
Supplemental Material for paper ID 628
A Flexible Selection Scheme for Minimum-Effort Transfer Learning

This supplemental material contains complementary experiments for the paper “Flex-Tuning: A Flexible and Automatic
Selection Scheme for Transfer Learning”. The first section contains the detailed validation accuracies for each of the Nprox
models which are built during the model selection phase of the fast and faster flextuning variants. In the following sections,
we report detailed results for each of our experimental settings; This includes the dataset construction, experimental settings,
and quantitative and qualitative results, as well as for the retrieval experiments. We first detail our experiments on a small
illustrative 4-layers network on MNIST [9] in Section 2. In Section 3, we report on experiments for a middle size 7-layers
network, using the CIFAR-10 [8] and Quick, Draw! [1] datasets. Finally, we describe large-scale experiments with the
Inception2 architecture on the ILSVRC [13] and PACS [10] datasets in Section 4 and Section 5, respectively.

In Section 6, we report complete results of our information retrieval experiments. Finally, the last section contains results
for the transfer learning baseline described in [2]. In our experiments, it did not perform much better than the standard
finetuning baseline therefore we did not include it in the main manuscript.

1. Model selection in fast and faster flextuning
As described in the main manuscript, the proposed fast flextuning variant selects the best unit to tune by the following

“network surgery”: The method starts by training one new model, Nft-all, by fine-tuning all units of the pre-trained network
on the training data available for the target domain (In the faster variant, this model is only trained for one epoch). From this,
we construct L new networks: for any l = 1, . . . , L, we create a proxy network, Nprox-l, by copying all units from N , except
the l-th one, which is copied from the fine-tuned network, Nft-all.

The construction allows us to derive a measure which of the network units is the most promising candidate for fine-tuning,
namely the one that leads to the biggest improvement in accuracy (if any) when applied to the target domain. Numerically,
we compute the accuracy of each model Nprox-l on the validation dataset and identify the value for l with highest accuracy.
We report validation accuracies of these models in Figure 1 to Figure 4.

Each of this plot represents the validation accuracy versus layer l obtained by model Nprox-l. Each line corresponds to a
different source→domain shift setting. The unit selected by the method is highlighter in white. Finally, the point at l = 0
corresonds to applying the source pre-trained network directly to the target samples.

In general, we note that the selected unit is rather consistent across data subsamling ratios (left to right plot). However,
the different domain shifts (different lines) vary quite a lot. For some settings, for instance YUV or HSV ILSVRC, the
influence of network surgery is clear and significantly highlight a particular unit. While for more complex scenarios such as
photo→art, several units have strong influence. This phenomenon is even more present in the faster flextuning plots.

Figure 1: Nprox-l validation accuracies for the fast (top) and faster (bottom) flextuning model selection criterion for MNIST
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Figure 2: Nprox-l validation accuracies for the fast (left) and faster (right) flextuning model selection criterion for CIFAR and
Quickdraw

Figure 3: Nprox-l validation accuracies for the fast (top) and faster (bottom) flextuning model selection criterion for ILSVRC

Figure 4: Nprox-l validation accuracies for the fast (lefgt) and faster (faster) flextuning model selection criterion for PACS



2. MNIST experiments
Datasets and base architecture. We build a network composed of 2 convolutional layers followed by 2 fully connected
layers, with ReLU activations. We pretrain this network on a random subset of 25000 images from the original MNIST
training set, achieving 0.989 top-1 accuracy on the test set. We split the remaining images in a training set of 30000 images,
Dtrain, and a validation set of 5000 images, Dval, which we use to generate synthetic transforms of MNIST as target domains,
avoiding any overlap with the dataset used for pretraining. We denote by Dtest the original MNIST test set of 10000 images.

We first build Blurry MNIST by applying a Gaussian blur with a kernel of length 8 and standard deviation σ = 1 on all
images in D = (Dtrain, Dval, Dtest). We also construct Occluded MNIST by randomly occluding a patch of size 14x14 pixels
on each image in D. The random patches coordinates are generated only once hence the dataset stays the same across runs.
We also generate two geometric transforms of MNIST by creating affine transformations, either one fixed transformation
for all images or a different random transformation for each image, and applying them to Dtrain, Dval and Dtest. These affine
transforms are generated as a rescaling operation (s ∈ [0.4, 1.0]) followed by a translation, randomly sampled from any value
that keeps the sampled patch in the original 28x28 pixels canvas, and finally a rotation, with angle θ ∈ [−1.5, 1.5] radians.
As for more complex transformations, we follow the same construct as for the MNIST-M dataset [5] by inlaying random
background patches from the BSD [11] dataset on Dtrain, Dval and Dtest. We also experiment on SVHN [12] as a target domain,
which we split into 63k training images, 10k validation images, and keep the original test set of 26k images. In this setting,
we also resize images to size 28x28 pixels to match the other datasets. In order to evaluate the impact of data scarcity, we
create subsampled versions of each target training dataset by randomly sampling images with ratios 0.001, 0.01 and 0.1.

