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Appendix
This Appendix is organized as follows. We firstly present
details on the architecture of our proposed ImaGINator in
Appendix A. Secondly in Appendix B, we report numerous
results of additional experiments related to

B.1. the effectiveness of both reconstruction loss and ad-
versarial loss utilized in our loss function,

B.2. the contribution of proposed spatio-temporal fusion,
illustrated by deactivating it in different layers of the
Decoder,

B.3. the performance of ImaGINator, as well as state-of-
the-art algorithms on 6 datasets including 3 facial ex-
pression datasets MUG [1], UvA-NEMO [2], BU-
4DFE [3], 2 action datasets NATOPS [4] and Weiz-
mann [5] and BAIR robot push [6]. Evaluation is per-
formed by 3 evaluation metrics.

Finally, we disclose in Appendix C numerous example
frames of generated video sequences.

In summary, based on results in the main paper and
supplementary material, our approach significantly outper-
forms existing video generation/prediction methods on all 6
tested datasets and evaluation metrics.

A. Network Architecture
We proceed to introduce details of our model in this

section.

A.1. Generator

We proceed to describe the network architecture of the
Generator, illustrated in Figure 1. It consists of two parts,
(a) an image Encoder, containing five 2D convolutional lay-
ers (Conv1 - Conv5) and (b) a video Decoder with five
transposed (1+2)D convolutions (Deconv 6-1 - Deconv10-
2). Each transposed (1+2)D convolution has two separate
and successive operations, M transposed 1D temporal con-
volutional filters followed by a transposed 2D spatial con-
volution. In all layers of the Generator, we use the Batch

Normalization [7], followed by the LeakyReLU after each
convolution and transposed convolution, except for the last
layer, where we directly use the Tanh activation function
after the transposed convolution.

Towards generating a video, the Encoder firstly encodes
an input image of size 64 × 64 × 3 into a latent vector
of size 100, proceeds to combine it with a noise vector
of size 512, as well as with a one-hot category vector
towards formulating a representation of video in a latent
space. Then, the Decoder generates a video based on this
representation. Each transposed 1D convolutional layer
(except Deconv6-1) in the Decoder merges three different
types of feature maps as input through spatio-temporal
fusion, (i) a motion map from its last 2D layer, (ii) an
appearance map from the corresponding layer in the
Encoder through skip connections, as well as (iii) a one-hot
category map replicated from the one-hot category vector.
All feature maps share the same spatial size. In particular,
we capture the feature maps from layers Conv1, Conv2,
Conv3, Conv4, in order to fuse with the outputs from layers
Deconv9-2, Deconv8-2, Deconv7-2 and Deconv6-2, re-
spectively. Details of the Generator are exhibited in Table 1.

A.2. Discriminators

Our ImaGINator includes two Discriminators, an image
Discriminator DI , as well as a video Discriminator DV .
The input of DI entails N randomly sampled frames, ei-
ther from real or generated videos. In our experiments, we
set N = 16. DI provides as output a scalar value, indicat-
ing whether the frames are real or fake. DI is represented
by a network of five 2D convolutional layers. The kernel
size in all layers is 4× 4, see Figure 2.

DV discriminates videos based on the related realistic
appearance and motion. It is represented by a network con-
taining five 3D convolutional layers, see Figure 3. While
4× 4× 4 kernels have been applied in the first four layers,
one 2×4×4 kernel is featured in the last layer (T ×H×W
denotes time step, height and width of a kernel respec-
tively). A one-hot category vector is replicated into a one-
hot category map of the same spatial size of the output fea-
ture map of Conv1. Then, Conv2 takes the concatenation of
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Figure 1: Network architecture of the Generator. Our
Generator G accepts an image of size 64 × 64 × 3 as
input and generates a 32-frame long video. G incorpo-
rates an image Encoder (Conv1 - Conv5) and a video De-
coder (Deconv6-1 - Deconv10-2). Skip connections link
Encoder and Decoder, with the goal of enforcing the De-
coder to reuse appearance features directly. A motion cate-
gory vector is replicated into feature maps and concatenated
with each feature map in the Decoder (for different dataset,
length of motion category vector is different, here we use 6
to represent MUG dataset).

