Supplementary Material for “Predicting the Physical Dynamics of Unseen 3D
Objects”

Davis Rempe Srinath Sridhar

He Wang Leonidas J. Guibas

Stanford University

1. Introduction

In this document we present additional details, discus-
sion, and results for “Predicting the Physical Dynamics of
Unseen 3D Objects” that were omitted due to space con-
straints. Please refer to the main paper for an overview
of our proposed method and the primary results. In Sec-
tion 2, we provide additional details on the implementa-
tion and data collection, Section 3 discusses toppling and
its stochastic nature, and Section 4 provides additional re-
sults on simulated and real-world data.

Video: In addition to this document, there is a supple-
mentary video which provides a succinct overview of the
proposed method and shows qualitative results. We highly
encourage the reader to watch this video as it gives a better
idea of our simulation and real-world data, along with the
accuracy of predicted trajectories from our model.

2. Implementation Details

Here we provide additional details of our data pipeline
and methods.

Simulation Procedure and Datasets: The simula-
tion pipeline is introduced in Section 4 of the main paper.
Prior to simulation, some pre-computation is done on object
shapes to extract accurate physical parameters, namely the
mass and moment of inertia. To calculate these values, we
voxelize each shape using a grid with a cell side length of
2.5 cm. From this we approximate the volume of the object
which can be used to calculate the mass given density. Ad-
ditionally, we compute a discretized approximation of the
moment of inertia about the shape’s principle axes. These
calculated mass and moment of inertia values are used di-
rectly to parameterize the simulated rigid bodies within the
the Bullet physics engine [1]. Calculating physical param-
eters in this way ensures consistency across all simulated
shapes rather than relying on the physics engine to calcu-
late them using a mesh collider which can be extremely in-
consistent and inaccurate. For each performed simulation,
the amplitude of the randomly applied impulse is scaled by
the object mass to ensure similar distributions for small and
large objects alike. Every simulated object and the ground

plane has a friction coefficient of 0.5. For each object, we
sample a point cloud from the surface to use as input to our
model. To ensure uniform sampling, we first oversample
(by a factor of 3) the mesh surface area. We then sub-sample
these points using furthest point sampling to obtain our final
1024 points. Each simulation runs until the object velocity
is below a set threshold for a certain amount of time or it
exceeds the maximum simulation time (7 seconds in our
data). Since objects may be at rest for multiple timesteps
at the end of a simulation, the randomly sampled windows
during training will not always have the object coming to
rest at the same time (i.e. at the last time step).

We synthesize multiple categories of datasets to train
and evaluate our models with the following distribu-
tion: Primitives (13,550 total simulations, 6,779 in-
clude toppling, 197 unique object instances), Bottles
(13,079 simulations, 6,550 toppling, 154 instances),
Mugs (13,009 simulations, 1,011 toppling, 37 instances),
Trashcans (13,018 simulations, 1,658 toppling, 47 in-
stances), Speakers (13,059 simulations, 1,688 toppling,
358 instances), and Combined (union of others).

Each dataset is split into training (80%) and test sets
(20%) by unique objects. This means no objects (or scaled
versions of them) that are seen during training are in the test
set. During training, about 10% of the objects in the train-
ing split are set aside as validation data for early stopping.
Since the applied forces are randomly chosen during simu-
lation, the test sets also contain new initial conditions (lin-
ear and angular velocities) though they are from the same
distribution as the training data.

Real-world Data Experiments: Experimental results
on real-world motion capture data are detailed in Section
6.5 of the main paper and Section 4.3 of this document. We
collect 66 trajectories of a small cardboard box using an
Optitrack [2] motion capture system which uses spherical
markers to track objects. The system outputs 6D pose in-
formation for the box at 120 Hz, which we down-sample to
30 Hz by averaging using a sliding window with a size of 4
steps to smooth the data. Using 6D pose at each timestep,
we derive the change in object state (3D position, rotation,
linear velocity, and angular velocity) data to train our net-

work. We trim each trial so that the first step of the sequence
is at its maximum linear velocity; this is a rough heuristic
to determine when the object has left the hand applying the
initial force (see video) and is freely sliding. We sample a
full point cloud using a virtual version of the box (7.3 cm x
6.0 cm X 17.0 cm) to use as input to our model.

Real-world data is not annotated with per-frame stability
information, so we train a modified version of our model
that does not output a toppling classification at each step.
Additionally, we found that not using batch normalization
(likely because of the smaller batch sizes) in the shape pro-
cessing branch and modifying all terms of the loss function
to use the absolute 2-norm (making each loss term equiv-
alent to the numerator of Lp in Equation 1 of the main
paper rather than the whole relative loss) gave the best re-
sults. Lastly, when the real-world trained model rolls out
sequences, it uses one additional frame of ground truth in-
put to start the roll out (it takes in the ground truth veloci-
ties at the second timestep in addition to initial velocities),
which we found improved performance.

