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Abstract

Imaging systems consisting of a camera looking at mul-
tiple spherical mirrors (reflection) or multiple refractive
spheres (refraction) have been used for wide-angle imaging
applications. We describe such setups as multi-axial imag-
ing systems, since a single sphere results in an axial sys-
tem. Assuming an internally calibrated camera, calibration
of such multi-axial systems involves estimating the sphere
radii and locations in the camera coordinate system. How-
ever, previous calibration approaches require manual inter-
vention or constrained setups. We present a fully automatic
approach using a single photo of a 2D calibration grid. The
pose of the calibration grid is assumed to be unknown and
is also recovered. Our approach can handle unconstrained
setups, where the mirrors/refractive balls can be arranged
in any fashion, not necessarily on a grid.

The axial nature of rays allows us to compute the axis
of each sphere separately. We then show that by choosing
rays from two or more spheres, the unknown pose of the cal-
ibration grid can be obtained linearly and independently of
sphere radii and locations. Knowing the pose, we derive
analytical solutions for obtaining the sphere radius and lo-
cation. This leads to an interesting result that 6-DOF pose
estimation of a multi-axial camera can be done without the
knowledge of full calibration. Simulations and real experi-
ments demonstrate the applicability of our algorithm.

1. Introduction

Catadioptric imaging systems consist of a camera look-
ing at single or multiple mirrors for wide-angle imaging.
Except for a few special configurations as described in [3],
such systems do not have an effective single view-point.
The special configurations include a perspective camera
placed at the focal point of a hyperbolic or an elliptical
mirror, or an orthographic camera placed on the axis of a
parabolic mirror. Common configurations such as camera
viewing a spherical mirror or multiple mirrors always lead
to a non-central imaging system [23]. On the other hand,
a camera looking through single/multiple spherical refrac-
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Figure 1. Camera looking at spherical mirrors (left) and refractive
spheres (right). Can we calibrate such imaging systems automati-
cally using a single photo of a checkerboard?

tive balls [24, 2] results in a non-central dioptric system.
Such systems have been used in several applications such as
vision-guided navigation [12], wide-angle 3D reconstruc-
tion [7, 11, 15, 14] and recognition [19], and for capturing
wide-angle light fields [24]. In this paper, we describe such
setups (see Figure 1) as multi-axial imaging systems, since a
single spherical mirror/refractive ball results in an axial sys-
tem [2, 24]. Without loss of generality, we use ‘sphere’ to
refer to the spherical mirror as well as the refractive sphere.

To effectively use such systems in a practical application,
one needs to have an easy calibration procedure. However,
calibration of such systems typically require manual inter-
vention or constrained setups. Taguchi et al. [24] manually
marked the outline of each sphere in the captured image
to get an initial estimate of sphere center and radius. This
becomes cumbersome if several spheres are used. Tech-
niques such as [8, 19] also used the image contour of sphere
for localization. Some techniques require constrained se-
tups, which are difficult in practice. For example, Kojima et
al. [12] attach the imaging system on two turn-tables, and
rotate it along two axis to observe the reflection of a light
source. Nayar’s [15] sphereo system require sphere centers
to lie on an plane orthogonal to the imaging plane, along
with coplanar light sources such that their centroid lies on
the optical axis for calibration. Other techniques require
placing the mirrors on a planar grid and observe markers
on the grid to obtain the grid pose. This along with me-
chanical design data is used to estimate the initial sphere
locations [13, 7]. However, this restricts the placement of
spheres and requires markers to be seen, losing some spa-
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tial resolution for the scene reflected by the mirror.
We show that calibration of such multi-axial systems can

be done using a single photo of a 2D calibration grid (e.g.
checkerboard). The pose of the checkerboard is assumed
to be unknown, and is also recovered. This makes our ap-
proach useful and easy in practice. Our approach is inde-
pendent of the positioning of the spheres; they can be ar-
ranged in any fashion and not necessarily placed on a pla-
nar grid. It does not require estimation of the sphere contour
in the captured photo. Our approach can handle spheres of
different radii and is marker-less. We only assume that the
camera is internally calibrated off-line using a standard ap-
proach such as [4].

The key to our approach is understanding of the under-
lying geometry of rays. While a single sphere results in a
multi-perspective image and corresponds to an axial cam-
era, multiple spheres correspond to a multi-axial camera
where each 3D point is imaged multiple times via under-
lying axial cameras. The axial nature of rays allows us to
compute the axis of each sphere separately. By choosing
rays from two or more spheres, we demonstrate that the un-
known pose of the checkerboard can be obtained linearly,
and independently of sphere radii and locations. Thus, 6-
DOF pose estimation can be done in a semi-calibrated set-
ting, without the knowledge of sphere locations and radii.
This leads to an interesting result, since pose estimation
typically requires full calibration for both central and non-
central cameras. Finally, we derive analytical solutions
for estimating the radii and center of spheres with known
checkerboard pose and axes.

