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Abstract

Shadows encode a powerful geometric cue: if one pixel
casts a shadow onto another, then the two pixels are col-
inear with the lighting direction. Given many images over
many lighting directions, this constraint can be leveraged
to recover the depth of a scene from a single viewpoint.
For outdoor scenes with solar illumination, we term this the
episolar constraint, which provides a convex optimization
to solve for the sparse depth of a scene from shadow cor-
respondences, a method to reduce the search space when
finding shadow correspondences, and a method to geomet-
rically calibrate a camera using shadow constraints. Our
method constructs a dense network of nonlocal constraints
which complements recent work on outdoor photometric
stereo and cloud based cues for 3D. We demonstrate results
across a variety of time-lapse sequences from webcams “in
the wild.”

1. Introduction
A pixel under shadow has a dramatically different inten-

sity than the same pixel under direct lighting. Vision appli-

cations often incorporate shadows into their models, either

by treating them as noise to be detected and ignored [8, 23],

exploiting them as cues for camera calibration [5, 13], or in-

corporating them into larger image formation models [1, 3].

In this paper, we treat shadows as a strong geometric cue:

if a pixel is under shadow, then it must be the case that some

other object along the lighting direction is casting a shadow

onto it. For outdoor imagery, a geolocated camera and ac-

curate timestamps cause this colinearity to have a known

georeferenced direction. If the camera also has known geo-

metric calibration, we can express this property as a linear

constraint over the depth of each pixel involved. From this

geometry, we derive three novel results:

• An image-space constraint between a shadow and its

occluder,

• An approach to geometrically calibrate a camera from

shadow correspondences, and

(a)

(b) (c)

(d)

Figure 1. In this paper, we exploit the inherent structure of cast

shadows to recover shape from a single view. Given a time-lapse

sequence from a geographically-calibrated camera (a), we create

correspondences (shown as a yellow line) between a shadow (blue)

and its occluding object (red) (b). Repeated across the image (c)

and across many lighting directions, these tens of thousands of

correspondences can be used as a cue to recover a sparse depth

map from a single viewpoint (d). Depth increases from blue to

red.

• A convex optimization to solve for the unknown depths

for a sparse set of pixels from shadow correspondence.

Inferring depth from shadow correspondences has sev-
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(a) (b) (c)

Figure 2. Visualizing the episolar constraint. Where could the red point in (a) cast a shadow in the scene? This point must lie on the plane

spanned by the 3D pixel ray for the red point and the 3D lighting direction, shown in yellow (b). This solar plane intersects the image

plane, defining the episolar line (c). Finding the correct shadow correspondence therefore constrains the relative depth of each point.

eral desirable properties over other monocular cues for

depth. First, shadow correspondences capture general

shape: we do not require the ground to be planar or even

visible, nor do we require the depth surface to be smooth

or continuous. Next, since we work directly with binary

shadow masks, rather than intensities, we do not need to

account for real-world photometric distortions such as vari-

able exposure and radiometric response, so long as the

shadow extraction pipeline is sufficiently robust. Finally,

as demonstrated in Figure 1, we derive constraints which

do not suffer from the aperture problem commonly found

in other correspondence problems.

2. Related Work

A large body of work focuses on recovering shape from

shadow-based cues. Early work focused on interpreting

shadows from line drawings: Shafer and Kanade [22] in-

troduced a general theory for describing the orientation of

surfaces by the shadows they cast onto each other. Lowe

and Binford [17] build a reasoning system to infer struc-

ture from line drawings, where one cue leverages manually-

specified correspondences between a shadow and its caster.

Most shape-from-shadows approaches find depth sur-

faces consistent with some shadow-or-not labeling across

many images. Early work by Hatzitheodorou and

Kender [9] introduces an approach to recover the shape of a

one-dimensional surface slice from the shadows it casts on

itself, extended by Raviv et al. [19] to work with 2D sur-

faces.

Later, Savarese et al. [21] leveraged epipolar geometry

to carve out a surface from shadow labels across multiple

views (see [15] for a survey on space carving). Although we

work in the single-viewpoint scenario, we borrow concepts

from epipolar geometry in a similar way, by treating the

light source as a secondary camera.

