
1053-supp/1053-supp.mp4


1053-supp/1053-supp.pdf


Supplemental Material:


MonoLayout : Amodal scene layout from a single image


Kaustubh Mani ∗ 1, Swapnil Daga1, Shubhika Garg2, N. Sai Shankar1, J. Krishna Murthy3,4, and K. Madhava Krishna1


1Robotics Research Center, KCIS, IIIT Hyderabad, India, 2IIT Kharagpur, 3Mila - Quebec AI Institute, Montreal,
Canada, 4Université de Montréal


Abstract


In this article, we present a few additional details
and results to supplement the claims and findings of the
main paper. Specifically, we discuss the network archi-
tecture in greater detail and provide training specifics.
We also evaluate against additional approaches (that
are somewhat tangentially relevant to MonoLayout).
We also demonstrate two use-cases of MonoLayout,
in trajectory forecasting and multi-object tracking re-
spectively. Additional qualitative results are included
towards the end of the article.


More importantly, we also present a few failure cases
and negative results (a glossary of experiments that did
not work out), in the spirit of fostering reproducibility
and expediting progress in this nascent field.


Please watch the enclosed video attachment for
demonstrations, to get a closer idea of how MonoLay-
out performs in practice.


1. Implementation Details


In this section, we describe the network architecture
and training procedure in greater detail.


1.1. Network Architecture


MonoLayout comprises the following four blocks: a
feature extractor, a static layout decoder, dynamic lay-
out decoder, and two discriminators.


Feature extractor


Our feature extractor is built on top of a ResNet-
18 encoder1. The network usually takes in RGB im-
ages of size 3 × 512 × 512 as input, and produces a


∗Corresponding author: kaustubh3095@gmail.com
Project page: https://hbutsuak95.github.io/monolayout/


1We also tried other feature extraction / image-image archi-
tectures such as UNet and ENet, but found them to be far inferior


512 × 32 × 32 feature map as output. In particular,
we use the ResNet-18 architecture without bottleneck
layers. (Bottleneck layers are absent, to ensure fair
comparision with OFT [15]). This extracted feature
map is what we refer to as the shared context.


Layout Decoders


We use two parallel decoders with identical architec-
tures to estimate the static and dynamic layouts. The
decoders consists 2 convolution layers and take as input
the 512×32×32 shared context. The first convolution
block maps this shared context to a 128× 16× 16 fea-
ture map, and the second convolution block maps the
output of the first block to another 128× 8× 8 feature
map.


At this point, 4 deconvolution (transposed convo-
lution) blocks are applied on top of this feature map.
Each block increases spatial resolution by a factor of
2, and decreases the number of channels to 64, 32, 16,
and O respectively, where O is the number of channels
in the output feature map (O ∈ {1, 2} for the static
layout decoder, and O = 1 for the dynamic layout de-
coder). This results in an output feature map of size
O×128×128. We also apply a spatial dropout (ratio of
0.4) to the penultimate layer, to impose stochastic reg-
ularization. The output 128× 128 grid corresponds to
a rectangular region of area 40m× 40m on the ground
plane.


Discriminators


The discriminator architecture is inspired by
Pix2Pix [8]. We found the patch based regular-
ization in Pix2Pix to be much better than a standard
DC-GAN [14]. So, we use patch-level discriminators
that contain four convolution layers (kernel size 3× 3,


in practice.







stride 2), that outpus an 8 × 8 feature map. This
feature map is passed through a tanh nonlinearity and
used for patch discrimination.


1.2. Training details


We train MonoLayout with a batch size of 16 for
200 epochs using the Adam [9] optimizer with initial
learning rate 5e − 5. The input image is reshaped to
3×512×512 and further augmented to make our model
more robust. Some of the augmentation techniques
we use include random horizontal flipping and color
jittering.


1.3. Metrics used


Road layout estimation


To evaluate estimated road layouts, we use
intersection-over-union (IoU) as our primary metric.
We split IoU evaluation into two parts and measure
IoU for the entire static scene, as well as IoU for
occluded regions (i.e., regions of the road that are
occluded in the image and were hallucinated by
MonoLayout).


