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1. Data Preparation
We implemented all of our networks and our data pro-

cessing pipeline using TensorFlow. In particular we store
our dataset in multiple compressed TFRecord files, each
of which contains 1 second of synchronized data from the
three modalities, video images, raw audio waveforms, and
acoustic images. We use the tf.data API to retrieve this
data and compose at runtime variable length sequences. We
grouped contiguous TFRecord files into full audio-video
sequences and then randomly sampled shorter length se-
quences, e.g. we compose a full audio-video sequence of
30 seconds and sample from it 10 sequences of 5 seconds.

2. Dataset Splitting
In Section 3 of the paper, we mentioned our dataset con-

sists of 378 audio-video sequences from 30 to 60 seconds
each. However we did not comment on how it was split for
training purposes. Since only a few sequences were longer
than 30 seconds, and in order to keep a balanced dataset, we
cropped all the sequences up to 30 seconds and assign 80%
of them for training, 10% for validation and 10% for test.

Splitting the dataset this way accounts for 302 training
sequences, 39 validation sequences, and 37 test sequences.
We then extracted sequences of the desired length. In case
that the required length was 1 second we extracted 30 sam-
ples, while in case the required length was 5 seconds we
extracted 6 samples. Extracting more samples would result
in a high load of data repeated. Finally to keep some con-
sistence across the experiments, we used a fixed seed for
random crops extraction and the epoch number as seed for
data shuffling.

3. Hyperparameter Optimization
In Section 6 of the paper, we presented the obtained ex-

perimental results and mentioned that in some cases we
used a different learning rate. Basically we considered only

two values, 1× 10−3 and 1× 10−4. Table 1 shows the val-
ues used throughout all the experiments. For all teacher net-
works we used a learning rate of 1× 10−4 except for Du-
alCamNet which required a bigger value. For the student
networks (OursSoundNet and HearNet) we used a mix of
both considered values, and almost always the same across
all scenarios settings, except for HearNet when trained from
DualCamNet soft labels on first scenario which required a
smaller learning rate.

Network Learning rate
DualCamNet 1× 10−3

ResNet-50 1× 10−4

Temporal ResNet-50 1× 10−4

AVNet 1× 10−4

HearNet (G) 1× 10−4

HearNet (D) 1× 10−3 and 1× 10−4

HearNet (R) 1× 10−3

OurSoundNet (G) 1× 10−4

OurSoundNet (D) 1× 10−3

OurSoundNet (R) 1× 10−4

Table 1. Training learning rates. Supervision is indicated as fol-
lows: (G): from ground truth hard labels, (D): from DualCamNet
soft labels, (R): from ResNet-50 soft labels.

It is worth mentioning that in all cases when training our
student networks with distillation, we performed hyperpa-
rameters optimization using grid search by cross-validation
on the held-out validation set. We basically looked at three
hyperparameters, learning rate (lr), temperature value (T ),
and imitation parameter (λ).

Finally, regarding the transfer learning results, also pre-
sented in Section 6 of the paper, we validated the considered
number of nearest neighbors k. We computed accuracy with
odd values between 7 and 15 included for validation set,
choose on it best k and use that value for the testing accu-
racy which we report.



4. Dataset Qualitative Analysis

In this section we provide additional qualitative insights
on the proposed dataset, which may clarify some statements
made in the paper. We first illustrate the problem of visual
clutter mentioned in Section 6 of the paper. Figure 1 shows
three examples of actions performed over all three scenar-
ios with varying conditions of visual clutter. Comparing
scenarios 1 and 3, it can be observed that on the first case
the object involved on the action execution is well visible in
the foreground, making easier for the visual models to iden-
tify the corresponding action. With scenario 2 the difficulty
is that often other people appear on the background or non-
related objects are present on the foreground, thus making
it harder to identify the action.

(a) Stick dropping (b) Clicking (c) Plastic crumpling

Figure 1. Comparison of three actions performed on all scenarios.
From top to bottom, scenario 1 on the first row, scenario 2 on the
second row, and scenario 3 on the third row.

A key finding on the paper was that models based
on acoustic data achieved better classification results than
models based on visual data. Here we illustrate the diffi-
culty of identifying actions from visual data in contrast to
identifying actions from audio data. Figure 2 shows two
subjects on the third scenario performing three different
actions each. It can be seen that some actions involving
the same subject are visually similar although they depict
completely different actions, but they are distinguishable by
their acoustic signature.

