Differentiable Scene Graphs Supplemental Materials

Moshiko Raboh!", Roei Herzig!", Jonathan Berant’*, Gal Chechik®?, Amir Globerson'
Tel Aviv University, ?Bar-Ilan University, >NVIDIA Research, ‘A2

This supplementary material includes: (1) Model imple-
mentation details. (2) Details about the reasoning compo-
nent in two steps ablation module.

1. Model Details

The model in Sec. 3.2 is implemented as follows.

Object Detector and Relation Feature Extractor. For
object detection, we used Faster-RCNN with a 101-layers
ResNet backbone. The RPN was trained with anchor scales
of {4,8, 16,32} and aspect ratios {0.5, 1,2}. RPN propos-
als were filtered by non-maximum suppression with IOU-
threshold of 0.5 and score higher than 0.8. We use at most
32 proposals per image. Both the entity features f, and
the relation features f, ; are first extracted from the con-
volutional network feature map by the ROI-Align layer as
7 x T x 2048 features. They are then reducedtoa 7 x7x 512
by convolution layer of size 1 x 1 and finally reduced to
1 x 512 by an average pooling layer.

Referring Relationship Classifier. The referring rela-
tionship classifier Frrc is a fully-connected network with
two layers of 512 hidden units each.

Bounding Box Refinement. The box refinement model
applies a linear function to z; to obtain four outputs
[dx, dy, dw, dh]. Denote the RPN box by [z, y, w, h]. The
refined box is then: [dx - w + x,dy - b+ y, e - w, e - ]
(as in the correction used by Faster-RCNN).

Computational Estimation. Our model creates a graph
with n nodes for objects and n? edges for relations. In the
datasets we analyzed, using n = 32 objects within an im-
age is sufficient. Adding the DSG component has a limited
effect on complexity and run time. Specifically, as shown
in Tab. 1, the DSG component adds 4M parameters and up
to 1.5G operations (when n = 32) which is only 10% of
the parameters and number of operations of the backbone
network (~40M parameters and ~15G operations). Adding
DSG increases training time by only 15%. This is largely
thanks to the fact that all n? relations can parallelized.

Differentiable Scene Graph Generator. We next de-
scribe the module that takes as input features z; and z; ;
extracted by the RPN and outputs a set of vectors 27, z;;
corresponding to Differentiable Scene-Graph over entities
and relationships in the image. For this model, we use the

DSG Generator  Resnet101
Trainable parameters <4M > 40M
Number of operations < 1.5G > 15G
DSG DSG -SG
Running time [sec] 0.054 0.045
Training time [sec] 0.19 0.165

Table 1. Analysis of running/training time and computational re-
sources of DSGs.

Graph Permutation Invariant (GPI) architecture introduced
in [1]. A key property of this architecture is that it is in-
variant to permutations of the input that do not affect the
labels.

The GPI transformation is defined as follows. First, the
set of all input features is summarized via a permutation-
invariant transformation into a single vector g:

a(ziazcb(ziazi,jazj)) (1)

1 j#i

g:

n

?

Here o and ¢ are fully connected networks. Then the new
representations for entities and relations are computed via:
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where p above are fully connected networks.

The three networks ¢, o and p, described in GPI ar-
chitecture are two fully-connected layers with 512 hidden
units. The output size of ¢ and « is 512, and of p is 1024.
We used the version with integrated attention mechanism
replacing the sum operations in equation 1.

2. Model Ablations

Additional details about the TWO STEP model: Recall
that in Two-step model a scene graph is first predicted, fol-
lowed by a reasoning module. The reasoning module gets
as an input a query (subject, relation, object) and a scene
graph and outputs the nodes that represents the subject and
the nodes that represents the object. In case the triplet
(subject, relation, object) exists in the scene graph, the rea-
soning module simply returns the involved nodes. Other-
wise, it selects the triplet in the scene graph that has the



highest probability to be the required triplet according to
the probabilities provided by the scene graph.
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