Vehicle occupancy estimation


While most approaches to vehicle detection evalu-
ate only mean Average Precision (mAP), it has been
shown to be a grossly inaccurate measure of how
tight a bounding box is [7]. We hence adopt mean
Intersection-over-Union (mIoU) as our primary basis
of evaluation. To ensure a fair comparision with prior
art, we also report mAP.2. (Note that, since we are
evaluating object detection in bird’s eye view, and not
in 3D, we use the mIoU and mAP, as is common prac-
tice [4, 5]). This choice of metrics is based on the
fact that MonoLayout is not an object “detection" ap-
proach; it is rather an object occupancy estimation ap-
proach, which calls for mIoU and mAP evaluation. We
extend the other object “detection" approaches (such
as pseudo-lidar based approaches [15,18,20]) to the oc-
cupancy estimation setting, for a fair comparision.


2. Timing analysis


We also show the computation test time of our
method as compared to similar methods in Table 2.
Our network does not require discriminator to be used
during inference time. It achieves real time inference
rate of approx. 30 Hz for an input image with a resolu-
tion of 512 * 512 pixels and an output map with 128 *
128 occupancy grid cells using a Nvidia GeForce GTX
1080Ti GPU. The code for [17] is not publicly available,


2We outperform existing methods under both these metrics


and the computation time is based on the PSMNet [2]
backbone they use. Here again the proposed method is
almost an order faster than previous methods making
it more attractive for on-road implementations.


3. Comparision with pseudo-lidar


There is another recent set of approaches to object
detection in bird’s eye view—pseudo-lidar approaches
[19]. At the core of these approaches lies the idea that,
since lidar object detection works exceedingly well,
monocular images can be mapped to (pseudo) lidar-like
maps in bird’s eye view, and object detecion networks
tailored to lidar bird’s eye view maps can readily be
applied to this setting. Such approaches are primarily
geared towards detecting objects in lidar-like maps.


MonoLayout , on the other hand, intends to estimate
an amodal scene layout, and to do so, it must reason
not only about vehicles, but also about the static scene
layout. Table 1 compares MonoLayout with a set of
pseudo-lidar approaches, in terms of vehicle occupancy
estimation and road layout estimation. Specifically, we
evaluate the following pesudo-lidar based methods.


1. ENet + Pseudo-lidar input (Monodepth2): Uses
an ENet [13]-style encoder-decoder architecture
that uses Monodepth2 [6] to get monocular depth
estimates.


2. PointRCNN + Pseudo-lidar input (Monodepth2):
Uses a PointRCNN [18] architecture (a two-stage
object detector comprising a region proposal net-
work, and a classification network) to detect vehi-
cles in bird’s eye view.


3. AVOD + Pseudo-lidar input (PSMNet): A
stereo, supervised method. Uses the aggregated
view object detector AVOD [10] and pseudo-lidar
input computed from a disparity estimation net-
work (PSMNet [2]).


The comparision is shown in Table 1. The PointR-
CNN [18] and AVOD [10] are tailored specifically for
object detection, and hence cannot be repurposed to
estimate road layouts. However, the ENet [13] archi-
tecture can, and we trained it for the task of road
layout estimation. We observe that, among all ap-
proaches, MonoLayout is the fastest (about an order of
magnitude speedup over pseudo-lidar methods). Fur-
thermore, the accuracy is competitive, if not greater,
compared to pseudo-lidar based approaches.


