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Summary: We describe the parameters used to simulate
atmospheric turbulence images and analyze the effect of
change in turbulence parameters on segmentation results.
Then, we perform an ablation study on the loss functions
used in our restoration and segmentation network. Finally,
we group all the small object classes of Cityscapes dataset
according to their importance for autonomous applications
and show class-wise improvement in semantic segmenta-
tion by using our proposed framework.

1. Parameters of Turbulent Images
We use an efficient method proposed by [4], which

was computationally inexpensive as compared to computer
graphics methods. The imaging parameters we use for the
simulation are: focal distance of the camera = 300mm with
lens diameter ≈ 5.357cm having a pixel size 4e − 3mm.
The virtual imaging system is placed at an elevation of
4m. Structure constant C2

n is an important variable for
measuring atmospheric turbulence. Higher the value of C2

n

stronger the turbulence. C2
n = 0 indicates a medium free

of turbulence. The value for structure constant C2
n here is

9e − 14m−2/3. Light traveling from the object is assumed
to be having a spherical wavefront with a wavelength of
550nm. Figure 1 shows an example of the simulated im-
age on these parameters.

2. Additional Ablation Studies
Loss Function: We perform an ablative study on the loss

function lgen (equation 1), which is used to train our restora-
tion network. We train all our models for 15 epochs with a
learning rate of 1e − 4 on the Cityscapes dataset. Table 1
shows the performance of our restoration model when it is
trained on different loss components of lgen. We find that
removing adversarial loss from lgen drastically reduces the
performance of the restoration network. Whereas, the addi-
tion of perceptual loss in lgen gives a marginal improve-
ment in the restoration. We also show the effectiveness
of using a natural logarithm on the CORAL loss, which is

Figure 1: Shows the simulated turbulent images of
Cityscapes dataset. The green boxes shows the enlarged
patches of the turbulent image. It is evident that the linear
structure of objects such as poles is lost due to the geomet-
rical distortion caused by atmospheric turbulence.

Loss PSNR SSIM MS-SSIM MSE

lcon 18.438 0.4226 0.7312 299.024

lcon + ladv 24.245 0.7725 0.9404 153.970

lcon + ladv + lper 25.914 0.8042 0.9611 134.682

Table 1: Shows the performance of our restoration network,
when trained on different components of lgen. We can see
by removing perceptual loss and adversarial loss from lgen,
there is a drastic decrease in the restoration performance
observed in the all image quality metric, whereas, the ad-
dition of perceptual loss to lgen improves the restoration
marginally. lcon, ladv , and lper are the content loss, adver-
sarial loss, and perceptual loss respectively.

loss component of the joint segmentation loss (equation 3).
lcoral (CORAL loss component in equation 3) is the natu-
ral logarithm of CORAL loss. The idea for applying log-
arithm on top of the CORAL loss was to handle the over-
shooting values of CORAL loss, which made the training
of the segmentation network more stable. From Table 2, we
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Figure 2: The figure shows the segmentation results on the restored and turbulent image at different values of structure
constant C2

n. We can notice as the value of C2
n increases, the segmentation results start to degrade (observe the segmenta-

tion result of the white signboard in the magnified patch). (a) Turbulent images at different values of C2
n. (b) Magnified

turbulent image patch (red box) and its corresponding segmentation colormap by DeepLabV3. (c) Restored image patch and
corresponding segmentation colormap obtained from our framework.
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Figure 3: mIoU vs structure constant(C2
n). Comparison

of the performance of the semantic segmentation model on
the set of turbulent and restored images of Cityscapes. The
plot shows that the performance of DeepLabV3 on turbu-
lent images and Joint Coral-DLV3 on restored images de-
crease as the turbulence in the environment increases, which
is measured by C2

n.

see a marginal improvement in segmentation results on the
Cityscapes dataset by using lcoral.

Loss mIoU

Coral Loss 56.831
lcoral 57.011

Table 2: Improvement in segmentation results by applying
logarithm to the CORAL loss component of joint segmen-
tation loss (equation 3). lcoral is the natural logarithm of
CORAL loss.

mIoU vs Structure Constant: Structure Constant
C2

n [3] is an important parameter to measure the atmo-
spheric turbulence as it is directly proportional to the atmo-
spheric temperature. Hot cities like Dubai normally have
C2

n values which are in the order of 10−14m−2/3 which
increases to 10−13m−2/3 in extremely hot days. Hence,
to show the effect of increasing C2

n on our segmentation
model, we vary the value of C2

n from 3e − 14m−2/3 to
9e−14m−2/3 and show segmentation result at different C2

n.
Figure 3 shows the mIoU for turbulent and restored images
on Munster city frames present in the Cityscapes dataset.
We can see, as the value of C2

n increases the mIoU for tur-
bulent and restored images decreases. Figure 2 shows the



Group 2 Group 3 Group 4
Method pole tlight tsign person rider mbike bicycle mIoU

DeepLabV3 [2] 23.14 30.39 37.51 44.06 15.43 15.65 29.41 27.941

Joint Coral-DLV3 33.28 39.29 43.59 60.73 39.21 36.41 52.79 43.614

IoU Gain 10.15 8.90 6.08 16.67 23.78 20.76 23.39 15.675

Table 3: Shows the segmentation improvement for the small object classes, which are grouped according to their impor-
tance [1] in the autonomous navigation system. The classes become more valuable with the increase in the group number.
We can also observe from the table, the segmentation improvement from atmospheric turbulence is highest in group 4, which
consists of the most important and valuable classes for autonomous navigation. In the table, tlight, tsign, and mbike denote
the traffic light, traffic sign, and motorcycle classes of Cityscapes dataset.

Channel Attention Inter-connection Multi-scale PSNR SSIM MS-SSIM MSE

7 7 7 20.9341 0.6013 0.8477 244.04

7 7 3 21.6617 0.6249 0.8615 235.33

7 3 3 22.0432 0.6495 0.8889 217.12

3 3 3 22.1411 0.6517 0.8910 214.68

Table 4: Ablation of our proposed CA-MSRB block. We
empirically find that combining all the component gave the
best performance.

qualitative analysis on different values of C2
n.

Channel Attentive Multi-scale Residual Block: Next,
we perform ablation study on our proposed CA-MSRB
block. The CA-MSRB block consist of channel-attention,
inter connection between the convolution layers and has
multi-scale convolutional layers. Table 4 shows the perfor-
mance of each component of CA-MSRB.

3. Performance on Small and Important Ob-
jects

Small classes of the Cityscapes dataset such as poles,
traffic lights, or person are severely affected by atmospheric
turbulence, as shown in Figure 1. The reason behind
such cause is that small objects like poles lose their lin-
ear shape and become geometrically distorted, whereas, for

large classes like sky and road, the impact of turbulence is
not so prominent. But, these small class are much more
importance [1] when trained semantic segmentation mod-
els are applied to the autonomous driving system. For in-
stance, rider or person class as these classes are more vul-
nerable and valuable than the sky in case of self-driving
cars. Hence, by using our proposed framework, we analyze
the improvement in segmentation accuracy for the small
objects, which are grouped according to their importance.
Table 3 shows the improvement in semantic segmentation
accuracy for small object categories of Joint Coral-DLV3,
compared against DeepLabV3.
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