Source domain
MNIST (subset)

25k images, 10 classes
4-layers network
top-1: 0.989

Blurry
top-1: 0.748
cossrc: 0.101
cospc: 0.116

ipc: 3-30-300-3k

Occluded
top-1: 0.581
cossrc: 0.051
cospc: 0.067

ipc: 3-30-300-3k

MNIST-M [4]
top-1: 0.439
cossrc: 0.128
cospc: 0.210

ipc: 3-30-300-3k

Random transform
top-1: 0.322
cossrc: 0.283
cospc: 0.375

ipc: 3-30-300-3k

SVHN [12]
top-1: 0.211
cossrc: 0.248
cospc: 0.435

ipc: 6-60-600-6k

Fixed transform
top-1: 0.160
cossrc: 0.443
cospc: 0.531

ipc: 3-30-300-3k

Table 1: Experimental setup for the MNIST source domain (left). For each target domain (right), we report the average
number of training images per class (ipc) for each data subsampling ratio. As a quantitative measure of domain shift,
we order target domains in decreasing order of their test accuracy under the pretrained source network, which generally
corresponds well to human intuition of each task difficulty. We also draw inspiration from [3], which proposes to measure
domain shift as the cosine distance between the mean responses in the before-to-last fully-connected layer of the source
network applied to the source and target domain, denoted by cossrc. We also report its per-class variant, cospc.

Results. Quantitative results for all subsampling ratios and target domains are reported in Table 2, comparing flex-tuning
and its variants to the fine-tuning baselines. As explained in the main paper, flex and fast-flex usually choose to
fine-tune all layers (i.e. they recover ft-all), which achieves best accuracy out of the network-tuning method. While this
is almost always the case in the full dataset scenarios, it happens less often in the small sample size settings, where there is a
higher risk of overfitting when fine-tuning the whole network. Secondly, the overall best performing method is prep-tuning.
In fact, the pre-processing module easily recovers from some domain shifts such as Blurry MNIST or Fixed Transformed
MNIST, significantly improving the accuracies in these settings, especially in the small sample size scenarios.

In Table 3 and Figure 5, we report quantitative and qualitative results for the pre-processing module alone, without flex-
tuning model selection. For the geometric transforms, we define this module as a Spatial Transformer Network [7] with a
1-layer encoder. Given an input image, the encoder outputs parameters for an affine transformation of the same form as the
ones we considered for generating the shifted domains (i.e. a rescaling operations followed by a translation followed by a
rotation). For the other, more generic, transformations, we consider a pix2pix architecture [6] taking inputs of size 32x32
pixels, with n layers in the encoder and n layers in the decoder (n ranging from 1 to 3). As mentioned in the original
pix2pix paper, we tried using both upscaling + convolution and transpose convolutions. The latter usually yields slightly
better classification accuracies but not by a significant margin and generates a lot of artifacts, hence we use the first method,
which indeed generates more visually pleasing images. Finally we use standard batch normalization instead of instance
normalization, as it did not significantly impact nor classification accuracies nor generated images in our experiments. As
can be seen in these figures, when enough data is available, making use of all parameters in flex-prep (3) performs best.
For smaller sample sizes, training a reduced number of parameters such as in flex-prep (2) is more advantageous.



MNIST
flex ft-

flex fast faster prep fc (1) fc (2) ss all

Blurry (0.75) 0.890 ± 0.00 0.860 ± 0.00 0.857 ± 0.01 0.950 ± 0.00 0.867 ± 0.00 0.846 ± 0.01 0.862 ± 0.00 0.851 ± 0.00
Occluded (0.58) 0.695 ± 0.00 0.664 ± 0.01 0.661 ± 0.01 0.695 ± 0.00 0.644 ± 0.01 0.654 ± 0.01 0.662 ± 0.00 0.660 ± 0.01

MNIST-M (0.44) 0.564 ± 0.00 0.564 ± 0.00 0.528 ± 0.00 0.643 ± 0.00 0.524 ± 0.00 0.523 ± 0.01 0.540 ± 0.01 0.528 ± 0.00
SVHN (0.21) 0.426 ± 0.00 0.426 ± 0.00 0.414 ± 0.00 0.426 ± 0.00 0.365 ± 0.01 0.412 ± 0.00 0.403 ± 0.00 0.426 ± 0.00

Transform (rnd) (0.32) 0.400 ± 0.00 0.400 ± 0.00 0.399 ± 0.00 0.498 ± 0.00 0.391 ± 0.01 0.401 ± 0.00 0.395 ± 0.01 0.396 ± 0.00
Transform (fixed) (0.16) 0.776 ± 0.00 0.776 ± 0.00 0.770 ± 0.00 0.901 ± 0.00 0.743 ± 0.00 0.768 ± 0.00 0.752 ± 0.00 0.776 ± 0.00

(a) Data subsampling ratio 0.001 (∼ 3 images per class). Metrics are reported for 20 repetitions of the experiment with different sampled training images.

MNIST
flex ft-

flex fast faster prep fc (1) fc (2) ss all

Blurry (0.75) 0.926 0.926 0.926 0.957 0.921 0.928 0.928 0.921
Occluded (0.58) 0.806 0.806 0.801 0.806 0.785 0.801 0.792 0.806

MNIST-M (0.44) 0.683 0.683 0.671 0.776 0.615 0.670 0.675 0.683
SVHN (0.21) 0.669 0.669 0.572 0.669 0.451 0.595 0.657 0.669

Transform (rnd) (0.32) 0.644 0.644 0.644 0.666 0.573 0.638 0.634 0.625
Transform (fixed) (0.16) 0.908 0.887 0.879 0.937 0.839 0.875 0.866 0.887

(b) Data subsampling ratio 0.01 (∼ 30 images per class).