We also evaluate against a stereo pseudo-lidar base-
line (AVOD + pseudolidar PSMNet [2]). By virtue
of using stereo images, and being supervised on the







Method Vehicle (mAP) Vehicle (mIoU) Road (mIou) Frame Rate


ENet + Pseudo lidar input(Monodepth2) 0.37 0.24 0.62 12.34 fps


PointRCNN + Pseudo lidar input(Monodepth2) 0.43 0.26 - 5.76 fps


MonoLayout (Ours) 0.41 0.26 0.80 32 fps


AVOD + Pseudo lidar input(PSMNet) (Stereo) 0.59 0.43 - < 1.85 fps


Table 1: Comparision with Pseudo-lidar [19]: We also evaluate MonoLayout against several variants of pseudo-
lidar [19] approaches. While the usage of increasingly heavy processing blocks for pseudo-lidar variants improves accuracy,
it drastically increases computation time. On the other hand, MonoLayout offers—by far—the best mix of accuracy and
runtime for real-time applications. Also note that the comparision with AVOD + Pseudo-lidar (PSMNet) is unfair, since it
uses stereo disparities.


Method Parameters Computation Time


OFT [15] 24.5 M 2 fps


MonoOccupancy [11] 27.5 M 15 fps


Schulter et al. [17] >> 20 M < 3 fps


MonoLayout (Ours) 19.6M 32 fps


Table 2: A comparative study of test computation time on
NVIDIA GeForce GTX 1080Ti GPU for different methods
on the images of KITTI [5] RAW dataset.


KITTI Object dataset 3, achieves superior perfor-
mance. However, the comparision is unfair, and is pro-
vided only for a reference, to enable progress in amodal
layout estimation from a monocular camera.


Another shortcoming of pseudolidar-style ap-
proaches is that, it is not possible to learn visual (i.e.,
image intensity based) features that are extremely use-
ful in road layout estimation).


4. Application: Trajectory forecasting


One of the use-cases of MonoLayout is to forecast fu-
ture trajectories from the estimated amodal scene lay-
out.


We demonstrate accurate trajectory forecasting per-
formance by training a Convolutional LSTM that op-
erates over the estimated layouts from MonoLayout .
Specifically, we adopt an encoder-decoder structure
similar to ENet [13], but add a convolutional LSTM
between the encoder and the decoder. We also add a
convolutional LSTM over each of the skip connections
present in ENet.


We pre-condition the trajectory forecasting network
for 1 second, by feeding it images, and then predict
future trajectories for the next 3 seconds. Note that,
when predicting future trajectories, no images are fed
to the forecasting network. Rather, the network oper-


3Monodepth2 [6] is unsupervised, and has not been finetuned
on the KITTI Object dataset


ates in an autoregressive manner, by producing an out-
put trajectory estimate, and using this estimate as the
subsequent inputWe also tried predicting static scene
layouts, to forecast future static scenes, but without
any success, owing to the high variability in static scene
layouts. The resultant model, called MonoLayout-
forecast, works in real-time, and accurately forecasts
the future trajectory of a moving vehicle, as shown in
Fig. 1. As with the layout estimation task, the forecast
trajectories are confined to a 128×128 grid, equivalent
to a 40m× 40m square area in front of the ego-vehicle.


5. Application: Multi-object tracking


Further, we propose an extension to generate accu-
rate tracks of multiple moving vehicles by leveraging
the vehicle occupancy estimation capabilities of Mono-
Layout . We also construct a strong baseline multi-
object tracker using the open-source implementation
from IoU-Tracker [1] as a reference. We term this base-
line BEVTracker. Specifically, we use disparity esti-
mates from stereo cameras, semantic and instance seg-
mentation labels, to segment and identify unique cars
in bird’s eye view. We then run IoU-Tracker [1] on
these estimates.


We demonstrate in Table 3 that MonoLayout out-
performs BEVTracker [1], without access to any
such specialized information (disparity, semantics, in-
stances). Instead, we run a traditional OpenCV blob
detector on MonoLayout vehicle occupancy estimates,
and use the estimated instances to obtain the coor-
dinates of the center of the vehicle. We then use
a maximum-overlap data association strategy across
time, using intersection-over-union to measure overlap.
We run our approach on all 24 sequences of the KITTI
Tracking (train) benchmark, and present the results in
Table 3.