Model Architecture and Training: We use batch nor-
malization following every layer in the shape processing
branch. The state prediction branch uses 3 stacked LSTM
cells, each with a hidden layer size of 1024. We train all
branches of our network jointly using the Adam [4] opti-
mization algorithm with a starting learning rate of 0.001
which is exponentially decayed to 1 x 10~° during train-
ing. In the shape processing branch, PointNet weights are
pretrained on the ModelNet40 [5] classification task, then
fine-tuned during our training process. We directly super-
vise the state prediction branch outputs at every timestep
for sequences of 15 steps during training. We train the net-
work for 1000 epochs with a batch size of 64 on an NVIDIA
V100. The model weights which result in the lowest vali-
dation split loss throughout training are used as the final
model. In total, our network architecture has more than 20
million parameters.

3. Toppling Discussion

In reality, the motion of objects sliding (and possibly
toppling) on a plane is macroscopically stochastic due to
imperfections in the planar surface, micro surface interac-
tions, and a non-uniform coefficient of friction [6]. The out-
come of planar contact is also very sensitive to initial condi-
tions [3]. Though the reality of contact interactions differs
from approximations by simulation engines (like Bullet [1]
which we use), we find the simulated outcome of toppling
is still extremely sensitive to perturbations in initial condi-
tions, but less so for sliding with no toppling. Therefore,
in the main paper and this supplement we show quantita-
tive results on non-toppling examples to focus evaluation
on object shape generalization. In future work, we plan to
explore modeling distributions of motion rather than direct

Data Freq. v w P 6]
15 Hz 8.65% 7.59% 8.10% 0.52%
30 Hz 4.92% 325% 6.13% 0.43%

Table 1. Relative roll-out errors training on a Speakers dataset
with data sampled at 15 Hz against 30 Hz.

regression to capture the probabilistic nature of toppling and
sliding in the real world.

4. Additional Results

In this section, we present additional results and experi-
ments omitted from the main paper due to space constraints.
As in the main paper, unless otherwise noted all presented
quantitative evaluation is performed on non-toppling test set
sequences.

4.1. Effect of Sampling Rate

We train our model on a modified Speakers dataset
which uses a step size of 30 Hz rather than 15 Hz as in
prior experiments to evaluate whether using fine-grained
data may improve performance. We train on the new data
with 30-step sequences so the network still sees 1 second
of data for each training example. To make a fair compari-
son, we compute the relative roll-out error for each trained
model. Results are shown in Table 1. The larger sampling
rate nearly doubles performance for velocity, but gives a
less drastic improvement for position and rotation which ul-
timately decides the quality of rolled out trajectories.

4.2. Friction Generalization

In Section 6.2 of the main paper, we demonstrate our
model’s ability to implicitly identify friction in order to ac-
curately extrapolate future motion by training on simulated
data with random friction coefficients. Here we present ad-
ditional visualizations from this experiment. Roll-out errors
using a varying number of additional velocity steps as in-
put are shown in Figure 1 (corresponding to Table 2 in the
main paper). Figure 2 shows qualitative examples using 5
additional ground truth velocity steps as input to the model.

In detail, the additional velocity steps are fed in sequen-
tially to the LSTM during test-time roll out. For example, if
using 3 additional input steps, the model is given initial ve-
locities (as usual) for the first step, then for the 3 following
steps the LSTM inputs are ground-truth observed velocities
(rather than its own predictions as done for all other exper-
iments). Following these initial 4 steps (first step and addi-
tional 3), the model rolls out trajectories as usual using its
own velocity predictions at each step.

4.3. Real-world Data

Results on real-world motion capture data are presented
in Section 6.5 of the main paper. We present additional
qualitative examples here in Figure 3. Please refer to the
attached video for additional examples of roll-out using the
model trained on real-world data.

4.4. Comparison to MLP Baseline

A comparison of our proposed model to that of an MLP
baseline on the Speakers dataset are presented in the
main paper in Section 6.3. This modified model uses 5
fully-connected (each size 1024) layers as the state predic-
tion branch rather than an LSTM. We present qualitative
results comparing our method to this baseline in Figure 4.
The trajectories rolled out by the LSTM (shown in green)
closely match ground truth simulation (in grey), while the
MLP baseline (in blue) struggles. As discussed in the paper,
this indicates a memory mechanism is beneficial to predict-
ing object dynamics.

4.5. Object Generalization

Experiments detailing our model’s ability to generalize
to unseen object shapes are presented in Section 6.1 of the
main paper. Here we present additional qualitative results
for the Leave Out trained models in Figure 5. Again, we
urge the reader to see the video for additional examples.
In Figure 6 we break down roll-out errors for each training
procedure into individual object datasets.