MNIST
flex ft-

flex fast faster prep fc (1) fc (2) ss all

Blurry (0.75) 0.967 0.967 0.967 0.981 0.941 0.964 0.957 0.965
Occluded (0.58) 0.873 0.873 0.873 0.873 0.849 0.875 0.865 0.870

MNIST-M (0.44) 0.828 0.828 0.795 0.867 0.704 0.797 0.783 0.828
SVHN (0.21) 0.849 0.849 0.812 0.849 0.558 0.800 0.798 0.849

Transform (rnd) (0.32) 0.843 0.843 0.830 0.843 0.683 0.836 0.760 0.843
Transform (fixed) (0.16) 0.955 0.955 0.947 0.973 0.876 0.945 0.916 0.955

(c) Data subsampling ratio 0.1 (∼ 300 images per class).

MNIST
flex ft-

flex fast faster prep fc (1) fc (2) ss all

Blurry (0.75) 0.987 0.987 0.981 0.988 0.955 0.982 0.970 0.987
Occluded (0.58) 0.917 0.917 0.915 0.917 0.867 0.912 0.893 0.917

MNIST-M (0.44) 0.895 0.895 0.857 0.953 0.739 0.868 0.846 0.895
SVHN (0.21) 0.909 0.909 0.851 0.909 0.670 0.877 0.848 0.909

Transform (rnd) (0.32) 0.941 0.941 0.900 0.941 0.733 0.909 0.835 0.941
Transform (fixed) (0.16) 0.979 0.979 0.963 0.980 0.900 0.969 0.943 0.979

(d) Experiments using the full target domain training dataset (∼ 3000 images per class).

Table 2: Quantitative results for the MNIST source domain. We report on experiments with the proposed flex-tuning (flex),
its two faster variants fast flex-tuning (fast-flex) and even faster flex-tuning (faster-flex), as well as flex-tuning
augmented with a preprocessing module (flex-prep). We compare against transfer learning baselines: fine-tuning all
layers in the architecture (ft-all), versus fine-tuning only fully-connected ones, either only the last one (ft-fc (1)) or
both of them (ft-fc (2)), and finally adding scale and shift operations (ft-ss).



MNIST
Ratio 0.001

prep (3) prep (2) prep (1)

Blurry 0.817 0.950 0.917
Occluded 0.452 0.536 0.504

MNIST-M 0.410 0.630 0.643
SVHN 0.227 0.261 0.244

Transform (rnd) 0.498 - -
Transform (fixed) 0.901 - -

Ratio 0.010
prep (3) prep (2) prep (1)

0.939 0.957 0.955
0.686 0.703 0.646
0.638 0.776 0.725
0.476 0.418 0.369
0.666 - -
0.937 - -

Ratio 0.100
prep (3) prep (2) prep (1)

0.974 0.981 0.967
0.828 0.830 0.729
0.840 0.867 0.843
0.752 0.664 0.431
0.826 - -
0.973 - -

Ratio 1.000
prep (3) prep (2) prep (1)

0.987 0.988 0.975
0.903 0.897 0.791
0.953 0.949 0.865
0.881 0.833 0.469
0.924 - -
0.980 - -

Table 3: Quantitative results from the pre-processing module experiments for different architectures and subsampling ratio
For the pix2pix network, prep (n) designates an architecture with n layers in the encoder and n layers in the decoder.
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Figure 5: Qualitative results obtained with the pre-processing module for each subsampling ratio, target domain and pre-
processing module architecture. Figures reads row-wise, two-by-two, where each pair contains the input image on the left
(target domain) and the generated pre-processed image on the right (source domain). Best seen in PDF with zoom.



3. CIFAR and Quick, Draw! experiments
Datasets and base architecture. We experiment on a standard middle-sized architecture composed of 5 convolutional
layers followed by 2 fully-connected ones. Each layer is equipped with ReLU activations, except for the last one, and each
convolutional layer is followed by max-pooling. We consider as source domains the CIFAR-10 [8] and Quick, Draw! [1]
datasets. As we will use each of them as target domain for the other, we restrict ourselves to classes they have in common,
i.e. all CIFAR classes except one: “airplane”, “automobile”, “bird”, “cat”, “dog”, “frog”, “horse”, “ship” and “truck”.

For CIFAR, we first randomly split the training set in two. We use the first split, containing 17991 images, to pre-train
the network. The final model reaches 0.738 top-1 accuracy on the test set. We further divide the remaining split in two: A
training set of 18006 images, Dtrain, which we use to generate synthetic domain shifts, and a validation set, Dval, of size 9003.
We use the original test split of CIFAR containing 9000 images for testing purposes.

For the Quick, Draw! dataset, we first extract 10000 random images from each of the nine categories of interest and resize
them to size 32x32 pixels: using the full original dataset of 50 million images would create a huge discrepancy in terms of
dataset size. We again split this set of images into 40000 image to pre-train the source model on Quick, Draw!, reaching
0.654 top-1 test accuracy, a set of 30000 images, Dtrain, that we use for creating synthetic target domain training sets, a set of
5000 images used for validation purposes, Dval, and finally the remaining 15000 images we use as our test split, Dtest.