Method Mean Error in Z (m) Mean Error in X (m) Mean L2 error (m)


BEVTracker (Open-source [1], enhanced with stereo, semantics, etc.) 1.08 0.51 1.27


MonoLayout (Ours) 0.23 0.47 0.58


Table 3: Multi-object tracking performance: We show the preformance of MonoLayout on a multi-object tracking
task, in bird’s eye view. The comparision is unfair as BEVTracker uses strictly more information (disparities, semantic
segmentation, instance segmentation). However, MonoLayout does not employ any such privileged information, and as
such uses OpenCV blob detection to identify instances, and a maximum-IoU-overlap data association framework. These
estimtaes are obtained over 24 sequences of the KITTI tracking benchmark. (Caveat: We only evaluate tracking accuracies
for cars within a 40m× 40m square region around the ego-vehicle, as MonoLayout estimates are confined to this region).


Figure 1: Trajectory forecasting: MonoLayout-forecast accurately estimates future trajectories of moving vehicles. (Left):
In each figure, the magenta cuboid shows the initial position of the vehicle. MonoLayout-forecast is pre-conditioned for
1 seconds, by observing the vehicle, at which point (cyan cuboid) it starts forecasting future trajectories (shown in blue).
The ground-truth trajectory is shown in red, for comparision. (Right): Trajectories visualized in image space. Notice how
MonoLayout-forecast is able to forecast trajectories accurately despite the presence of moving obstacles (top row), turns
(middle row), and merging traffic (bottom row).







6. More qualitative results


Additional qualitative results of joint static and dy-
namic scene layout estimation are presented in Fig. 2
and Fig. 3.


7. Shortcomings


Despite outperforming several state-of-the-art ap-
proaches and achieving real-time performance, Mono-
Layout also sufferes a few shortcomings. In this section,
we discuss some failure cases of MonoLayout and also
some negative results. Please watch the supplementary
video for additional results.


7.1. Failure cases


Fig. 4 shows a few scenarios in which MonoLay-
out fails to produce accurate layout estimates. Recall
that MonoLayout uses adversarial feature learning to
estimate plausible road layouts. We leverage Open-
StreetMap [12] to randomly extract road patches to
use as the true data distribution. However, no such
data is available for sidewalks, and this results in a few
artifacts.


As shown in the bottom row of Fig. 4, high-dynamic
range and shadows coerce the network into predicting
protrusions along these directions. Also, as shown in
the top row, sometimes, sidewalk predictions are not
coherent with road predictions. In the bottom row, we
show failure cases for vehicle occupancy estimation.


7.2. Negative results


Produced below is a list of experiments that the au-
thors tried, but were unsuccessful. We hope this will
expedite progress in this nascent field, by saving fellow
researchers significant amounts of time.


These did not work!


• Using a single encoder-decoder network to esti-
mate both static and dynamic scene layouts.


• Using an ENet [13] or a UNet [16] architecture as
opposed to the ResNet-18 encoder and customized
decoder we employed.


• Using a DCGAN [14] as opposed to patch-
discriminators [8].


• Employing a variational autoencoder-style latent
code between the encoder and decoder (to allow
for sampling)


References


[1] E. Bochinski, V. Eiselein, and T. Sikora. High-speed
tracking-by-detection without using image informa-
tion. In International Workshop on Traffic and Street


Surveillance for Safety and Security at IEEE AVSS
2017, 2017.


[2] J.-R. Chang and Y.-S. Chen. Pyramid stereo matching
network. In CVPR, 2018.


[3] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh,
S. Bak, A. Hartnett, D. Wang, P. Carr, S. Lucey,
D. Ramanan, et al. Argoverse: 3d tracking and fore-
casting with rich maps. In CVPR, 2019.


[4] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and
R. Urtasun. Monocular 3d object detection for au-
tonomous driving. In CVPR, 2016.


[5] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite.
In CVPR, 2012.


[6] C. Godard, O. Mac Aodha, M. Firman, and G. Bros-
tow. Digging into self-supervised monocular depth es-
timation. arXiv preprint, 2018.