Shadowgrams [7], shadow graphs [24], and

shadow/antishadow constraints [6] all encode a con-

straint similar to the one presented in this paper: all pixels

on the image-space line between a shadow and its occluder

should have a height below the corresponding 3D line. In

contrast, we do not place any constraint on the intermediate

pixels between a shadow and its occluder, which removes

the assumption that the depth surface is terrain-like. Also,

these works assume an orthographic camera, whereas we

work with pinhole cameras.

Kawasaki and Furukawa [14] treat shape-from-shadows

as a kind of structured light, where a wand is waved in front

of the light source, and recover depth by constraining that

the group of pixels shaded by the wand in any particular

frame are coplanar in 3D. In this work, we do not place

assumptions on the shape of the object that casts shadows

in each frame.

Recently, Bamber et al. [4] implement a single-view

shadow carving algorithm suitable for long-term time-

lapses. However, they make the assumption that the ground

plane is large and visible. In contrast, we work with scene

where the geometry is unknown a priori and the ground

plane may not be visible.

3. Episolar Geometry

In this section, we derive the geometric constraints be-

tween a shaded pixel and the pixel that cast its shadow. The

geometry of this constraint is equivalent to considering the

sun as an orthographic camera.

We denote pixels as boldface vectors x,y ∈ R
2. We

assume that we know the lighting direction Lt ∈ R
3 at

each time t, which can be recovered using a solar position

algorithm, given accurate timestamps and GPS [20]. For

this work, we assume the camera is centered at the origin

and has been geo-calibrated, giving each pixel’s ray into

space rx ∈ R
3. For clarity, we assume that the light-

ing direction and each pixel ray is a unit direction vector

||Lt|| = ||rx|| = 1.

The goal is to find the per-pixel depth dx. Throughout

the paper, we treat y as the object that casts the shadow,

and x as the object that receives the shadow. In an abuse of

terminology, the phrase “y casts a shadow onto x” should

be interpreted as “the 3D object that projects onto the image
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Figure 3. Example episolar lines emerging from a small sample of randomly-selected pixels. Notice that the “episole”—where all lines

intersect—lies on the sun, if it is in view, or exactly opposite the sun, if it is behind the camera.

at y casts a shadow onto the 3D object that projects onto

the image at x”. For consistency, in all figures, y and x are

represented as a red and blue points, respectively.

Suppose that some pixel y casts a shadow onto some

other pixel x for some lighting direction Lt; we denote

such a correspondence as y �t x. Assuming directional

lighting, this correspondence emplaces a constraint on the

depths d of pixels at x and y:

rxdx + Ltαxy = rydy, (1)

where αxy is the unknown 3D distance between pixels x
and y. This constraint takes the form of a linear constraint

involving the unknown depth of each pixel and the 3D dis-

tance between x and y. This property holds a close rela-

tionship with well-known epipolar geometry, so we denote

Equation 1 as the episolar constraint. See Figure 2 for a

visualization of the episolar constraint.

Notice that this property is true for all types of geometry.

Nowhere do we make the assumption that our scene has a

substantial ground plane, or that the depth surface is smooth

or continuous.

We take advantage of this linear relationship in three

distinct ways. First, this property defines an image-space

constraint between an object and its shadow. This reduces

the search space to 1D when determining shadow corre-

spondences. Second, we derive a nonlinear optimization to

geometrically calibrate a camera from shadow correspon-

dences. In contrast to previous work, this calibration does

not place any assumption on the underlying geometry nor

require that the camera sees the sky. Finally, given corre-

spondences from a variety of lighting directions, we derive

a convex optimization procedure which recovers the depths

of all pixels involved.

3.1. The Episolar Line

Generating correspondences between a shadow x and its

occluder y is a challenging problem, but Equation 1 sheds

some light on the shadow correspondence problem. If y
casts a shadow onto some unknown location x, then the

point rxdx must lie in the linear subspace spanned by ry
and Lt. This linear subspace corresponds to a plane in

3D1 which intersects the image as a line passing through

y. Therefore, if a pixel y casts a shadow, then its corre-

sponding pixel x must lie on this episolar line.

Although this constraint alone does not dictate where on

the episolar line the shadow truly comes from, it dramati-

cally reduces the search space necessary for shadow corre-

spondence. In Section 4 we describe how to complete this

correspondence by taking advantage of self-shading priors.

