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Appendix Section


1. Additional Benchmarks


To better compare ST-PGN to ST-GCN we evaluated ST-
PGN on additional datasets and modified its architecture to
be more similar to the ST-GCN’s architecture. We Increased
the number of GCNs at each level of the pyramid and used
TCN instead of LSTMs to create one feature for a sample
clip in the benchmarks. So this version of our model pre-
dicts one label per video similar to ST-GCN. Hence these
evaluations are to showcase that our models can also work
on offline datasets with minor modifications. The bench-
marks used for this evaluation are Skeleton-Kinetics [4] and
NTU-RGBD [9] datasets as described in the following sec-
tions. Our models are comparable to the ST-GCN perfor-
mance in offline setting, if not surpassing them. We conjec-
ture that this could be more due to extremely diverse action
labels(such as golfing or eating) that have distinct pose con-
figurations. Since our models are designed to reduce confu-
sion between similar pose configurations they do not seem
to produce a huge benefit. We would like to investigate this
further for our future work.


1.1. Kinetic Dataset


Deepmind Kinetics human action dataset [4] consists of
300,0000 RGB video clips with an average duration of 10
seconds. These videos capture 400 human activities from
sports to complex actions with interactions. For our exper-
iments we need only the skeleton information of a video.
[11] used OpenPose [1] toolbox and estimated 18 joints on
every frame. The skeleton is represented by 18 nodes as
shown in Figure 2.


1.2. NTU-RGBD Dataset


One of the widely used benchmarks for skeleton action
recognition is NTU-RGBD, which contains 56,000 videos
each containing a single action. This dataset has 60 classes
of activities performed by 40 participants, and it includes
both single-person and two-person activities. We use the
dataset and the evaluation in the same way it is used in [11]
to compare the results. The skeleton is represented by 25
nodes as shown in Figure 2.


1.3. Results


Table 1 and 2 show that our feature pyramid works simi-
lar to the ST-GCN, although it performs considerably better
on UW-IOM and TUM dataset in an online scenario. How-
ever using GCN with edge importance along with LSTM
does not perform well on UW-IOM and TUM datasets (Ta-
ble 2 in the original paper). Therefore our conclusion is
that the pyramidal architecture is effective in online settings
where we want to solve an early action recognition task.


Moreover, in Skeleton-Kinetics and NTU-RGBD
datasets, classes are more distinct comparing to UW-IOM
and TUM and we see that pyramidal architecture’s contri-
bution cannot add more information comparing to multiple
GCNs in ST-GCN. The effect of the pyramid architecture
is evident mostly when the classes are very similar and
difficult to classify as well as in early action recognition
tasks.


Methods Top-1 Top-5
Deep LSTM [9] 16.4% 35.3%
Temporal Conv [6] 20.3% 40.0%
Uni-labeling [11] 19.3% 37.4%
Distance partitioning [11] 23.9% 44.9%
Distance Partitioning [11] 29.1% 51.3%
Spatial Configuration [11] 29.9% 52.2%
ST-GCN + Imp. [11] 30.7% 52.8%
ST-PGN with multiple GCN 32.13% 51.65%


Table 1: Recognition performance in terms of top- 1 classi-
fication accuracy on Kinetics dataset
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Methods Cross Subject Cross view
Lie Group [10] 50.1% 52.8%
H-RNN [2] 59.1% 64.0%
Deep LSTM [9] 60.7% 67.3%
PA-LSTM [9] 62.9% 70.3%
ST-LSTM+TS [7] 69.2% 77.7%
Temporal Conv [6] 74.3% 83.1%
Visualize CNN [8] 76.0% 82.6%
C-CNN+MTLN [5] 79.6% 84.8%
ST-GCN + Imp [11] 81.5% 88.3%
ST-PGN with multiple GCN 79.24% 85.93%


Table 2: Recognition performance in terms of top- 1 classi-
fication accuracy on NTU dataset


2. Graph Adjacency Matrices


The size of the adjacency matrix that is applied on the in-
put is 15×15 for UW-IOM and TUM dataset and is 25×25
and 18× 18 for Skeleton-Kinetic and NTU-RGBD dataset,
respectively, depending on the size of the input skeleton.
This adjacency matrix was decomposed to three matrices
based on the spatial partitioning described in [11]. The GAP
is then applied on these three matrices resulting into three
matrices of size 5×5 based on the grouping shown in Tables
4, 5 and 3. After a GCN layer aggregates the node features
another GAP is applied and results in three 3× 3 matrices.