[7] D. Hall, F. Dayoub, J. Skinner, H. Zhang, D. Miller,
P. Corke, G. Carneiro, A. Angelova, and N. Sünder-
hauf. Probabilistic object detection: Definition and
evaluation. arXiv preprint arXiv:1811.10800, 2018.


[8] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-
to-image translation with conditional adversarial net-
works. In CVPR, 2017.


[9] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. In International Conference
on Learning Representatiosn (ICLR), 2015.


[10] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L.
Waslander. Joint 3d proposal generation and object
detection from view aggregation. In IROS, 2018.


[11] C. Lu, M. J. G. van de Molengraft, and G. Dubbel-
man. Monocular semantic occupancy grid mapping
with convolutional variational encoder–decoder net-
works. IEEE Robotics and Automation Letters, 2019.


[12] OpenStreetMap contributors. Planet dump
retrieved from https://planet.osm.org .
https://www.openstreetmap.org , 2017.


[13] A. Paszke, A. Chaurasia, S. Kim, and E. Culur-
ciello. Enet: A deep neural network architecture
for real-time semantic segmentation. arXiv preprint
arXiv:1606.02147, 2016.


[14] A. Radford, L. Metz, and S. Chintala. Unsu-
pervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.


[15] T. Roddick, A. Kendall, and R. Cipolla. Orthographic
feature transform for monocular 3d object detection.
arXiv preprint, 2018.


[16] O. Ronneberger, P. Fischer, and T. Brox. U-net: Con-
volutional networks for biomedical image segmenta-
tion. In International Conference on Medical image
computing and computer-assisted intervention, 2015.


[17] S. Schulter, M. Zhai, N. Jacobs, and M. Chandraker.
Learning to look around objects for top-view represen-
tations of outdoor scenes. In ECCV, 2018.


[18] S. Shi, X. Wang, and H. Li. Pointrcnn: 3d object
proposal generation and detection from point cloud.
In CVPR, 2019.







RGB Lu et al. [11] Mono3D [4] OFT [15] MonoLayout Ground Truth


Figure 2: Dynamic layout estimation on KITTI [5]: Additional qualitative results for dynamic scene layout estimation on the
KITTI [5] dataset. From left to right, the column corresponds to the input image, MonoOccupancy [11], Mono3D [4], OFT [15],
MonoLayout (Ours), and ground-truth respectively. MonoLayout (Ours) produces crisp object boundaries while respecting vehicle
and road geometries.


.


[19] Y. Wang, W.-L. Chao, D. Garg, B. Hariharan,
M. Campbell, and K. Q. Weinberger. Pseudo-lidar
from visual depth estimation: Bridging the gap in 3d
object detection for autonomous driving. In CVPR,
2019.


[20] Y. You, Y. Wang, W.-L. Chao, D. Garg, G. Pleiss,
B. Hariharan, M. Campbell, and K. Q. Weinberger.
Pseudo-lidar++: Accurate depth for 3d object detec-
tion in autonomous driving. arXiv preprint, 2019.







RGB MonoLayout Ground-truth


Night


Sunny


Cloudy


Overcast


Figure 3: Qualitative results on Argoverse: Additional qualitative results on the Argoverse [3] dataset (road shown
in pink, vehicles shown in green. MonoLayout (center column) uses both static and dynamic layout discriminators and
produces sharp estimates, and is robust to varying weather conditions, high dynamic range (HDR), and shadows.







Sidewalk


Vehicle


Figure 4: Failure cases: This figure highlights a few cases in which MonoLayout produces incorrect layout estimates.
Adverse lighting conditions and sharp turns, in some cases effect sidewalk estimation accuracy(Row 1). Also, multiple
near-by vehicles in an image get merged into a single estimate, at times. (As shown in Row 2, only when the ego-vehicle
gets close to the two cars parked in close vicinity to each other, the model is able to distinguish the two cars.)