Of practical interest is that the episolar line does not suf-

fer from the common aperture problem seen in other corre-

spondence problems. For example, linking a roofline to its

horizontal shadow would be ambiguous without using this

constraint; any point on the roof could conceivably produce

a shadow anywhere on the shadow edge. However, this hor-

izontal shadow will cross the episolar line at exactly one

point, disambiguating the aperture problem. Figure 7 has

several examples of this behavior.

This is especially useful in generating a dense network

of constraints. If we could only generate correspondences

on shadow corners, the constraint set might not be dense

enough to use reliably. However, since we can create cor-

respondences across shadow edges, our overall correspon-

dence set is much more informative of the underlying ge-

ometry. In Section 5, we explore the connectedness proper-

ties of real scenes and show that, provided there are enough

images, the resulting constraints form large connected com-

ponents across the image.

3.2. Episolar Calibration

Notice that in order to generate the episolar line, we need

estimates of the camera’s calibration to determine pixel rays

r in the same coordinate frame of L (in our case, the East-

North-Up space). However, estimating the geometric cal-

ibration of an outdoor camera is nontrivial. Various ap-

proaches exist for calibration from outdoor cues such as

sky color [16] or shadow trajectories cast onto the ground

plane [5, 13]. Webcams “in the wild” often do not have

these features, as the sky might occupy only a small portion

of the image, and the ground might not be planar or visible.

1A similar plane forms the basis for much of the work in the shadow

carving approach presented in [21].
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However, cast shadows are abundant in most outdoor

scenes. Here, we leverage user-supplied shadow correspon-

dences to calibrate a camera. Through the episolar con-

straint, we find the camera calibration parameters θ that de-

fine a pinhole camera which produces episolar lines most

consistent with the given correspondences.

More formally, if a user supplies a set of ground truth

shadow correspondences G = {yi �ti xi}, and eθ(x, t) ∈
R2 defines the unit-vector episolar direction for a pixel x at

time t under camera parameters θ, we solve the nonlinear

optimization

θ∗ = argmin
θ,β

∑

i∈G

||xi + βieθ(xi, ti)− yi||2, (2)

where βi is the distance between xi and yi along the episo-

lar line (analogous to α in Equation 1). In practice, we do

not optimize over β, but rather substitute the least-squares

solution of β given θ:

β∗
i = eθ(xi, ti)

�(yi − xi). (3)

After substitution, 2 becomes a nonlinear optimization over

the camera parameters θ.

This optimization is nonconvex, so we seed the initializa-

tion by trying 1000 random settings of camera parameters,

choosing the one that gives the lowest error. From there,

we run a Levenberg-Marquardt optimization [18] to simul-

taneously optimize for the camera’s pan, tilt, roll, and focal

length. The correspondences used for calibration are not

used for any other step.

In contrast to previous work, our calibration approach

does not require any of the sky to be in view, and it does

not make assumptions about the underlying geometry of the

scene. For many outdoor scenes, such as the camera shown

in Figure 4, these assumptions would be too restrictive.

3.3. Episolar Integration

Given shadow correspondences C across a variety of

lighting directions, the episolar constraint yields a depth in-

ference process which can be cast as a constrained convex

program:

argmin
d,α

∑

y�tx∈C

||rxdx + Ltαxy − rydy||2 s.t. d ≥ 1.

(4)

Notice that we constrain the solution so that d ≥ 1. This

both sets the scale of the system and prevents the trivial

solution d = 0. Since our goal is to recover the depths d, we

can again express the optimal α∗
xy in terms of the following

linear system:

Ltα
∗
xy = rydy − rxdx (5)

α∗
xy = L�

t (rydy − rxdx) (6)

(a)

(b)

Figure 4. Calibrating a camera through episolar constraints. Given

a few ground truth correspondences (examples shown in (a)), we

find the camera position most consistent with those correspon-

dences (b). We compare our results (beige frustum) to the results

from [2] (green frustum), which uses hand-selected 3D-to-2D cor-

respondences as determined by Google Earth geometry.

By substitution of α∗ into Equation 4, we can express the

problem only in terms of the unknown depth d:

argmin
d≥1

∑

y�tx∈C

||(rx−LtL
�
t rx)dx−(ry−LtL

�
t ry)dy||2

(7)

Although Equations 4 and 7 are mathematically equivalent,

the removal of the α has enormous practical benefits. In the

scenes we work with, there are tens of thousands of corre-

spondences, each one with its own α. Optimizing only on

the depth yields a much smaller optimization problem.

