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TwoStreamVAN: Improving Motion Modeling in Video Generation


A. Implementation Details
We implement our model using PyTorch [10]. We use


Xavier initialization [3] for each layer and use the Adam op-
timizer [7] with initial learning rate � = 2×10−4, first decay
rate �1 = 0.5 and second decay rate �2 = 0.999. We train
our model for a total of 500K iterations with batch size 16
which takes 2 days on a TITAN V GPU to finish, and the
ratio between Content and Motion Learnings is 3:2. To gen-
erate more complicated content in Syn-Action and Datasets,
we pre-train the Content Stream for 300K iterations by the
image reconstruction task. At the test time, we heat up the
network for two time steps before generating videos on each
dataset.


Inspired by the curriculum learning approach [2] and
the scheduled sampling mechanism [2], we design the mo-
tion learning as follows. We introduce a very simple learn-
ing task at a very early stage, where the Motion Stream is
trained to predict the next frame sorely from the current
frame with no need of modeling the history. This task is
gradually replaced by the sequence training task using the
scheduled sampling strategy such that at the beginning the
model is trained for one-step prediction providing the en-
tire history, while by the end of training the model is fully
auto-regressive.


A.1. Model Architecture


We provide the detailed model architecture of the Con-
tent Stream (the Content EncoderEc , the Content Generator
Gc and the Image DiscriminatorDI ) in Table. 1 and theMo-
tion Stream (the Motion Encoder Em, the Motion Generator
Gm, the Video Discriminator DV ) in Table. 2. In Ec and
Gc , we do not apply the Batch Normalization [6] after each
convolutional layer to stabilize the content generation. For
each scale s in the Motion Stream, we design a small subnet
(Fig. 1) to generate adaptive convolution kernelsws andMs


from a fraction of the motion feature map ℎm. The weights
of the subnet are not shared by different scales. Addition-
ally, we generate ws from two separate 1D kernels wsℎ and
wsv as in [9]. Our implementation will be available.


A.2. Hyper-Parameter Setting


We provide hyper-parameters of loss functions and
model architecture for Weizmann Human Action [4],


layer configuration
Content Encoder Ec


1 Conv2D (ngf , 3, 2, 1), ReLU
2 Conv2D (ngf , 3, 1, 1), ReLU
3 Conv2D (2xngf , 3, 2, 1), ReLU
4 Conv2D (2xngf , 3, 1, 1), ReLU
5 Conv2D (ngf , 3, 2, 1), ReLU
6 FC (32xngf ), ReLU, FC(2x)


Content Generator Gc
1 FC(32xngf ),ReLU, FC(64xngf ), ReLU
2 Deconv2D (8xngf , 3, 2, 1), ReLU
3 Deconv2D (4xngf , 3, 1, 1), ReLU
4 Deconv2D (2xngf , 3, 2, 1), ReLU
5 Deconv2D (2xngf , 3, 1, 1), ReLU
6 Deconv2D (ngf , 3, 2, 1), ReLU
7 Deconv2D (3, 3, 2, 1), Tanh


Image Discriminator DI
1 Conv2D (16, 4, 2, 1), LeakyReLU
2 Conv2D (32, 4, 2, 1), BN, LeakyReLU
3 Conv2D (64, 4, 2, 1), BN, LeakyReLU
4 Conv2D (1, 4, 2, 1), Sigmoid


Table 1: Model Architecture of the Content Stream. For
each convolution layer, we list the output dimension, ker-
nel size, stride, and padding. For the fully-connected layer,
we provide the output dimension. ‘ngf ’ is the basic output
dimension, which is a hyper-parameter in the model archi-
tecture.  is the dimension of the content latent space.