Starting from CIFAR as a source domain, we then create the following target domains: To obtain Blurry CIFAR, we apply
a Gaussian blur with a kernel of length 4 and standard deviation σ = 0.5 on all images in D = (Dtrain, Dval, Dtest). Similarly,
we create Noisy CIFAR by adding random-generated Gaussian noise with mean 0 and standard deviation 30 (images ranging
in [0, 255]) to each image in D. Note that the transformation is done once so that the dataset is the same for all settings.
Finally, we create a Quick, Draw! target domain by simply using the Dtrain, Dval and Dtest for the Quick, Draw! dataset as
defined in the previous paragraph. For the Quick, Draw! dataset as the source domain, we define target domains Blurry
QuickDraw, Noisy QuickDraw and CIFAR in the same manner.

As for the MNIST experiments, we also create subsampled versions of each target training dataset, Dtrain, by randomly
sampling images with ratios 0.001, 0.01 and 0.1. A summary of our experimental setup is given in Table 4.

Source domain
CIFAR-10 [8] (subset)
18k images, 9 classes

7-layers network
top-1: 0.738

Noisy
top-1: 0.540
cossrc: 0.014
cospc: 0.0379

ipc: 2-20-200-2k

Blurry
top-1: 0.324
cossrc: 0.053
cospc: 0.1172

ipc: 2-20-200-2k

Quick, Draw!
top-1: 0.291
cossrc: 0.023
cospc: 0.1158

ipc: 3-30-300-3k

Source domain
Quick, Draw! [1] (subset)

35k images, 9 classes
7-layers network
top-1: 0.654

Noisy
top-1: 0.540
cossrc: 0.014
cospc: 0.0379

ipc: 3-30-300-3k

Blurry
top-1: 0.324
cossrc: 0.053
cospc: 0.1172

ipc: 3-30-300-3k

CIFAR
top-1: 0.291
cossrc: 0.023
cospc: 0.1158

ipc: 2-20-200-2k

Table 4: CIFAR (left) and Quick, Draw! (right) based domain shifts we consider in our experimental setup.

Results. Quantitative results for all subsampling ratios and target domains are reported in Table 5 for experiments using
CIFAR as their source domain, and in Table 6 for experiments with Quick, Draw! as the source domain. As in Section 2, we
observe that in the full dataset scenario, fine-tuning all layers yields best performance, and is indeed chosen by flex-tuning
and fast flex-tuning. As the sample size decreases, this is however not always true and a few settings benefit from fine-tuning
a specific unit in the network instead.

In Table 7, Figure 7 and Figure 6, we report quantitative and qualitative results for the pre-processing module experiment.
We use the same Pix2Pix network as described in Section 2. We observe that the pre-processing module performs well for
the scenarios with Quick, Draw! as their source domain, most likely due to the simple appearance of this domain. In the
other, more complex, settings, it fails to nicely recover the source CIFAR domain, even when the full dataset is available,
which leads to poor classification accuracies.



CIFAR
flex ft-

flex fast faster prep fc (1) fc (2) ss all

Blurry (0.32) 0.514 ± 0.00 0.514 ± 0.00 0.344 ± 0.02 0.514 ± 0.00 0.408 ± 0.00 0.427 ± 0.00 0.490 ± 0.00 0.476 ± 0.01
Noisy (0.54) 0.618 ± 0.00 0.618 ± 0.00 0.618 ± 0.00 0.618 ± 0.00 0.555 ± 0.00 0.566 ± 0.00 0.603 ± 0.01 0.582 ± 0.00

QuickDraw (0.29) 0.392 ± 0.00 0.391 ± 0.00 0.386 ± 0.00 0.392 ± 0.00 0.359 ± 0.00 0.380 ± 0.01 0.378 ± 0.01 0.391 ± 0.00

(a) Data subsampling ratio 0.001 (∼ 2 images per class). Metrics are reported for 20 repetitions of the experiment with different sampled training images.

CIFAR
flex ft-

flex fast faster prep fc (1) fc (2) ss all

Blurry (0.32) 0.577 0.577 0.512 0.577 0.444 0.501 0.569 0.577
Noisy (0.54) 0.624 0.624 0.624 0.624 0.583 0.597 0.618 0.621

QuickDraw (0.29) 0.518 0.517 0.517 0.518 0.475 0.525 0.495 0.501
(b) Data subsampling ratio 0.01 (∼ 20 images per class).

CIFAR
flex ft-

flex fast faster prep fc (1) fc (2) ss all

Blurry (0.32) 0.609 0.608 0.566 0.609 0.525 0.552 0.623 0.608
Noisy (0.54) 0.644 0.629 0.629 0.644 0.602 0.620 0.653 0.613

QuickDraw (0.29) 0.663 0.667 0.667 0.663 0.569 0.662 0.643 0.671
(c) Data subsampling ratio 0.01 (∼ 200 images per class).

CIFAR
flex ft-

flex fast faster prep fc (1) fc (2) ss all

Blurry (0.32) 0.689 0.689 0.644 0.689 0.560 0.609 0.685 0.689
Noisy (0.54) 0.685 0.685 0.651 0.685 0.633 0.640 0.705 0.685

QuickDraw (0.29) 0.786 0.786 0.744 0.786 0.581 0.721 0.702 0.786
(d) Experiments using the full target domain training dataset (∼ 3000 images per class).