Layers Type KN KS S P
Conv1 Conv2D 64 4x4 2x2 1x1
Conv2 Conv2D 128 4x4 2x2 1x1
Conv3 Conv2D 256 4x4 2x2 1x1
Conv4 Conv2D 512 4x4 2x2 1x1
Conv5 Conv2D 100 4x4 1x1 No

Deconv6-1 TransConv1D 4096 2x1x1 1x1x1 No
Deconv6-2 TransConv2D 512 1x4x4 1x1x1 No
Deconv7-1 TransConv1D 3072 4x1x1 2x1x1 1x0x0
Deconv7-2 TransConv2D 256 1x4x4 1x2x2 0x1x1
Deconv8-1 TransConv1D 1536 4x1x1 2x1x1 1x0x0
Deconv8-2 TransConv2D 128 1x4x4 1x2x2 0x1x1
Deconv9-1 TransConv1D 768 4x1x1 2x1x1 1x0x0
Deconv9-2 TransConv2D 64 1x4x4 1x2x2 0x1x1
Deconv10-1 TransConv1D 36 4x1x1 2x1x1 1x0x0
Deconv10-2 TransConv2D 3 1x4x4 1x2x2 0x1x1

Table 1: Network architecture of the Generator. Our
Generator incorporates an image Encoder (Conv1 - Conv5),
as well as a video Decoder (Deconv6-1 - Deconv10-2). KN
= Kernel Numbers, KS = Kernel Size, S = Stride, P =
Padding size.

both feature maps as input.
In all layers in both Discriminators, we use the Spectral

Normalization (SN) [8], followed by the LeakyReLU after
each convolution, except for the the last layer, where we use
Sigmoid activation function after the normalization. Details
pertained to the network architecture of the Discriminators
are presented in Table 2 (image Discriminator) and Table 3
(video Discriminator), respectively.

Layers Type KN KS S P
Conv1 Conv2D 64 4x4 2x2 1x1
Conv2 Conv2D 128 4x4 2x2 1x1
Conv3 Conv2D 256 4x4 2x2 1x1
Conv4 Conv2D 512 4x4 2x2 1x1
Conv5 Conv2D 1 4x4 1x1 No

Table 2: Network architecture of the image Discrimina-
tor. KN = Kernel Numbers, KS = Kernel Size, S = Stride,
P = Padding size.



Figure 2: Network architecture of the image Discrimina-
tor. It contains five 2D convolutional layers of kernel size
4× 4.

Layers Type KN KS S P
Conv1 Conv3D 64 4x4x4 2x2x2 1x1x1
Conv2 Conv3D 128 4x4x4 2x2x2 1x1x1
Conv3 Conv3D 256 4x4x4 2x2x2 1x1x1
Conv4 Conv3D 512 4x4x4 2x2x2 1x1x1
Conv5 Conv3D 1 2x4x4 1x1x1 No

Table 3: Network architecture of the video Discrimina-
tor. KN = Kernel Numbers, KS = Kernel Size, S = Stride,
P = Padding size.

B. Additional Experimental Results

We here resume experiments, which support our choice
in architecture-design for ImaGINator. Specifically in B.1,
we conduct an ablation study to analyze the pertinence of
the joint use of adversarial loss and reconstruction loss in
our loss function. Subsequently, in B.2 we conduct ex-
periments, showcasing the impact of the proposed spatio-
temporal fusion on effectively decomposing motion and ap-
pearance. Finally, in B.3 we demonstrate experimental re-
sults on an additional facial expression dataset, BU-4DFE,
again comparing our method with two state-of-art methods.

Figure 3: Network architecture of the video Discrimi-
nator. It includes five 3D convolutional layers, a motion
category vector is firstly replicated and then concatenated
with the feature map of the first layer (for different dataset,
length of motion category vector is different, here we use 6
to represent MUG dataset).

Adv. Loss Recon. Loss Two losses
MUG 35.62 45.43 29.02

NATOPS 33.97 61.32 26.86
Weizmann 150.48 217.58 99.80

UvA-NEMO 19.29 30.72 16.16

Table 4: Evaluation results for models using different
losses on four datasets represented by video FID. (Adv.
Loss indicates adversarial loss, Recon. Loss indicates Re-
construction Loss and Two losses represents our proposed
ImaGINator loss function.)

B.1. Reconstruction loss vs. Adversarial loss

Towards evaluating the pertinence of both components
in our loss function, we conduct two experiments. While
the first experiment integrates merely the adversarial loss
in ImaGINator, omitting the reconstruction loss; the sec-
ond experiment merely integrates reconstruction loss, omit-
ting the adversarial loss. Generated videos are evaluated
based on video FID, SSIM, as well as PSNR for the datasets
MUG, NATOPS, Weizmann and UvA-NEMO.



(a) Adversarial loss (b) Reconstruction loss
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Figure 4: Comparison of use of merely (a) Adversarial loss and (b) Reconstruction loss. We illustrate generated frames
for (a) and (b) on four datasets. We observe that frames in (a) are sharper than (b), but (b) retains overall structures better
than (a). Frames are sampled with time step 4.

