# Identifying Recurring Patterns with Deep Neural Networks for Natural Image Denoising Supplementary Material

Zhihao Xia Ayan Chakrabarti Washington University in St. Louis {zhihao.xia,ayan}@wustl.edu

## A. Separate Evaluation of Matching Network

While our main evaluation considers the performance of our overall method, below we separately evaluate the performance of just our matching network and compare it to other "internal statistics"-based methods. Our matching network is trained with the objective of maximizing denoising quality when using its outputs as weights for averaging patches. Therefore, as evaluation, we include average PSNR and SSIM values on all datasets of the *initial* estimates of our method: based on averaging using predicted matching scores (but without the second regression step). For comparison, we also include the results of the other internal statistics-based methods from Table 1: CBM3D which is based on sum-of-squares distance (SSD) matching, and the neural network-based methods CBM3D-Net and CNL-Net.

We find that even our matching network by itself outperforms past self similarity-based methods (while our full method achieves state-of-the-art performance as demonstrated in the main paper).

|           | Method                   | σ=75  |       | σ=50  |       | σ=35  |       | σ=25  |       |
|-----------|--------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
|           |                          | PSNR  | SSIM  | PSNR  | SSIM  | PSNR  | SSIM  | PSNR  | SSIM  |
| Urban-100 | CBM3D                    | 25.97 | 0.784 | 27.94 | 0.843 | 29.27 | 0.875 | 31.38 | 0.912 |
|           | Ours: Match-average Only | 26.15 | 0.793 | 28.12 | 0.850 | 29.76 | 0.886 | 31.34 | 0.913 |
| Kodak-24  | CBM3D                    | 26.82 | 0.714 | 28.45 | 0.775 | 29.90 | 0.821 | 31.67 | 0.868 |
|           | Ours: Match-average Only | 27.27 | 0.735 | 28.98 | 0.796 | 30.53 | 0.843 | 32.06 | 0.880 |
| CBSD-68   | CBM3D                    | 25.75 | 0.698 | 27.38 | 0.767 | 28.89 | 0.821 | 30.71 | 0.872 |
|           | CBM3D-Net                | -     | -     | 27.48 | -     | -     | -     | 30.91 | -     |
|           | CNL-Net                  | -     | -     | 27.64 | -     | -     | -     | 30.96 | -     |
|           | Ours: Match-average Only | 26.15 | 0.723 | 27.83 | 0.791 | 29.40 | 0.843 | 31.00 | 0.884 |
| McMaster  | CBM3D                    | 26.80 | 0.735 | 28.52 | 0.794 | 29.92 | 0.833 | 31.66 | 0.874 |
|           | Ours: Match-average Only | 27.18 | 0.757 | 28.92 | 0.812 | 30.39 | 0.850 | 31.81 | 0.882 |

## **B.** Additional Examples

#### **B.1.** Comparisons to FFDNet

We begin by showing more visual results comparing our performance to the state-of-the-art method. Here, we include denoising estimates with both the "blind" and noise-specific versions of our model.





Noisy



FFDNet (31.34dB)



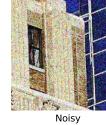
Ours-Blind (31.69dB)



Ours (31.72dB)

GΤ











Noisy

Noisy





FFDNet (25.84dB)



THE PARTY

FFDNet (25.86dB)



Ours-Blind (26.21dB)



Ours-Blind (26.51dB)



Ours-Blind (26.40dB)





Ours (26.51dB)









Ours (26.73dB)



Ours (27.28dB)



GT



GT



GT



Noisy

Noisy



Noisy



FFDNet (27.36dB)



FFDNet (26.20dB)

Ours-Blind (27.30dB)

Ours-Blind (27.97dB)















GT









Noisy

Noisy



FFDNet (27.86dB)



FFDNet (27.50dB)

FFDNet (31.75dB)



Ours-Blind (28.09dB)



Ours-Blind (27.92dB)



Ours-Blind (32.22dB)







Ours (32.23dB)





Ours (29.36dB)



Ours (29.85dB)





GT





Noisy

Noisy



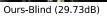
Noisy





FFDNet (29.23dB)

Ours-Blind (29.27dB)





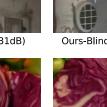












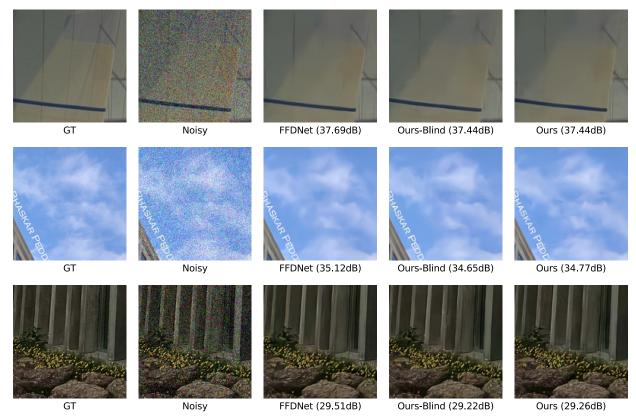


FFDNet (28.83dB)



## **B.2.** Failure Cases

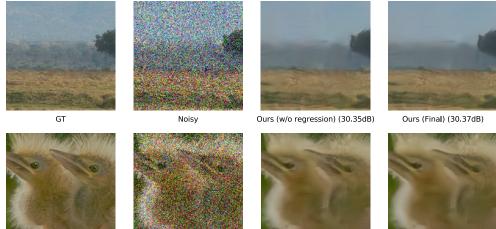
Next, we show some of the examples of image regions where our denoised estimates have low accuracy.



### **B.3.** Initial vs Final Estimates

Finally, we include examples of the intermediate output of our method—our initial estimates formed only by averaging based on scores from the matching network—and compare it to the final output after processing by the regression network. The match-average estimates are of reasonably high quality, and the regression network improves these results by varying amounts in different images (by removing subtle "ringing-like" artifacts).





GT

Noisy

Ours (w/o regression) (29.76dB)





Ours (Final) (29.78dB)