References

[1] Bullet physics engine. https://pybullet.org. 1,2

[2] Optitrack motion capture. https://optitrack.com/.
1

[3] A. Ajay, J. Wu, N. Fazeli, M. Bauza, L. P. Kaelbling, J. B.
Tenenbaum, and A. Rodriguez. Augmenting physical simu-
lators with stochastic neural networks: Case study of planar
pushing and bouncing. In International Conference on Intel-
ligent Robots and Systems (IROS), 2018. 2

[4] D.P. Kingma and J. Ba. Adam: A method for stochastic op-
timization. In International Conference for Learning Repre-
sentations (ICLR), 2015. 2

[5] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3d shapenets: A deep representation for volumetric
shapes. In Computer Vision and Pattern Recognition (CVPR),
2015. 2

[6] K. Yu, M. Bauza, N. Fazeli, and A. Rodriguez. More than a
million ways to be pushed: A high-fidelity experimental data
set of planar pushing. International Conference on Intelligent
Robots and Systems (IROS), 2016. 2

https://pybullet.org
https://optitrack.com/

Speakers Mean Roll-out Error Speakers Mean Roll-out Error

175
=== Constant Friction 25 === Constant Friction
150 === _V\lary Friction === \ary Friction
—~ 125 == \/ary Friction (1 step) ’g’j 20 == Vary Friction (1step)
E == \/ary Friction (3 steps) g === \/ary Friction (3 steps)
E 100 === \/ary Friction (5 steps) | -3 15 === Vary Friction (5 steps)
&0 ._E
= 3
§ 0.50 E 10
<
0.25 05
0.00
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
Time (s) Time (s)

Figure 1. Roll-out errors for friction generalization experiments. Each curve shows the mean roll-out error over all evaluation sequences
using either the constant or varied friction Speakers data. The Vary Friction curves in green, red, and purple use additional ground truth
velocity steps at the beginning of their roll-outs to aid friction identification before making predictions. As indicated by the purple curve,
using 5 additional ground truth steps to start the roll-out brings performance on varied-friction data very close to that of the model trained
on constant friction data for both position and rotation angle.

Figure 2. Friction generalization qualitative performance. The final frames of 3 rolled out sequences are shown with friction increasing
from left to right. Ground truth simulation is in grey, the model prediction using no additional ground truth steps as input is shown in green,
and using 5 additional ground truth steps during roll out is in blue. With lower friction (left), the vanilla roll out tends to underestimate
sliding, while overestimating for higher friction (right). Using 5 additional steps of ground truth velocities as input helps the model identify
the friction coefficient and make accurate future predictions.

Figure 3. Real-world data performance. Shown are frames pulled from 2 model-predicted sequences with novel initial velocities from
real-world motion capture data: one sliding (top) and one toppling (bottom). The model is trained on only 56 sequences of the shown
cardboard box, and still predicts accurate trajectories for unseen initial conditions.

Figure 4. Performance against MLP baseline. Two rolled out sequences are shown for our proposed model (shown in green) and the MLP
baseline (shown in blue) which replaces the state prediction LSTM with a simple MLP. Grey is the ground truth simulation given the
same initial conditions. Qualitatively, the proposed model achieves roll-out closer to ground truth which indicates the memory mechanism
inherent to the LSTM is useful for dynamics predictions.

Figure 5. Leave Out trained model-predicted trajectories for 4 different sequences. The model roll-out is shown in green and ground truth
simulation in grey. From top row to bottom, the object is from the Mugs, Speakers, Trashcans, and Cylinders dataset. The

bottom row shows a toppling example.

SINGLE:

Mean Roll-out Error

Mean Roll-out Error

14 = Bottles 40 = Bottles
12 = Boxes 35 == Boxes
< me=Cylinders @ a0 we= Cylinders
S 1.0 = Mugs o = Mugs
= 08 === Speakers 5‘2‘5 == Speakers
"',5' i === Trashcans T 20 === Trashcans
T @15
g 0.4 g 10
0.2 0.5
0.0 0.0
0 10 20 30 40 50 60 10 20 30 40 50 60
Time Steps Time Steps
m Mean Roll-out Error Mean Roll-out Error
12 = Bottles = Bottles
: Combined 5 Combined
—~ 10 = Boxes ’Q‘ = Boxes
E = Cylinders o 4 = Cylinders
08 = Mugs g = Mugs
"':" == Speakers ‘:3 == Speakers
o 0.6 -
= === Trashcans w 5 === Trashcans
] <
g 0.4 g’
< 1
0.2
0.0 0
0 10 20 30 40 50 60 10 20 30 40 50 60
Time Steps Time Steps
M Mean Roll-out Error Mean Roll-out Error
6
12 == Bottles = Bottles
i == Boxes 5 === Boxes
o 10 e Cylinders ’Q‘ s Cylinders
S — Mugs [— Mugs
=08 == Speakers g == Speakers
"':" == Trashcans T3 === Trashcans
S06 &
H 22
Soa =
<
02 !
0.0 0

20

30
Time Steps

40

50 60

20

30
Time Steps

Figure 6. Object generalization performance on individual datasets. Mean roll-out errors for the Single, Combined, and Leave Out training

procedures split by individual object category datasets.

