
Architecture Search of Dynamic Cells for Semantic Video Segmentation

Vladimir Nekrasov Hao Chen Chunhua Shen Ian Reid
The University of Adelaide, Australia

E-mail: {vladimir.nekrasov, hao.chen01, chunhua.shen, ian.reid}@adelaide.edu.au

Appendix

1. Training Details of Static Baseline

The static baseline that we consider in the main text is
arch2 from [4], which we pre-train on CamVid [1] and
CityScapes [3].

We utilise the ‘poly’ learning schedule [2] with the ini-
tial learning rates of 5e−2 and 1e−2 for the encoder and
the decoder, respectively. As in [4], we set the weight for
auxiliary losses to 0.3.

On CityScapes, we train for 1000 epochs with mini-
batches of 28 examples each randomly scaled with the
scale factor in range of [0.5, 2.0] and randomly cropped
to 800×800 with each side zero-padded accordingly. On
CamVid, we train for 2000 epochs with mini-batches of
32 examples each randomly scaled with the scale factor in
range of [0.5, 2.0] and randomly cropped to 600×600 with
each side zero-padded accordingly.

2. CamVid Experiments with Raw Videos

In addition to the experiments on the main set of CamVid
with neighbouring annotated frames we also conduct exper-
iments with frames extracted from the raw videos1.

For both training and testing we use sequences with 3
frames, each 1/30 seconds apart, with the last frame be-
ing annotated. As the extracted frames slightly differ from
those in the main set of CamVid, the qualitative numbers are
not directly comparable, hence we re-train the static base-
line and also re-do the search following the setup of the
main experiments.

We provide the qualitative results in Table 1. Opposed
to the experiments with frames spaced far from each other,
here we do see dynamism for both considered cells, with the
newly found cell significantly outperforming the baseline
and the other cell. The structure of cell4 is visualised in
Fig. 1.

1http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/

Method mIoU,% mAcc,% gAcc,% tIoU,%
per-frame baseline 62.2 73.3 89.9 38.8
w/ cell0 61.8 69.9 90.4 36.9

no dynamism 41.0 46.7 83.8 22.6
w/ cell4 64.1 74.5 90.6 40.3

no dynamism 39.1 51.3 78.4 23.9
Table 1. Quantitative results on the test set of CamVid on frames
extracted from raw videos. For trimap IoU the width is 3. No
dynamism implies that there are no connections between adjacent
frames. cell0 is the cell found by the search on the main set, while
cell4 is the cell found by the search using the frames extracted
from the video.

4l2

l3

de
c-
pr
ev

4
0

0
4

4

0

0

2

0
4

co
nc
at

y

2

4

3 0

0

0

sep3x3 GAP sep3x3dil3 sep5x5dil6 skip def3x3

sum concat weight predictor affine grid 3D conv dense attention

1

1

2

2

3

3

4

4

5

5

Figure 1. Structure of cell4. Orange blocks represent operations
and green blocks represent aggregation operations. Numbers in-
side blocks are operation identifiers as defined in the main text.

3. Search Space Aggregation Operations
In addition to the definitions of all operations in the main

text, we provide the code for each aggregation operation
written in PyTorch [5] in Listings 1, 2 and 3.

import torch
import torch.nn as nn
import torch.nn.functional as F

def resize(x1, x2):
"""Spatially resize two tensors to the largest size among them"""
if x1.size()[2:] > x2.size()[2:]:

x2 = nn.Upsample(size=x1.size()[2:], mode='bilinear')(x2)
elif x1.size()[2:] < x2.size()[2:]:

x1 = nn.Upsample(size=x2.size()[2:], mode='bilinear')(x1)
return x1, x2

def conv(C_in, C_out, k, groups=1, stride=1, bias=False):
return nn.Conv2d(C_in, C_out, k, stride, padding=k // 2, bias=bias, groups=groups)

class ParamSum(nn.Module):
"""ID 0: Summation with per-channel learnable weights per each input.

Args:
C (int) : number of input channels.

"""
def __init__(self, C):

super(ParamSum, self).__init__()
self.a = nn.Parameter(torch.ones(C))
self.b = nn.Parameter(torch.ones(C))

def forward(self, x, y):
x, y = resize(x, y)
return (self.a.expand(x.size(0), -1)[:, :, None, None] * x +

self.b.expand(y.size(0), -1)[:, :, None, None] * y)

class ConcatReduce(nn.Module):
"""ID 1: Channel-wise concatenation followed by grouped 1x1 convolution.