Conv
Conv


Conv, Tanh


Outer Product
Conv


Separable Method


Figure 1: We design a subnet to generate motion kernels w
and themotionmaskM at each scale. ℎm is a fraction ofmo-
tion feature map which is used to generate w andM . In the
separable method, a 2D kernel w(a, b) is approximated by
the outer-product of two 1D kernels: wv(a, b) and wℎ(a, b).
This subnet contains three convolutional branches to gener-
ate wv, wℎ andM respectively.







layer configuration
Motion Encoder


1 Conv2D (ngf , 5, 1, 2), BN, ReLU
2 Conv2D (ngf , 5, 1, 2), BN, ReLU, MaxPool
3 Conv2D (2xngf , 5, 1, 2), BN, ReLU
4 Conv2D (2xngf , 5, 1, 2), BN, ReLU, MaxPool
5 Conv2D (2xngf , 7, 1, 3), BN, ReLU
6 Conv2D (ngf , 7, 1, 3), BN, ReLU, MaxPool
7 FC (512), ReLU, FC(2x)


Motion Generator
0 FC(1024), ReLU
1 Deconv2D (128, 3, 1, 1), BN, ReLU
2 Conv2D (128, 3, 1, 1), BN, ReLU
3 Deconv2D (64, 4, 2, 1), BN, ReLU
4 Conv2D (64, 3, 1, 1), BN, ReLU
5 Deconv2D (32, 4, 2, 1), BN, ReLU
6 Conv2D (32, 3, 1, 1), BN, ReLU
7 Deconv2D (16, 4, 2, 1), BN, ReLU
8 Conv2D (16, 3, 1, 1), BN, ReLU


Motion Generator-Subnet
1 Deconv2D (16, 3, 1, 1), BN, ReLU
2-1 Conv2D (5, 3, 1, 1)
2-2 Conv2D (5, 3, 1, 1)
2-3 Conv2D (1, 3, 1, 1), Tanh


Video Discriminator
1 Conv3D (64, 4, (1, 2, 2), (0, 1, 1)), LeakyReLU
2 Conv3D (128, 4, (1, 2, 2), (0, 1, 1)), BN, LeakyReLU
3 conv3D (256, 4, (1, 2, 2), (1, 1, 1)), BN, LeakyReLU
4 Conv2D (512, 4, (1, 2, 2), (1, 1, 1)), BN, LeakyReLU
5 Conv2D (512, 4, (1, 2, 2), (0, 1, 1))


Table 2: Model Architecture of theMotion Stream. For each
convolution layer, we list the output dimension, kernel size,
strides, and padding. For each fully-connected layer, we pro-
vide the output dimension. ‘ngf ’ is the basic output dimen-
sion, which is a hyper-parameter in the model architecture.
M is the dimension of the motion latent space.


MUG Facial Expression [1], VoxCeleb [8] and Syn-Action
Datasets (Table. 3). Since we adopt the scheduled sampling
mechanism in the Motion Learning, we slowly increase �6
along with the process of the scheduled sampling, to restrict
the KL divergence between the approximated latent distri-
bution q(zm|Δx, k) and the real latent distribution p(zm|k)
within a reasonable range. This helps to stabilize the mo-
tion sampling at the test time. We tune hyperparameters
via validation: choose the best metrics computed from a
group of generated videos. Note that the metrics reported
in the paper are computed from another group of generated
videos. We fix �1, �3 and �4, and sweep �2 in [3, 8], ‘ngf‘
from {16, 32, 64},  from {256, 512, 1024} lower bound of
�5 in [1, 10] and higher bound from 5 to 10 times of its lower
bound.


Content Loss Motion Loss Model Arch
Params �1 �2 �3 �4 �5 ngf  


Weizmann 104 7 102 104 2 → 20 16 512 64
MUG 104 5 102 104 5 → 25 16 512 64


SynAction 104 7 102 104 2 → 20 32 1024 64
VoxCeleb 104 6 102 104 5 → 25 64 512 64


Table 3: Hyper-Parameters for Weizmann Human Action,
MUG Facial Expression, SynAction and VoxCeleb Datasets


B. Details of Experimental Setup
B.1. Data Spliting and Pre-processing


We use three datasets to evaluate our model and other
baselines: Weizmann Human Action [4], MUG Facial Ex-
pression [1] and Syn-Action datasets.


Weizmann Human Action. Following [5], We use the
first 2∕3 for the training and save the last 1∕3 for the test.


MUG Facial Expression. We use 4∕5 of the entire
dataset for the training and save 1∕5 for the test.


SynAction Dataset. We use 14∕15 of the whole dataset
for the training and save 1∕15 for the test.


VoxCeleb Dataset. We form the train set with 15184
videos of 186 people speaking. No test set is needed.


On all datasets, we crop the video centered at the actor or
the face. To augment data, we further crop the video with
a random small offset before down-sampling each frame to
64 × 64 at each iteration. We adjust the frame sampling rate
based on action types to make motion observable between
adjacent frames.