Table 5: Quantitative results for the CIFAR source domain. We report on experiments with the proposed flex-tuning (flex),
its two faster variants fast flex-tuning (fast-flex) and even faster flex-tuning (faster-flex), as well as flex-tuning
augmented with a preprocessing module (flex-prep). We compare against transfer learning baselines: fine-tuning all
layers in the architecture (ft-all), versus fine-tuning only fully-connected ones, either only the last one (ft-fc (1)) or
both of them (ft-fc (2)).



QuickDraw
flex ft-

flex fast faster prep fc (1) fc (2) ss all

Blurry (0.19) 0.560 ± 0.01 0.560 ± 0.01 0.525 ± 0.00 0.560 ± 0.01 0.290 ± 0.00 0.325 ± 0.00 0.327 ± 0.00 0.386 ± 0.00
Noisy (0.63) 0.763 ± 0.00 0.760 ± 0.00 0.758 ± 0.00 0.763 ± 0.00 0.766 ± 0.00 0.768 ± 0.00 0.782 ± 0.01 0.757 ± 0.01

CIFAR (0.20) 0.241 ± 0.00 0.241 ± 0.00 0.230 ± 0.00 0.241 ± 0.00 0.203 ± 0.00 0.228 ± 0.00 0.264 ± 0.01 0.241 ± 0.00

(a) Data subsampling ratio 0.001 (∼ 2 images per class). Metrics are reported for 20 repetitions of the experiment with different sampled training images.

QuickDraw
flex ft-

flex fast faster prep fc (1) fc (2) ss all

Blurry (0.19) 0.642 0.631 0.560 0.642 0.426 0.468 0.707 0.631
Noisy (0.63) 0.801 0.801 0.795 0.801 0.788 0.792 0.805 0.801

CIFAR (0.20) 0.424 0.424 0.401 0.424 0.333 0.347 0.388 0.424
(b) Data subsampling ratio 0.01 (∼ 20 images per class).

QuickDraw
flex ft-

flex fast faster prep fc (1) fc (2) ss all

Blurry (0.19) 0.726 0.722 0.595 0.726 0.471 0.583 0.724 0.722
Noisy (0.63) 0.815 0.797 0.797 0.815 0.815 0.797 0.812 0.772

CIFAR (0.20) 0.601 0.601 0.532 0.601 0.394 0.413 0.543 0.601
(c) Data subsampling ratio 0.01 (∼ 200 images per class).

QuickDraw
flex ft-

flex fast faster prep fc (1) fc (2) ss all

Blurry (0.19) 0.776 0.776 0.613 0.776 0.453 0.629 0.658 0.776
Noisy (0.63) 0.817 0.822 0.822 0.817 0.789 0.818 0.814 0.794

CIFAR (0.20) 0.718 0.718 0.632 0.718 0.432 0.529 0.697 0.718
(d) Experiments using the full target domain training dataset (∼ 3000 images per class).

Table 6: Quantitative results for the Quick, Draw! source domain. We report on experiments with the proposed flex-tuning
(flex), its two faster variants fast flex-tuning (fast-flex) and even faster flex-tuning (faster-flex), as well as flex-
tuning augmented with a preprocessing module (flex-prep). We compare against transfer learning baselines: fine-tuning
all layers in the architecture (ft-all), versus fine-tuning only fully-connected ones, either only the last one (ft-fc (1)) or
both of them (ft-fc (2)).

CIFAR
Ratio 0.001

prep (3) prep (2) prep (1)

Blurry 0.123 0.165 0.184
Noisy 0.118 0.164 0.176

QuickDraw 0.227 0.216 0.256

Ratio 0.010
prep (3) prep (2) prep (1)

0.147 0.283 0.246
0.228 0.206 0.210
0.421 0.400 0.264

Ratio 0.100
prep (3) prep (2) prep (1)

0.433 0.342 0.341
0.408 0.279 0.463
0.596 0.548 0.435

Ratio 1.000
prep (3) prep (2) prep (1)

0.598 0.568 0.382
0.552 0.498 0.534
0.764 0.722 0.449

QuickDraw
Ratio 0.001

prep (3) prep (2) prep (1)

Blurry 0.285 0.338 0.523
Noisy 0.330 0.415 0.537
CIFAR 0.140 0.125 0.167

Ratio 0.010
prep (3) prep (2) prep (1)

0.458 0.550 0.571
0.579 0.537 0.585
0.219 0.175 0.207

Ratio 0.100
prep (3) prep (2) prep (1)

0.633 0.639 0.618
0.651 0.622 0.635
0.410 0.309 0.265

Ratio 1.000
prep (3) prep (2) prep (1)

0.722 0.691 0.646
0.739 0.714 0.652
0.622 0.437 0.305

Table 7: Quantitative results for the pre-processing module experiments on CIFAR and Quick, Draw! source domains
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Figure 6: Qualitative results from the pre-processing module experiments with CIFAR as the source domain.
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Figure 7: Qualitative results from the pre-processing module experiments with Quick, Draw! as the source domain.



4. ILSVRC experiments
Datasets and base architecture. For this setting, we employ a standard Inception2 architecture, pre-trained on the ILSVRC12
train split, and implemented in the tensornets framework [14]. This source pre-trained network reaches 0.918 top-5 accuracy
on the test set. For all experimental settings, we also follow the same pre-processing as used for the original network: we
resize all images to 256x256 pixels and feed the network with central crop of size 224x224px.