Args:
C (int) : number of input channels (also the number of groups).

"""
def __init__(self, C):

super(ConcatReduce, self).__init__()
self.conv1x1 = nn.Sequential(

nn.BatchNorm2d(2 * C),
nn.ReLU(),
conv(2 * C, C, 1, groups=C))

def forward(self, x, y):
x, y = resize(x, y)
z = torch.cat([x, y], 1)
return self.conv1x1(z)

Listing 1: Aggregation Operations 0-1.

class PredOP(nn.Module):
"""ID 2: (weight) predictive operation, where
the first input becomes a set of spatial convolutional
filters (weights) applied on the second one.

Args:
C (int) : number of input channels.
ksize (int, default=3) : kernel size of the resultant convolution.

"""
def __init__(self, C, ksize=3):

super(PredOP, self).__init__()
self.ksize = ksize
self.conv = nn.Sequential(

nn.ReLU(), conv(C, C, 3, groups=C),
nn.ReLU(), conv(C, C, 3, groups=C),
nn.ReLU(), conv(C, ksize * ksize, 1), nn.Softmax(dim=1))

def forward(self, x, y):
x, y = resize(x, y)
b, c, h, w = y.size()
x = (self.conv(x)

.permute(0, 2, 3, 1)

.contiguous().view(b, h*w, self.ksize**2, 1))
p = self.ksize // 2
cols = F.unfold(

y, kernel_size=self.ksize, dilation=p, padding=p, stride=1) # im2col
out = torch.matmul(

cols.permute(0, 2, 1).contiguous().view(b, -1, c, self.ksize**2), x)
out = out.permute(0, 2, 1, 3).contiguous().view(b, c, h, w)
return out

class BilSampling(nn.Module):
"""ID 3: Bilinear sampling of the first input with the affine grid
predicted based on the values of the second input.

Args:
C (int) : number of input channels.

"""
def __init__(self, C):

super(BilSampling, self).__init__()
self.conv_loc = nn.Sequential(conv(C, 3 * 2, 1), nn.ReLU())
self.fc_loc = nn.Linear(3 * 2, 3 * 2)

def forward(self, x, y):
x, y = resize(x, y)
yconv = self.conv_loc(y).mean(2).mean(2)
theta = self.fc_loc(yconv).view(-1, 2, 3)
grid = F.affine_grid(theta, x.size())
x = F.grid_sample(x, grid)
return x + y

Listing 2: Aggregation Operations 2-3.

class Conv3d(nn.Module):
"""ID 4: 3D-convolution, where
two inputs are stacked together forming a new dimension
with 2x3x3 grouped convolution applied on top.

Args:
C (int) : number of input channels (also the number of groups).
ksize (int, default=3) : kernel size in (2, ksize, ksize) convolution.

"""
def __init__(self, C, ksize=3):

super(Conv3d, self).__init__()
p = int(ksize // 2)
self.conv = torch.nn.Conv3d(

C, C, kernel_size=(2, ksize, ksize), padding=(0, p, p),
groups=C, bias=False)

def forward(self, x, y):
x, y = resize(x, y)
return self.conv(torch.stack([x,y], 2)).squeeze(2)

class DenseAttention(nn.Module):
"""ID 5: Element-wise multiplication between the first input and
the sigmoid-activated second one.

"""
def __init__(self):

super(DenseAttention, self).__init__()

def forward(self, x, y):
x, y = resize(x, y)
return x * F.sigmoid(y)

Listing 3: Aggregation Operations 4-5.

References
[1] G. J. Brostow, J. Fauqueur, and R. Cipolla. Semantic object

classes in video: A high-definition ground truth database. Pat-
tern Recognition Letters, 30(2):88–97, 2009.

[2] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille. Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected
crfs. IEEE Trans. Pattern Anal. Mach. Intell., 2018.

[3] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The
cityscapes dataset for semantic urban scene understanding. In
Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2016.

[4] V. Nekrasov, H. Chen, C. Shen, and I. D. Reid. Fast neural
architecture search of compact semantic segmentation models
via auxiliary cells. Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
2019.

[5] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-
matic differentiation in pytorch. In NeurIPS-W, 2017.