Looking more closely at Figure 2, it can be seen that
some actions have a visually distinguishable pattern. For
instance, “clapping” and “snapping fingers” have a periodic
pattern and concentrate on the low frequencies rather than
on the high ones. Such patterns are more difficult to grasp
from raw waveform. This lead us to think that spectrograms
are better audio representations since they summarize the

(a) Speaking (b) Paper ripping (c) Paper shaking

(d) Clapping (e) Snapping fingers (f) Whistling

Figure 2. Comparison of six actions visually similar but distin-
guishable from audio. All six actions where performed on the third
scenario corresponding to the terrace.

scene acoustic content in a better way when compared to
raw waveform. This observation gives some more clues into
why HearNet performs better than OurSoundNet in many
cases.

Figure 3 shows the spectrograms for the same action
performed by three different subjects on the third location.
There can be seen that the same pattern of multiple events
spaced at short time intervals with the energy concentrated
on the low frequencies, repeats across different subject exe-
cutions.

(a) Subject 3 (b) Subject 4 (c) Subject 5

Figure 3. Comparison of the spectrograms for the “knocking”
action performed by three distinct subjects on the third scenario.

Figure 4 compares the spectrograms of the audios of
three different actions performed by the same subject on the
three considered scenarios. Here we also see that the audios
for the same actions share a visual pattern when visualized



as a spectrogram, even when performed across locations.
Interestingly, the cleanest spectrograms are those from ac-
tions performed at first scenario, while for second and third
scenarios there are two different kinds of noise. In second
scenario the noise is mainly due to indoor echoes, while for
third scenario it is due to ambient noise.

(a) Knocking (b) Speaking (c) Playing kendama

Figure 4. Comparison of the spectrograms of three actions per-
formed by the same subject at the three considered scenarios.
From top to bottom, scenario 1 on the first row, scenario 2 on the
second row, and scenario 3 on the third row.

5. Dataset Quantitative Analysis
We report here the confusion matrices for all the student

and teacher models, in order to get a deeper understanding
of the dataset’s challenges.

Figure 5. Hearnet trained on all scenarios confusion matrix.

For HearNet (Figure 5) we notice that Hammering is
often confused with Knocking, Clicking with Typing, Pa-
per shaking with Plastic crumpling. All the three pairs of
classes, in fact, are very similar aurally.

Figure 6. OurSoundNet trained on all scenarios confusion
matrix.

Regarding OurSoundNet (Figure 6) many classes are
confused with Playing kendama and Stick dropping. Ham-
mering and Knocking, Paper shaking and Stick dropping
are confused with each other, Peanut breaking is always
misclassified, probably because of its feeble audio pattern.
As stated before, HearNet superior performance may be as-
cribed to its more powerful input representation (spectro-
gram).

We now consider the teachers confusion matrices. Dual-
CamNet (Figure 7) and AVNet (Figure 10) confusion matri-
ces have diagonal elements with very high values, indicat-
ing high accuracy (they are good teachers indeed). Tempo-
ral ResNet-50 in Figure 9 and ResNet-50 in Figure 8 con-
fuse many classes with Clapping and Clicking. Whistling is
always misclassified. As already certified by higher accu-
racy, we can conclude that are DualCamNet and AVNet are
better teacher.

Finally we can see in detail ResNet-50 confusion ma-
trices when trained and tested on scenario 1 in Figure 11,
scenario 2 in Figure 12 and in scenario 3 in Figure 13. We
notice that when trained and tested on scenario 1, ResNet-
50 presents higher accuracies for all classes. In scenario 2
many classes are confused with Clapping, in scenario 3 with
Knocking. In particular, we see in scenario 1 that Snapping
fingers, Speaking and Plastic Crumpling are the more diffi-
cult to recognize. In scenario 2 Speaking, Snapping fingers,
Playing kendama and Paper shaking have low accuracies. In
scenario 3 many classes have low results, for e.g. Clapping
and Snapping fingers. As a matter of fact these classes are
visually similar to other ones or sometimes the visual part
of the images to recognize the action are occluded or there



Figure 7. DualCamNet trained on all scenarios confusion
matrix.

Figure 8. ResNet-50 trained on all scenarios confusion ma-
trix.

are other objects and they can be misunderstood. This con-
firms the hypothesis made before in Section 4 in Figure 2
are true.

6. Reproducibility
To enable reproducibility of our results and to motivate

further research on deep learning for acoustic images, our
code1, data, and models are publicly available.

1https://github.com/afperezm/acoustic-images-distillation

Figure 9. Temporal ResNet-50 trained on all scenarios con-
fusion matrix.

Figure 10. AVNet trained on all scenarios confusion matrix.



Figure 11. ResNet-50 trained and tested on scenario 1 con-
fusion matrix.

Figure 12. ResNet-50 trained and tested on scenario 2 con-
fusion matrix.

Figure 13. ResNet-50 trained and tested on scenario 3 con-
fusion matrix.