To generate target domains, we first split the ILSVRC12 validation split into three random sets: 25k images for training,
Dtrain, 5k images for validation, Dval, and finally 20k images for testing purposes, Dtest. We first generate YUV ILSVRC and
HSV ILSVRC by converting all images from D = (Dtrain,Dval,Dtest) from RGB to YUV and HSV color spaces, respectively.
We then generate three geometric transformed target domains: Fixed Scaling (stretch) is obtained by rescaling all images
with the same fixed coefficient s = 0.5 and padding the empty pixels by repeating the edges values of the images. Fixed Scal-
ing (symmetric) is obtained similarly but using the SYMMETRIC padding mode of TensorFlow. Finally, Fixed Rotation
corresponds to applying the same fixed rotation with angle 0.6 radians to all images.

We also create subsampled versions of each target training dataset by randomly sampling images with ratios 0.04 (∼ 1
image per class) and 0.5 (∼ 12 images per class). A summary of our experimental setup is given in Table 8.

Source domain
ILSVRC [13] (’12 train split)

1M images, 1000 classes
Inception2

top-5: 0.918

YUV
top-5: 0.841
cossrc: 0.0231
cospc: 0.079

ipc: 2 - 12 - 25

Fixed rotation
top-5: 0.743
cossrc: 0.0104
cospc: 0.096

ipc: 2 - 12 - 25

Fixed scaling (symmetric)
top-5: 0.519
cossrc: 0.0644
cospc: 0.187

ipc: 2 - 12 - 25

Fixed scaling (stretch)
top-5: 0.440
cossrc: 0.0861
cospc: 0.216

ipc: 2 - 12 - 25

HSV
top-5: 0.384
cossrc: 0.0787
cospc: 0.225

ipc: 2 - 12 - 25

Table 8: ILSVRC-based domain shifts we consider in our experimental setup.

Results. Quantitative results for all subsampling ratios and target domains are reported in Table 9, comparing flex-tuning
and its variants to the fine-tuning baselines. In all settings, fine-tuning all layers performs badly as the network tends to overfit
due to the rather small sample sizes. Furthermore, flex-tuning and its variants consistently outperform the other fine-tuning
baseline, ft-fc. In the YUV and HSV settings, all three flex-tuning variants perform similarly as they indeed pick the same
unit to fine-tune (second or third convolutional layer). The unit choice is not as consistent for the geometric transformations,
but the actual classification accuracies are also similar for all flex-tuning variants.

Moreover, we observe that the best performing method is prep-tuning (i.e., flex-tuning augmented with a pre-processng
module). In fact, as was the case in Section 2, the specialized pre-processing modules performs very well to recover the
original source domain on these transformations, even in the small sample size setting. This can also be observed in Table 10
and Figure 8, in whic we report quantitative and qualitative results for the pre-processing module experiments. For geometric
transforms, we use a Spatial Transformer Network as described in Section 2, this time with a 4-layers encoder that takes as
input 224x224 images. For color channel conversions, we use a simple network composed only of 1x1 convolutions, either
with only one layer, which is enough to model linear relations such as RGB → YUV, or with 2 layers and tanh activation
in-between for the more complex RGB→ HSV transformation.



ILSVRC
flex ft-

flex fast faster prep fc ss all

YUV (0.84) 0.856 ± 0.00 0.857 ± 0.00 0.830 ± 0.00 0.902 ± 0.00 0.775 ± 0.00 0.574 ± 0.00 0.817 ± 0.00
HSV (0.38) 0.750 ± 0.01 0.750 ± 0.01 0.750 ± 0.01 0.895 ± 0.00 0.422 ± 0.01 0.374 ± 0.01 0.582 ± 0.00

Scaling (stretch) (0.44) 0.626 ± 0.01 0.612 ± 0.02 0.596 ± 0.00 0.780 ± 0.00 0.361 ± 0.01 0.425 ± 0.00 0.595 ± 0.01
Scaling (sym.) (0.52) 0.703 ± 0.01 0.700 ± 0.00 0.700 ± 0.00 0.837 ± 0.00 0.531 ± 0.00 0.525 ± 0.00 0.659 ± 0.00

Rotation (0.74) 0.771 ± 0.00 0.769 ± 0.01 0.750 ± 0.01 0.837 ± 0.00 0.621 ± 0.00 0.499 ± 0.01 0.718 ± 0.00

(a) Data subsampling ratio 0.04 (∼ 1 image per class). Metrics are reported for 20 repetitions of the experiment with different sampled training images.

ILSVRC
flex ft-

flex fast faster prep fc ss all

YUV (0.84) 0.893 0.893 0.893 0.903 0.835 0.699 0.808
HSV (0.38) 0.856 0.856 0.856 0.905 0.533 0.646 0.687

Scaling (stretch) (0.44) 0.724 0.696 0.696 0.803 0.502 0.584 0.653
Scaling (sym.) (0.52) 0.770 0.757 0.757 0.856 0.663 0.650 0.716

Rotation (0.74) 0.826 0.832 0.812 0.826 0.667 0.652 0.771
(b) Data subsampling ratio 0.5 (∼ 12 images per class).

ILSVRC
flex ft-

flex fast faster prep fc ss all

YUV (0.84) 0.897 0.897 0.897 0.903 0.839 0.716 0.818
HSV (0.38) 0.863 0.863 0.863 0.904 0.545 0.676 0.670

Scaling (stretch) (0.44) 0.750 0.706 0.706 0.778 0.515 0.597 0.675
Scaling (sym.) (0.52) 0.787 0.770 0.770 0.880 0.668 0.655 0.728

Rotation (0.74) 0.837 0.829 0.812 0.837 0.674 0.663 0.764
(c) Experiments using the full target domain training dataset (∼ 25 images per class).