(a) Without deactivation of neuron-connections

(b) Deactivate neuron-connections in Deconv10-1

(c) Deactivate neuron-connections in Deconv9-1, 10-1

(d) Deactivate neuron-connections in Deconv8-1, 9-1 and
10-1

(d) Deactivate neuron-connections in Deconv7-1, 8-1, 9-1
and 10-1

Figure 5: Motion, appearance decomposition. We
illustrate generated examples by deactivating neuron-
connections corresponding to appearance features in each
layer one by one ((a) - (d)). Frames are sampled with time
step 4.

As shown in Table 4, models only using adversarial loss
achieve lower video FID than those only using reconstruc-
tion loss. However, results in Table 5 and Table 6 indicate
that the use of reconstruction loss manifests in significantly

Adv. Loss Recon. Loss Two Losses
MUG 0.54 0.74 0.75

NATOPS 0.87 0.88 0.88
Weizmann 0.50 0.54 0.73

UvA-NEMO 0.64 0.66 0.66

Table 5: Evaluation of frame quality between generated
frames and ground truth on four datasets using SSIM. (Adv.
Loss indicates adversarial loss, Recon. Loss indicates Re-
construction Loss and Two losses represents our proposed
ImaGINator loss function.)

Adv. Loss Recon. Loss Two Losses
MUG 19.24 22.60 22.63

NATOPS 26.72 27.10 27.39
Weizmann 17.01 18.03 19.67

UvA-NEMO 19.87 20.02 20.04

Table 6: Evaluation of frame quality between generated
frames and ground truth on four datasets using PSNR. (Adv.
Loss indicates adversarial loss, Recon. Loss indicates Re-
construction Loss and Two losses represents our proposed
ImaGINator loss function.)

higher SSIM and PSNR than models only using adversar-
ial loss. We conclude that adversarial loss is instrumental
in improving the perceptual quality of videos, as it enforces
the Generator to create videos, matching the distribution of
the training data. At the same time the reconstruction loss
encourages the Generator to produce frames, resembling the
ground truth by reducing the pixel-wise distance, see Fig-
ure 4.

In contrast to both single loss experiments, the ImaG-
INator (using both losses), w.r.t. both evaluation metrics



MUG NATOPS Weizmann UvA-NEMO BU-4DFE
VGAN [9] 74.72 167.71 127.31 30.01 273.94

MoCoGAN [10] 45.67 49.46 116.08 29.81 62.99
ImaGINator 29.02 26.86 99.80 16.16 32.64

Table 7: Evaluation of video quality on five datasets using video FID, pertaining to VGAN, MoCoGAN and proposed
ImaGINator. Lower video FID relates to better video quality.

MUG NATOPS Weizmann UvA-NEMO BU-4DFE
VGAN [9] 0.28 0.72 0.29 0.21 0.24

MoCoGAN [10] 0.58 0.74 0.42 0.45 0.45
ImaGINator 0.75 0.88 0.73 0.66 0.76

Table 8: Evaluation of image quality on five datasets using SSIM, pertaining to VGAN, MoCoGAN and proposed ImaGI-
Nator. Higher SSIM indicates better structure similarity between generated frames and ground truth.

MUG NATOPS Weizmann UvA-NEMO BU-4DFE
VGAN [9] 14.54 20.99 15.78 13.43 14.56

MoCoGAN [10] 18.16 21.82 17.58 16.58 17.64
ImaGINator 22.63 27.39 19.67 20.04 22.53

Table 9: Evaluation of image quality on five datasets using PSNR, pertaining to VGAN, MoCoGAN and proposed ImaGI-
Nator. Higher PSNR indicates better frame quality.

achieves the best results. Hence, both types of losses are
complementary and pertinent for the performance of the
ImaGINator.

B.2. Motion and Appearance decomposition

The proposed spatio-temporal fusion encourages the De-
coder to focus on generating motion features, by reusing ap-
pearance features from the Encoder. Towards demonstrat-
ing this, we conduct an experiment, in which we visualize
generated results, while controlling neuron-connections in
different layers of the Decoder. We use the model, pre-
trained on the MUG dataset, and proceed to deactivate
neuron-connections corresponding to appearance features
in layers Deconv10-1, 9-1, 8-1 and 7-1, incrementally and
generate thereby four groups of results (each layer corre-
sponds to one group results). Figure 5 showcases the impact
of the deactivation of neuron-connections in each layer from
top to bottom, resulting in an exhibited lowered appearance
information. While in the last layer, appearance is nearby
vanished, a remaining motion can still be observed. This
indicates the effect of our spatio-temporal fusion, which
successfully encourages the Decoder to focus on generat-
ing motion by reusing the appearance.

B.3. Experiments on BU-4DFE dataset

The third experiment provides results on the BU-4DFE
dataset related to ImaGINator, as well as two state-of-the-
art methods, VGAN and MoCoGAN.

The BU-4DFE dataset consists of 606 facial expression

videos of 101 subjects. The subjects exhibit expressions
associated to the categories anger, disgust, happiness, fear,
sadness, and surprise.