Note that in our final model we introduce edge impor-
tance weights on each component of the adjacency matri-
ces. Edge importance matrices are randomly initialed using
Xavier initialization and trained. Edge importance is multi-
plied to the features of the GCN layer.


3. Group average pool kernels


In Figure 2 we show the three skeleton used in this work
and in Tables 4, 5 and 3 we report the nodes we used for the
GAP in second and third level of the pyramid. After each
GAP a GCN aggregates the features for each node. Succes-
sive such GAP layers help to reduce the dimensionality of
the graph nodes sequentially and help in pooling semantics
at multiple levels.


4. REBA calculation


We compute joint angles based on the 3D skeleton for
every frame and we also use approximate objects weights
in UW-IOM and TUM datasets. Therefore, given the pre-
diction of our recognition model and joints angle, we can
compute REBA by following the tables in [3]. In Figure 1
we describe the overall REBA calculation.


Figure 1: To compute REBA score, neck, trunk and legs
(Group A), and upper/lower arm and wrist (Group B) are
analyzed separately using Table A, and B described in [3].
The object load is considered in Table A and the handling of
the object is considered in Table B. The sum of these scores
along with the knowledge about the task (Table C) results
in the final REBA score.


Figure 2: LCR-Net skeleton (UW-IOM and TUM datasets)
on the left, Kinect-based skeleton (NTU-RGBD dataset)
in the center, OpenPose-based skeleton (Skeleton-Kinetics,
UW-IOM and TUM datasets) on the right. We use these
pose configuration to create new Graphs and GAP kernels.


5. Confusion Matrix


Larger confusion matrices are showcased in the Figure 3.
Here we also aim to compare the results with and without
image fusion. A detailed explanation of the failure cases is
explained in the main paper.


6. Video Results


In Figure 4 and Figure 5 we describe a few snapshots
from the output of ST-PGN and ST-GCN models along with
the Risk computation. The attached video showcases mul-
tiple examples from the test set.
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Pyramid level Skeletal Node Groups
First Level all 15 joints
Second Level 0, 2, 4 1, 3, 5 6, 8, 10 7, 9, 11 12, 13, 14
Third Level 0, 1 2, 3 4 - -


Table 3: The nodes involved in GAP for UW-IOM and TUM datasets with LCR-Net driven skeleton.


Pyramid Level Skeletal Node Groups
First Level all 18 joints


Second Level 8,9,10 11,12,13 2,3,4 5,6,7 0,1,14,15,16,17
Third Level 0,1 2,3 4 - -


Table 4: The nodes involved in GAP for Skeleton-Kinetic dataset.
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Pyramid Level Skeletal Node Groups
First Level all 25 joints


Second Level 16,17,18,19 12,13,14,15 8,9,10,11,24,23 4,5,6,7,21,22 2,3 0,1,20
Third Level 0,1 2,3 4,5 - - -


Table 5: The nodes involved in GAP for NTU-RGBD dataset.


(a) UW-IOM : ST-PGN (b) TUM: ST-PGN


(c) UW-IOM : ST-PGN+ IMG Fusion (d) TUM+IMG: ST-PGN+ IMG Fusion
Figure 3: Larger Confusion Matrix figures. Top row showcases the confusion matrices of the final ST-PGN model while the
bottom row shows the results including optional fusion unit. As evidenced by our experiments, while image fusion helps to
deal with object confusion (rod vs box), it does little to improve the results of the other classes significantly.
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Figure 4: Sample Frames from UW-IOM video results. The Tank on the top-right of each image shows the REBA score
and it is higher when the body deviates from its neutral posture (the bottom row). The labels from top to bottom are the
ground truth labels, ST-GCN, and ST-PGN predictions, respectively. The top row examples showcase where ST-GCN fails
to recognize the correct action, while our model works fine.


Figure 5: Sample Frames from TUM video results. The Tank on the top-right of each image shows the REBA score and it
is higher when the body deviates from its neutral posture. In the top-right image we see REBA is low for a posture close to
the neutral body posture. As the posture deviates for instance during bending (top-left) or reaching for an object above the
head (bottom-left) the risk increases. Distinguishing between open-drawer and close-drawer is challenging, but our model
can capture these two classes (bottom-right). In the image on top-left we see one common confusion between both-hand and
one-hand manipulation.
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