Table 9: Quantitative results for the ILSVRC12 source domain. We report on experiments with the proposed flex-tuning
(flex), its two faster variants fast flex-tuning (fast-flex) and even faster flex-tuning (faster-flex), as well as flex-
tuning augmented with a preprocessing module (flex-prep). We compare against transfer learning baselines: fine-tuning
all layers in the architecture (ft-all), versus fine-tuning only the single last fully-connected layer (ft-fc).

ILSVRC
Ratio 0.010

prep (1) prep (2)

YUV 0.902 0.901
HSV 0.895 0.686

Scaling (stretch) 0.780 -
Scaling (sym.) 0.837 -

Rotation 0.837 -

Ratio 0.500
prep (1) prep (2)

0.903 0.711
0.896 0.905
0.803 -
0.856 -
0.826 -

Ratio 1.000
prep (1) prep (2)

0.903 0.903
0.895 0.904
0.778 -
0.880 -
0.831 -

Table 10: Quantitative results from the pre-processing module experiments for different architectures. For the color channel
experiments, prep (n) designates a pre-processing architecture with n 1x1 convolutional layers.



Figure 8: Qualitative results from the pre-processing module for each subsampling ratio, target domain and pre-processing
module architecture. Figures read row-wise, two-by-two, where each pair contains the input image on the left (target domain)
and the generated pre-processed image on the right (source domain). Best seen in PDF with zoom.



5. PACS Experiments

Source domain
ILSVRC [13]

1M images, 1000 classes
Inception2

top-5: 0.918

PACS (art)
top-1: 0.532
cossrc: 0.061
cospc: 0.090
ipc: 2-20-200

PACS (cartoon)
top-1: 0.346
cossrc: 0.1361
cospc: 0.189
ipc: 2-20-200

PACS (sketch)
top-1: 0.142
cossrc: 0.211
cospc: 0.257
ipc: 4-40-400

Table 11: PACS-based domain shifts we consider in our ex-
perimental setup.

Datasets and base architecture. Our most challeng-
ing setting is based of the PACS dataset [10], initially
introduced for domain generalization. The dataset con-
tains 7 object categories, with occurences in 4 different
artistic styles. We first randomly split each artistic style
in a training, validation and test set. We then use a pre-
trained ILSVRC12-pretrained Inception2 network as our
base source model. We map PACS classes to the clos-
est category in the ILSVRC classification task, and ig-
nore the class “person” as it does not have any satisfying
equivalent. For reference, even though it was not trained
on it, it reaches top-1 accuracy of 0.885 on the test set for the photo split of PACS. We use the remaining artistic styles,
artistic paintings, cartoon and sketch as our target domains.

As for other datasets, we also create subsampled versions of each target training dataset by randomly sampling images
with ratios 0.01, 0.1 and 1.0. A summary of our experimental setup is given in Table 11.

Results. Quantitative results comparing flex and variants to the fine-tuning baselines for all subsampling ratios and target
domains are reported in the main paper. As for the ILSVRC setting, ft-all is very prone to overfitting and usually performs
badly. Out of the other methods, flex and variants yields better performance than the other fine-tuning baseline, ft-fc,
showing that there is benefit to selecting the best unit to tune.

Figure 9: Qualitative results from the pre-processing module for PACS experiments.

Secondly, we note that in this scenario, the pre-processing module performs very badly and does not help flex-tuning.
In fact, with these widely different artistic styles, the image-to-image translation problem becomes significantly harder than
the classification task we actually want to solve. In consequence, prep-tuning always reduces to flex-tuning in that scenario.



This can also be seen in Table 12 and Figure 9, in which we report quantitative and qualitative results for the pre-processing
module experiments. We used pix2pix as described in Section 2 with increased depth to match the larger input size.

ILSVRC
Ratio 0.010

prep (5) prep (4) prep (2)

Art 0.365 0.331 0.343
Cartoon 0.333 0.369 0.358

Sketch 0.361 0.354 0.390

Ratio 0.100
prep (5) prep (4) prep (2)

0.504 0.451 0.472
0.493 0.335 0.447
0.636 0.422 0.286

Ratio 1.000
prep (5) prep (4) prep (2)

0.482 0.513 0.568
0.470 0.606 0.633
0.551 0.531 0.594

Table 12: Quantitative results from the pre-processing module for PACS experiments. For the pix2pix network, prep (n)
designates an architecture with n layers in the encoder and n layers in the decoder.

6. Retrieval Experiments
In this set of experiments, we assess how much the representations learned by the tuned network differ from the initial

representations from the source network on the source domain: Since the target domain visually differs from the source,
extracting features from the pretrained source network directly, e.g. as is done with fine-tuning, leads to misaligned rep-
resentations. While tuning intermediate units could help “mend” the representations and recovering an embedding space
close to that of the original source network. To evaluate this, we use the following retrieval experiment: We extract features
for the initial source validation domain through the source network, as well as for the target domain through the flextuned
(best intermediate unit according to validation accuracy) or finetuned network. For each target sample, we then retrieve its
top-k nearest neighbors in the source domain and consider them correctly retrieved if they share the same semantic class, and
evaluate the average precision (AP@k). we report AP@1, AP@10, and AP@100 for our main experimental settings in Table
13. Qualitative results are also available in Figure 10 to Figure 13 .