Table 7, Table 8 and Table 9 summarize the results of the
third experiment. Notably, ImaGINator achieves the lowest
video FID (32.64), as well as the highest SSIM (0.76) and
PSNR (22.53), outperforming other state-of-the-art meth-
ods. The same table summarizes results for all datasets,
and we note that the proposed ImaGINator consistently and
systematically outperforms VGAN and MoCoGAN w.r.t.
all three evaluation metrics and on all five datasets. Re-
lated generated video frames from the three methods on
BU-4DFE dataset are depicted in Figure 6.

Figure 6: Example generated video frames on BU-4DFE.
We illustrate generated video frames from VGAN (top),
MoCoGAN (middle) and our ImaGINator (down). Frames
are sampled with time step 3.



B.4. Experiments on BAIR robot push dataset

Finally we compare our ImaGINator with SV2P [11] on
the BAIR robot push dataset in order to test the general-
ization of our model. We present quantitative evaluation
results in Table 10, which showcase that our method sig-
nificantly outperforms SV2P w.r.t. all 3 evaluation metrics:
SSIM, PSNR and video FID. Moreover, we present gener-
ated examples from both methods in Figure 7, where the
robot arm disappears in videos generated by SV2P, while it
remains visible in videos generated by our approach (as in
the original dataset). In summary of the new experiments,
our approach consistently outperforms SV2P.

SSIM PSNR FID
SV2P 0.78 18.35 25.12

ImaGINator 0.89 21.47 9.89

Table 10: Comparision of ImaGINator and SV2P.

Figure 7: Generated frames on BAIR robot push dataset.
Top: SV2P, middle and bottom: proposed ImaGINator.
Time step of 3 sampling.

C. Generated examples
Due to page limitation in the main paper, we here provide

additional examples, generated by ImaGINator on the six
datasets MUG, NATOPS, Weizmann, UvA-NEMO, BU-
4DFE and BAIR robot push. We randomly choose results
from the generated data. Frames from different datasets are
shown in Figure 8 (UvA-NEMO), Figure 9 (MUG), Fig-
ure 10 (NATOPS), Figure 11 (Weizmann), Figure 12 (BU-
4DFE) and Figure 13 (BAIR robot push). Each line repre-
sents a video sequence generated based on the input image,
shown at the first column.



Figure 8: Generated examples from UvA-NEMO.
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Figure 9: Generated examples from MUG. Labels are happiness (01,02,03,04), anger (05,06,07,08), fear (09,10,11,12),
sadness (13,14,15) and disgust (16,17,18).
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Figure 10: Generated examples from NATOPS. Labels are Fold Wings (01,02,03,04,05), All Clear (06,07,08,09), Nosegear
Steering (10,11), Turn Right (12,13) and Move Ahead (14,15).
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Figure 11: Generated examples from Weizmann. Labels are One hand wave (01,02,05,06), Two hands wave (03,04,11,12),
Bend (07,08,13,14) and Jack (09,10).
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Figure 12: Generated examples from BU-4DFE. Labels are happiness (02,07,10,16), fear (01,09,15), sadness (03,04,11),
anger (08,14), surprise (06,12) and disgust (05,13).
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Figure 13: Generated samples from BAIR robot push.
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[2] H. Dibeklioğlu, A. A. Salah, and T. Gevers, “Are you really
smiling at me? spontaneous versus posed enjoyment smiles,”
in ECCV, 2012.

[3] X. Zhang, L. Yin, J. F. Cohn, S. Canavan, M. Reale,
A. Horowitz, and P. Liu, “A high-resolution spontaneous 3d
dynamic facial expression database,” in FG, 2013.

[4] Y. Song, D. Demirdjian, and R. Davis, “Tracking Body and
Hands For Gesture Recognition: NATOPS Aircraft Handling
Signals Database,” in FG, 2011.

[5] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri,
“Actions as space-time shapes,” TPAMI, vol. 29, pp. 2247–
2253, December 2007.

[6] F. Ebert, C. Finn, A. X. Lee, and S. Levine, “Self-supervised
visual planning with temporal skip connections,” CoRL,
2017.

[7] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerat-
ing Deep Network Training by Reducing Internal Covariate
Shift,” in ICML, 2015.

[8] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spec-
tral normalization for generative adversarial networks,” in
ICLR, 2018.

[9] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating
videos with scene dynamics,” in NIPS, 2016.

[10] S. Tulyakov, M.-Y. Liu, X. Yang, and J. Kautz, “MoCoGAN:
Decomposing motion and content for video generation,” in
CVPR, 2018.

[11] M. Babaeizadeh, C. Finn, D. Erhan, R. H. Campbell, and
S. Levine, “Stochastic variational video prediction,” in ICLR,
2018.