Although this system of equations has a well-defined

global solution with only one correspondence, it also ex-

tends to a network of linked constraints. That is, if some

pixel y casts a shadow onto both x and x′ at different times,

this formulation constrains the relative depth of x,x′, and

y. Similarly, if x is shaded by two different pixels y and y′

at different times, this places constraints onto x,y, and y′.
This network of constraints is demonstrated in Figure 5.

Because this process solves for a depth surface consistent

with a set of depth differences, we denote the optimization

in Equation 7 as episolar integration.

4. Correspondence Generation
Although the episolar line reduces the search space for

shadow correspondence to be along a line, it remains an

open problem to robustly link a shadow to its caster. In

this paper, we use a fairly simple correspondence generation
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Figure 7. Results from our depth inference process on cameras from the AMOS dataset. From top to bottom, we show a crop from an

example image, its shadow mask, and the extracted shadow correspondences (for two images). The bottom row shows the recovered depth.

Correspondences are shown as connections (yellow line) between an occluder (red point) and its shadow (blue). Depth increases from

blue to red. Notice that the episolar line provides enough constraints to overcome the aperture problem, common in other correspondence

problems.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Visualizing a small portion of the constraint graph. Al-

though there is never a time when the red point directly casts a

shadow onto the blue point (a), there are enough intermediate con-

straints (b)-(f) to implicitly constrain the relative depths of the two

points, and all intermediate points involved (green).

rule which works well for most cases of self-shading.

Given an input sequence of imagery from a diverse set

of lighting directions, we first apply an in-house shadow es-

timation approach which returns a shadow-or-not label for

all pixels in sequence.

When this method classifies some pixel y on a shadow

edge as under direct illumination at time t, our goal is to find

which pixel—if any—receives the shadow produced by y.

We employ a greedy strategy by taking incremental steps

along the episolar line emerging from y. If the first step

away from y is under shadow, we walk along the epsiolar

direction until we find a pixel x which is directly lit again.

We then create the correspondence y�t x. However, if the

first step away from y is still directly lit, no correspondence

is generated (i.e., contiguous lit regions only generate cor-

respondences on their edges). We repeat this process for all

lit pixels y at all times t.
In natural scenes, shadow correspondences tend to start

in the same locations in the images (rooflines, convexities in

mountain ridges, etc.), but end in many different locations.

From this observation, we use a simple heuristic to remove

correspondences which begin or end in unlikely locations.

Using the full set of correspondences, we estimate the prob-

ability of a correspondence starting or ending at any given

pixel z:

Pstart(z) =
∑

z�tx

1

n
, Pend(z) =

∑

y�tz

1

n
, (8)

where n is the number of images. We remove any corre-

spondence y �t x where Pstart(y) ≤ 0.1 or Pend(x) ≥
0.1. The correspondence generation pipeline is described in

Figure 6.

This heuristic helps to remove two common error modes.

First, if a shadow is cast on the ground far away from its

occluder, as in Figure 6(a), correspondences will be gener-

(a) (b)

(c) (d)

(e) (f)

Figure 6. Generating shadow correspondences. From a time-lapse

sequence (one example image shown in (a)), we extract a shadow-

or-not labeling for each image (b). For all lit pixels on shadow

boundaries, we follow their episolar lines until we find another

pixel which is directly illuminated (three examples shown). From

here, we remove any correspondence that starts or ends in an un-

likely place (c), detail crop in (d) (All correspondences marked in

green are kept, red are removed; see text for details). In this case,

all correspondences that start on the ground are removed. In (e)

and (f), all correspondences that stop at the vertical edge of the

building are removed.

ated from one side of the cast shadow to the other. How-

ever, since “correspondences” rarely start in the middle of

the ground plane, they will be filtered out. Second, the ini-

tial rule will stop many correspondences at geometry edges

when the background is lit and the foreground is not, as

in Figure 6(f). These false correspondences will be filtered

out because it is rare for a true correspondence to stop in the

same place repeatedly.