1.1. Related Work

Axial Systems: A camera looking at a single mirror can
be categorized as an (a) axial or (b) off-axis system, depend-
ing on its placement on the mirror axis. A general frame-
work for calibrating axial cameras was proposed by Rama-
lingam et al. [18]. However, they require three images of
a checkerboard in different orientations and their parame-
terization involves two rotations/translations. In contrast,
our approach allows calibration from a single photo. Ra-
dial distortion based models assume known center of dis-
tortion [27] or model each distortion circle separately [26].
Instead, we use a global model parameterized via sphere
radius and center. Micusik and Pajdla [14] proposed auto-
calibration of single mirror based axial systems starting
from a central approximation, using multiple images. A
brute force approach to apply axial methods to multi-axial
scenario is to calibrate each sphere separately. However,
this does not utilize inter-sphere constraints and the fact that
the same checkerboard is seen via all spheres. We show that
using rays from two or more spheres allow computing the
checkerboard pose linearly and independently of sphere pa-
rameters. This greatly simplifies the calibration, where the
checkerboard pose is estimated first, followed by the esti-

mation of sphere parameters.
Other imaging systems such as flat refractive systems [1]

have also been shown to be axial. We build upon the algo-
rithm proposed in [1] to compute the axes and checkerboard
pose.

Off-Axis Systems: Off-axis mirror calibration is harder
than calibrating axial systems. Caglioti et al. [5] proposed
a line based algorithm for calibrating off-axis catadioptric
cameras. Nishino and Nayar [16] modeled a camera look-
ing at an eye as an off-axis ellipsoidal catadioptric system.
However, they require manual intervention and fit an ellipse
to the apparent cornea contour (limbus) in the image for
calibration. In contrast, our method can work even if the
cross-section of the mirror is not visible. Generic camera
calibration algorithms [22] have also been proposed to cali-
brate non-central cameras. In contrast, we use a parametric
model. To the best of our knowledge, ours is the first algo-
rithm that allows calibrating multiple refractive spheres.

2. Multi-Axial Cameras

Consider the multi-axial imaging systems, where a per-
spective camera observes the scene reflected via n spheri-
cal mirrors, or refracted via n refractive spheres. We work
in the camera coordinate system, with its center of projec-
tion (COP) at origin. Let C(i)ni=1

be the center of the ith

sphere with radius ri. Let P(i)Ki=1
denote K 3D points on

the calibration plane which are known in its coordinate sys-
tem. Without loss of generality, we assume the plane to be
aligned with the xy plane so that Pz(i) = 0∀i. Let [R, t] be
the unknown rigid transformation of the calibration plane
in the camera coordinate system. We assume that the in-
ternal camera calibration has been done offline and hence
we know the camera ray v(i, j) for each 3D point P(i) and
each mirror j. Our goal is to compute the center and radius
of each sphere, as well as the unknown pose of the calibra-
tion grid given nK 3D-2D correspondences. As discussed,
we use the term ‘sphere’ to describe both the spherical mir-
ror and the refractive sphere. The estimation of axes and
checkerboard pose is identical for both cases, and they dif-
fer only in the estimation of sphere radii and locations.

Axial and Multi-Axial Geometry: It is well-known that
a single sphere corresponds to an axial imaging system [2].
Let di =‖ Ci ‖ be the distance of the ith sphere center from
the COP. The axis Ai = Ci/di is defined as the normalized
vector joining the sphere center to the COP.

3. Axis Computation

Agrawal et al. [1] derived the coplanarity constraint for
axial cameras considering flat refractive geometry. Since
each sphere also corresponds to an axial camera, the copla-
narity constraint can be used to compute the axis Ai of each
sphere. For completeness, we re-derive the constraint as be-
low.
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Consider the plane of reflection (refraction) π given by
the camera ray v(i, j) and the axis Aj for the jth sphere.
From Snell’s law, the reflected (refracted) ray should lie on
π. Thus, the corresponding 3D point RP(i) + t should also
lie on π, leading to

(RP(i) + t)T (Aj × v(i, j)) = 0, (1)

where × denotes the cross-product and Aj × v(i, j) is the
normal to π. Let [Aj ]× be the 3×3 skew-symmetric matrix
obtained from Aj . The above equation can be written as

0 = v(i, j)TEjP(i) + v(i, j)T sj ,

where Ej = [Aj ]×R and sj = Aj × t. Since sTj Aj = 0, the
component of translation t along the axis Aj , tA(j), cannot
be estimated using the coplanarity constraint.

