 at
Recall@1.



C. The benefits of UCMD
As shown in the main manuscript, we propose the uni-

fied correspondence map decoder which leads to a com-
pact but efficient architecture. In addition to ablation
study presented in the main part, here we report the av-
erage end point error averaged over all sequences of the
HPatches [2] dataset obtained by the proposed approach
and each strong baseline method (PWC-Net [9], geometric
matching GM [7], and DGC-Net [5]) and allocated GPU
memory. The results are illustrated in Fig. 1. In con-
trast to DGC-NC-Net with 5 separate decoders, the pro-
posed UCMD can significantly decrease memory footprint
(by 30%) achieving comparable accuracy.

The amount of memory allocated by GM [7], DGC-
Net [5], DGC-NC-Net, and DGC-NC-UCMD-Net is higher
compared to PWC-Net since all those models have used
pre-trained VGG-16 network as encoder. Therefore, in ad-
dition to memory consumption and total number of parame-
ters given in the main manuscipt, we compute the total num-
ber of learnable parameters of each model and provide the
results in Tab. 2.

Model Number of learnable parameters
PWC-Net [9] 8 749 280
GM [7] 3 271 576
DGC-Net [5] 2 675 338
Proposed (DGC-NC-Net) 2 685 079
Proposed (DGC-NC-UCMD-Net) 940 561

Table 2: Number of learnable parameters of two proposed
architectures and strong baseline methods.

D. Implementation details
We train our network end-to-end using Adam [4] solver

with β1 = 0.9 and β2 = 0.999. As a preprocessing step, the
training images are resized to 240× 240 and further mean-
centered and normalized using mean and standard deviation
of ImageNet dataset [3]. We use a batch size of 32, an ini-
tial learning rate of 10−2 which is gradually decreased dur-
ing training. The weight decay is initialized to 10−5 in all
experiments and no dropout was used in our experiments.
Our method is implemented using PyTorch framework [6]
and trained on two NVIDIA Titan X GPUs.
Localization. For image retrieval and localization experi-
ments, we resized the input images to 640 × 480 and ex-
tracted descriptors (feature maps) from the output of the
conv3 and conv5 layer in the NetVLAD architecture[1].
The low resolution feature maps were then respectively
upsampled using bilinear interpolation to 160 × 120 and
concatenated along the channel dimension. We then com-
pute local descriptor similarity, SL (Eq. 2 in main paper).

As this stage requires dense correspondence map, we re-
sized the corresponding output of DGC-NC-UCMD-Net to
160 × 120. Note that in Eq. 2 (in main paper), we first
extract the descriptors from original images, and then warp
the feature maps to compute similarity.
Computational time. We evaluate the computation time
on Tokyo24/7 dataset for the proposed method. It takes on
average 0.4s to re-rank a database image for a given query
using Eq. 1. One pass through the network requires 0.08s,
while RANSAC on the output dense map involves major
computations requiring 0.32s. Further re-ranking (Eq. 2)
takes 0.04s as it uses the results (dense correspondence
maps) from Eq. 1.

E. Qualitative results

Localization (image retrieval) performance. Fig. 2 re-
ports an additional set of results obtained for the Tokyo24/7
dataset. Namely, it includes top-1 Nearest Neighbour (Re-
call@1 metric) obtained by NetVLAD [1] and our ap-
proach, respectively, for a given query. It clearly shows
the proposed method improves retrieval results compared to
NetVLAD and can cope with major changes in appearance
(illumination changes in the scene) between the database
and query images. Qualitative image retrieval results on
Aachen Day-Night [8] are illustrated in Fig. 3a.

Dense pixel correspondences are presented in Fig. 3.
Each row shows one test pair from the Aachen Day-Night
and Tokyo24/7 datasets, respectively. Ground truth match-
ing keypoints are illustrated in different colors and have
been used only for pixel correspondence evaluation. Key-
points of the same color are supposed to match each other.
We manually indicated 3 keypoints in the target image for
visualization purposes and the corresponding locations in
the source image have been obtained by the proposed au-
tomatic dense matching approach. That is, given an input
image pair (source and target images), our method predicts
the correspondence map which is then used to obtain the
location of keypoints. The results demonstrate that the pro-
posed method can handle such challenging cases as differ-
ent illumination (day/night) conditions, occlusions, and sig-
nificant viewpoint changes producing accurate pixel corre-
spondences.

F. Limitations and future directions

We have demonstrated that the proposed method can lo-
calize queries under challenging conditions but it fails for
very large viewpoint change (e.g. 180o rotation while ob-
serving the same place) and significant scale change. In
addition, it would be interesting to propose an end-to-end
semi-supervised approach which can efficiently learn simi-
larity functions.
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Figure 2: Qualitative results produced by NetVLAD [1] (rows 2 and 5) and the proposed method (rows 3 and 6) on
Tokyo24/7 [11]. Each column corresponds to one test case: for each query (row 1 and 4) top-1 (Recall@1) nearest database
image has been retrieved. The green and red strokes correspond to correct and incorrect retrieved images, respectively. The
proposed approach can handle different illumination conditions (day/night) and significant viewpoint changes.



Query Top-1 NN

(a) Retrieval performance and pixel correspondences on Aachen
Day-Night

Target Source

(b) Pixel correspondences on Tokyo24/7

Figure 3: Qualitative image retrieval 3a and dense pixel correspondence estimation results produced by the proposed
approach. We evaluate our approach on two challenging datasets: Tokyo24/7 and Aachen Day-Night. More image retrieval
results are illustrated in Fig. 2. Each row of Fig. 3b corresponds to one test case. Ground truth keypoints have been manually
selected in the target image for visualization purposes and the corresponding locations in the source image are obtained by
the proposed dense matching method. Keypoints of the same color are supposed to match each other.
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