The results follow the same global observations as other experiments: (i) Fine-tuning the last fully-connected layer is
enough to learn a classifier but can not modify the feature extract part of the network, hence low retrieval results; (ii) allowing
to tune intermediate units often recover representations close to the one of the source embedding. In particular, when the
target domain differ from the source domain at a very low-level (e.g., color channels or noise), then targetting a single unit
such as in flex-tuning usually yields better results. For the other domain shifts, it seems that flex-tuning is usually a better
alternative on larger architectures, while for smaller architectures, fine-tuning all layers yield the best results.

Source MNIST CIFAR ILSVRC PACS
Target Blurry Occl. -M SVHN Blurry Noisy QDraw YUV HSV Art Cartoon Sketch
ft-fc 0.32 0.67 0.44 0.15 0.27 0.55 0.23 0.86 0.45 0.62 0.45 0.35
ft-all 0.91 0.84 0.74 0.58 0.58 0.58 0.65 0.79 0.48 0.82 0.81 0.87
flex 0.73 0.80 0.57 0.34 0.44 0.63 0.45 0.94 0.95 0.90 0.84 0.90

a) AP@1 results

Source MNIST CIFAR ILSVRC PACS
Target Blurry Occl. -M SVHN Blurry Noisy QDraw YUV HSV Art Cartoon Sketch
ft-fc 0.38 0.70 0.47 0.19 0.36 0.58 0.27 0.80 0.47 0.66 0.53 0.39
ft-all 0.91 0.85 0.76 0.63 0.64 0.64 0.69 0.75 0.52 0.80 0.83 0.85
flex 0.76 0.83 0.61 0.40 0.52 0.67 0.54 0.85 0.85 0.88 0.86 0.86

b) AP@10 results

Source MNIST CIFAR ILSVRC PACS
Target Blurry Occl. -M SVHN Blurry Noisy QDraw YUV HSV Art Cartoon Sketch
ft-fc 0.28 0.61 0.41 0.16 0.28 0.47 0.24 0.66 0.39 0.50 0.42 0.27
ft-all 0.82 0.80 0.70 0.54 0.55 0.53 0.63 0.61 0.42 0.65 0.70 0.66
flex 0.61 0.76 0.53 0.32 0.37 0.56 0.43 0.71 0.72 0.75 0.74 0.71

c) AP@100 results

Table 13: mAP retrieval results for the fine– and flex-tuned network embeddings of the target domain (second row), queried
against the source domain embeddings (first row)



Figure 10: Qualitative Results for retrieval experiments on MNIST. First column contains the query from the target domain.
Next groups of columns contains the ten closest samples from the source domain, when using the target embeddings from
flex, ft-fc and ft-all respectively



Figure 11: Qualitative Results for retrieval experiments on CIFAR.



Figure 12: Qualitative Results for retrieval experiments on PACS.



Figure 13: Qualitative Results for retrieval experiments on Colorized-ILSVRC.



7. Results for cosine classifiers
Finally in this section we report results for an additional transfer learning baseline inspired from [2]. It consists in applying

fine-tuning on a neural network where the standard last linear classification layer is replaced by a cosine classifier, providing
additional feature normalization. Note that we did not experiment on our ILSVRC-based settings as these would have required
retraining the source network on ILSVRC’s full training set. Nonetheless, in Table 14 we report results on the remaining
setting and observe that (i) the base accuracy of the network trained with a cosine classifier is often slightly worse than the
one trained without (see numbers in parenthesis in the first column) and (ii) this baseline performs much worse than simply
finetuning a standard linear classification layer. A possible explanation is that since the method still only acts on the last layer,
it is not enough to handle important visual dissimilarities at the input level. In particular, it aims to learn good “prototypes”
in the feature space to describe each class, and in fact this method was rather intended to tackle different settings from ours:
where the input domains are similar and semantic classes are different: Hence the feature representations of both domains lie
in a similar subspace and only the prototypes have to be relearned for the new semantic classes.

0.001 ratio 0.01 ratio 0.1 ratio full
ft-fc ft-cosine ft-fc ft-cosine ft-fc ft-cosine ft-fc ft-cosine

Blurry (0.63) 0.867 0.656 0.921 0.690 0.941 0.696 0.955 0.706
Occluded (0.58) 0.644 0.563 0.785 0.582 0.849 0.586 0.867 0.585

MNIST-M (0.35) 0.524 0.463 0.615 0.462 0.704 0.477 0.739 0.479
SVHN (0.20) 0.365 0.297 0.451 0.321 0.558 0.339 0.670 0.342

0.001 ratio 0.01 ratio 0.1 ratio full
ft-fc ft-cosine ft-fc ft-cosine ft-fc ft-cosine ft-fc ft-cosine

Blurry (0.32) 0.408 0.253 0.444 0.334 0.525 0.338 0.560 0.341
Noisy (0.57) 0.555 0.508 0.583 0.585 0.602 0.586 0.633 0.586

QuickDraw (0.31) 0.359 0.259 0.475 0.308 0.569 0.315 0.581 0.390

Table 14: Results of the baseline using cosine classifiers similar to [2] on the MNIST and CIFAR settings
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