5. Results
We test our approach on several real-world cameras from

the AMOS dataset [12] and show qualitative results in Fig-

ure 7. For each camera, we select 100 images from a di-

verse set of lighting directions with clear skies, and use a

multi-scale alignment procedure adapted from [11] to re-

move small jitter. To recover lighting directions, we use the

solar position algorithm from [20]. When calibrating the

14101410141014121412



(a) Example image (b) Recovered correspondences

(c) Recovered depth (m) (d) Ground truth (m)

Figure 8. Experiments on a synthetic dataset; example image

shown in (a). The correspondences recovered from this scene (b)

are rich enough to extract a depth map (c) very close to the ground

truth (d). The recovered depth map differs from the ground truth

by an average of 0.05 meters.

camera using the nonlinear optimization in Section 3.2, we

optimize over 50 manually-chosen correspondences.

Notice that our approach reliably extracts depth from a

variety of complicated geometry and that although the re-

sulting depth map is sparse, the network of constraints cov-

ers a large portion of the scene. To give scale, a typical

scene has roughly 70,000 constraints across 30,000 pixels.

Our runtime is largely dependent on the complexity of

the shadow masks and image resolution, but we report tim-

ing with respect to a camera with 135,000 pixels on a 2.53

GhZ Intel Core 2 Duo with 8GB of memory. The most time-

consuming aspect is in computing the shadow masks, which

took 4m40s. Creating and filtering correspondences takes

another 42 seconds, and solving for depths took 23 seconds.

We also generated a synthetic sequence with rendered

cast shadows on a complex scene, shown in Figure 8. Our

recovered depth surface is almost exactly the ground truth.

To measure quantitative error on real scenes, we compare

our depth maps to Google Earth geometry. Since our depth

maps are known only up to an unknown scale, we use the

ground truth to resolve the scale and compare relative error.

Figure 9 demonstrates that our depth maps closely match

the ground truth.

Finally, to emphasize the importance of using many im-

ages, in Figure 10 we explore how the connectedness of the

constraint graph increases with more images. This shows

that up to roughly 20-30 images, most correspondences

form relatively local clusters constraining few pixels. There

is then a transition where groups merge and the size in-

creases quickly. After that, shadows that cast onto new parts

(a) Example image (b) Recovered correspondences

(c) Recovered depth (m) (d) Ground truth depth (m)

Figure 9. Quantitative evaluation of recovered depth. Given a se-

quence of images (example in (a)), we recover shadow correspon-

dences (b) and a depth map (c). We compare our results to Google

Earth models (d). For this structure roughly 120 meters away from

the camera, almost all pixels are less than 4 meters away from their

ground truth location (using the ground truth to set the scale). This

corresponds to a 3.2% error.

Figure 10. Exploring the connectedness of the constraint graph.

For the three cameras in Figure 7, we show the size of the largest

connected component in the constraint graph as a function of num-

ber of images used. We average results over 10 trials, selecting

random subsets of the original imagery and showing the mean and

1 standard deviation as solid and dotted lines, respectively.

of the scene are incorporated into the model and the size of

the largest connected component grows linearly. This sug-

gests we have not yet reached diminishing returns, in that

we can continue to add more imagery and expect more of

the scene to be incorporated.

6. Conclusions
Of course, there are cases in which our admittedly naı̈ve

correspondence generation technique will not work cor-

rectly. For example, the shadow labeling between the tip of

a vertical pole to its shadow on the ground plane will almost

certainly not be entirely shaded, thus creating a false corre-

spondence. We anticipate that enforcing appearance simi-

larity priors for nearby lighting directions will help lever-

age correspondence generation for more complicated cases.
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Despite this limitation, our simple rule works well for most

cases of self-shading.

Our approach only gives a sparse representation of the

depth, reconstructing the depths of pixels which cast a

shadow or had shadows cast onto them. While this net-

work of constraints still covers a large portion of the im-

age, an ideal solution would merge this constraint with

other depth inference processes such as outdoor photomet-

ric stereo [1, 3] or shape-from-clouds [10] to “fill in the

gaps.”

In this paper, we present an approach for recovering the

depth surface of an outdoor scene by treating the sun as a

second camera and establishing correspondences between a

shadow and its caster. This provides a nonlocal depth in-

tegration algorithm, as well as an image-space constraint

which dictates which potential correspondences are geo-

metrically feasible. These constraints are particularly useful

for shape reconstruction, because the correspondence step

does not suffer from the aperture problem, and our deriva-

tion makes no assumptions on the shape of the depth sur-

face.
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