Stacking the coplanarity equation for 8 correspondences,
we get a linear system

⎡
⎢⎣

(P(1)T ⊗ v(1, j)T ) v(1, j)T

...
...

(P(8)T ⊗ v(8, j)T ) v(8, j)T

⎤
⎥⎦

︸ ︷︷ ︸
B

[
Ej(:)

sj

]
= 0, (2)

where ⊗ denotes Kronecker product and B is an 11 × 12
matrix. Since Pz(i) = 0, columns 7, 8 and 9 of B reduce to
zero. Let Br be the reduced 8× 9 matrix, whose rank is 8.
Let ej

1
, ej

2
, ej

3
be the columns of Ej . Then the above linear

system is equivalent to

Br

⎡
⎣ ej

1

ej
2

sj

⎤
⎦ = 0. (3)

Let Br = UΣV T be the SVD of Br. The standard SVD
based solution is given by the last column of V . Thus, we
can compute the first two columns of Ej and sj using 8 cor-
respondences. In [1], Demazure constraints [6] were used
to compute the last column of Ej , which requires solving a
4th degree equation. However, it is not necessary and the
axis can be computed directly from the first two columns of
Ej as: Aj = (ej

1
× ej

2
)/ ‖ (ej

1
× ej

2
) ‖. This is because

AT
j Ej = 0 and hence Aj is orthogonal to both ej

1
and ej

2
.

Thus, by using 8 correspondences, the axis Aj can be es-
timated for each sphere. Next, we show that the translation
ambiguity along any individual axis can be removed by us-
ing rays from two or more spheres, since two or more axes
will not be parallel in general.

4. Recovering the Checkerboard Pose
A brute-force approach for calibrating multi-axial sys-

tem would be to calibrate each sphere separately, as an axial
system. Note that the checkerboard pose in the camera co-
ordinate system is identical with respect to all the spheres.

However, in presence of inevitable noise in images, the es-
timated pose will be different for each sphere. Such an ap-
proach does not utilize the fact that the pose is identical for
all spheres, thereby not utilizing inter-sphere constraints.

In addition, calibrating each sphere separately leads to
a more difficult and computationally expensive algorithm.
Let us briefly discuss the calibration procedure for a sin-
gle spherical mirror. The coplanarity constraint allows us
to compute the axis Aj , the matrix Ej and the vector sj
for each mirror. As explained earlier, the translation along
the axis, tA(j), is not recovered. The rotation matrix Rj

can be recovered from Ej , similar to obtaining rotation ma-
trix from essential matrix. However, four rotation matri-
ces are obtained from Ej due to twisted pair ambiguity [9].
Thus, there remains three calibration parameters for each
mirror: (a) mirror radius rj , (b) mirror distance dj and (c)
tA(j). Solving for rj , dj and tA(j) requires solving a set of
non-linear equations. These non-linear equations need to be
solved four times, for each rotation matrix to find the cor-
rect solution for a given mirror. Thus, for n mirrors, if we
calibrate each mirror separately, we need to solve the set of
non-linear equations 4n times (instead of n times), which is
computationally inefficient.

Now we show that by using rays from two or more
spheres, the translation ambiguity along any single axis can
be removed. The pose can be obtained in (a) linear fashion,
and (b) independently of sphere radii and distances. This
has several advantages. Firstly, we can compute a common
pose, instead of having to deal with n different poses. Sec-
ondly, the full pose can be recovered linearly without esti-
mating sphere parameters, thus enabling pose estimation in
a semi-calibrated setting. Finally, since the translation am-
biguity is resolved, two parameters remain for each sphere
(radius and distance) instead of three. This greatly simpli-
fies the resulting non-linear equations. Solving for sphere
radius rj and distance dj along with tA(j) proved to be dif-
ficult and we were not able to find an analytical solution to
estimate rj , dj and tA(j) simultaneously.

4.1. Linear Estimation of Pose

We assume that the axes of spheres can be estimated as
explained in Section 3. To solve for pose, we re-write the
coplanarity constraint in terms of the unknown rotation R
and translation t as

0 = q(i, j)TRP(i) + q(i, j)T t, (4)

where q(i, j) = [Aj ]
T
×v(i, j). Let R12 be the 3 × 2 matrix

corresponding to the first two columns of R. Stacking N
equations, we get a linear system (similar to (3)) as,

K

[
R12(:)

t

]
= 0, (5)

where K is an N×9 matrix (the third column of R vanishes
since Pz(i) = 0). K can be written as

[
KR Kt

]
, where
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KR is the N × 6 matrix corresponding to the rotation and
Kt is the N×3 matrix corresponding to the translation. We
first compute the rotation and then compute the translation
to recover the scale of translation also. Following [9], the
solution for R12 can be obtained from

(KtK
‡
t − IN )KR︸ ︷︷ ︸

G

R12(:) = 0, (6)

where ‡ represents the pseudo-inverse and IN is a N × N
identity matrix.