B.2. Definition of Evaluation Metrics


Let v be the generated video and y be the label for v,
which is assigned by the pre-train classifier. We introduce
definitions of Inter-Entropy H (y), Intra-Entropy H (y|v) and
Inception Score (IS) and explain how they measure the di-
versity and realism of generative models.


Inter-Entropy H (y) is the entropy of the marginal dis-
tribution p (y) obtained from all videos:


H (y) = −
∑


y
p (y) log p (y) , (1)


p (y) ≈ 1
N


N
∑


i=1
p
(


y|vi
)


. (2)


If all classes are equally represented in the generated sam-
ples, H (y) achieves its maximum value. Therefore, higher
H (y) indicates the model generates more diverse results.


Intra-Entropy H (y|v) is the entropy of the conditional
class distribution p (y|v) of a single video v:


H (y|v) = −
∑


y
p (y|v) log p (y|v) , (3)







More confident the classifier is to predict its class, lower
H (y|v) is, and thus more realistic the video is. In this paper,
we report the average H (y|v) to evaluate the overall realism
of the generated videos.


Inception Score (IS) is widely adopted to evaluate gen-
erative models. In video-level task, it measures the KL di-
vergence between the conditional label distribution p (y|v)
and the marginal distribution p (y):


IS = exp
(


Ev [KL (p (y|v) ||p (y))]
)


= exp
(


H (y) − Ev [H (y|v)]
)


. (4)


Inception Score favors a higher H (y) and a lower H (y|v). So
it measures both the realism and diversity of the generated
videos.


B.3. Details of User Study


To conduct the user study on SynAction and VoxCeleb
datasets, we pairwisely compare 2000 random pairs via
Amazon MTurk. Users are asked to choose a better looking
one from a pair. For action-conditioned generation, users
are further informed with the action label and re-make the
choice. We calculate the percentage of user preference and
bootstrap the variance.


C. More Visualization Results
In this section, we provide more qualitative visualiza-


tions of generated videos from TwoStreamVAN and MoCo-
GAN [11] on each dataset (Fig. 2 for Weizmann Human Ac-
tion [4], Fig. 3 for MUG Facial Expression [1], Fig. 4 &
5 for our SynAction Dataset and Fig. 6 for VoxCeleb [8]).
On Weizmann, MUG and SynAction Datasets, We pro-
vide 2 videos as examples for each action class: videos
from TwoStreamVAN and MoCoGAN are generated with
the given class. On VoxCeleb, we provide 20 videos from
TwoStreamVAN and MoCoGAN respectively. Due to the
fine-grained motion included, we recommend readers to
view the video version of this visual comparison in the sup-
plementary material.
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(a) Generated Videos from TwoStreamVAN and MoCoGAN


(b)   Random Frames from TwoStreamVAN and MoCoGAN


Figure 2: We provide 2 videos of one action class generated by TwoStreamVAN and MoCoGAN respectively on Weizmann
Human Action Dataset. Also, we randomly sample 40 frames to show the content quality. We mark frames with large
distortion in red.
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(a) Generated Videos from TwoStreamVAN and MoCoGAN


(b)   Random Frames from TwoStreamVAN and MoCoGAN


Figure 3: We provide 2 videos of one action class generated by TwoStreamVAN and MoCoGAN respectively on MUG Facial
Expression. Also, we randomly sample 40 frames to show the content quality. We mark frames with large distortion in red.
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Figure 4: We provide 2 videos of one action class generated by TwoStreamVAN and MoCoGAN respectively on the first 12
classes of SynAction.
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(a) Generated Videos from TwoStreamVAN and MoCoGAN


(b)   Random Frames from TwoStreamVAN and MoCoGAN


Figure 5: We provide 2 videos of one action class generated by TwoStreamVAN andMoCoGAN respectively on the remaining
8 classes of SynAction. Also, we randomly sample 80 frames to show the content quality.
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(a) Generated Videos from TwoStreamVAN and MoCoGAN


(b)   Random Frames from TwoStreamVAN and MoCoGAN


Figure 6: We provide 20 videos generated by TwoStreamVAN andMoCoGAN respectively on VoxCeleb. Also, we randomly
sample 40 frames to show the content quality.
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