To recover the full translation, the rank of Kt should be
3. However, using rays from a single sphere, the rank of Kt

is 2, which demonstrates the translation ambiguity along the
axis. If we combine the coplanarity constraints from two
mirrors j and k whose axes are not parallel, Kt has rank 3
and G has rank 5. R12 can then be recovered using standard
SVD solution from (6). The last column of R is obtained as
the cross product of the first two columns. In presence of
noise, the closest rotation matrix is obtained by taking the
SVD of R as R = USV T and setting R = UV T . After
obtaining rotation, t is given by t = −K‡

tKRR12(:). Thus,
one can use all the rays from all the spheres to obtain a least
square estimate of pose.

Intuitively, the translation ambiguity is resolved as fol-
lows. t can be written as t = sj + αAj , where α is an
unknown scalar. For a single sphere, only sj and Aj are
recovered using coplanarity constraints and hence α and t
are ambiguous. Using a second sphere k, we get another
constraint t = sk + βAk. Thus, we have

sk − sj = αAj − βAk. (7)

If Ak and Aj are not parallel, α and β can be solved using
the above 3-vector equation, recovering the full translation
t and resolving the ambiguity.

Let Q(i) = RP(i) + t be the transformed checkerboard
points in the camera coordinate system. There is still a sign
ambiguity remaining, since [−R,−t] will also be a solu-
tion. This can be resolved using chierality constraints, by
checking the sign of Qz(i).

5. Solving for Spherical Mirror Parameters
Now we consider the mirror case and describe how to

solve for the sphere radius and distance assuming known
checkerboard pose and axes. When the axes are known, the
analysis can be done on the plane of refraction π in 2D for
each mirror. For simplicity, we drop the subscript j for the
mirror in this section.

Let [z1, z2] denote an orthogonal coordinate system on
π. We choose z2 along the axis. For a given camera ray
v(i), let z1 = z2 × (z2 × v(i)) be the orthogonal direction.
The projection of Q(i) on π is given by u = [ux, uy], where
ux = zT

1
Q(i) and uy = zT

2
Q(i). Similarly, the camera ray

v(i) can be represented by the 2D vector w = [wx, wy] on
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Figure 2. Estimation of sphere radius r and distance d for spherical
mirror (left) and refractive ball (right) assuming known checker-
board pose and mirror axis.

π, where wx = zT
1

v(i) and wy = zT
2

v(i). w is normalized
so that wT w = 1. Let β = r2.

Referring to Figure 2, the spherical mirror is represented
as a circle on π with center at S = [0, d] and radius r. Let
M = kw be the common point on the mirror and the camera
ray for some scalar k. Since M lies on the circle, (M −
S)T (M− S) = r2 = β. Hence,

(kwx)
2 + (kwy − d)2 = k2 − 2kwyd+ d2 = β. (8)

The normal at M is given by n = M− S. The reflected ray
v1 is given by the Snell’s law as v1 = w−2n(nT w)/β. The
reflected ray should pass through u. Therefore,

0 = v1 × (u−M). (9)

After substituting all the terms, the above equation simpli-
fies to

K1k
2 +K2k +K3 = 0, (10)

where K1 = 2(dwx + uxwy − uywx), K2 = −2d(ux +
uxw

2

y+dwxwy−uywxwy), and K3 = 2uxwyd
2−βuxwy+

βuywx.
By eliminating k between (8) and (10), we obtain a sin-

gle equation in d and β, which is 6th degree in d and
quadratic in β. Since we have two unknowns (d and β), we
need two equations from two correspondences. Let EQ1

and EQ2 be the two such equations. By eliminating β be-
tween EQ1 and EQ2, we obtain a 7th degree equation1 in
the single unknown d. Solving this equation gives 7 solu-
tions for d. For each solution of d, the corresponding solu-
tion for β can be obtained from EQ1 (or EQ2). The correct
solutions are obtained by removing imaginary solutions, en-
forcing d > 0, β > 0, d >

√
β and testing using additional

correspondences.
Known Radius: In practice, a good initial estimate of

mirror radius may be known. If so, we only need to solve a
6th degree equation in single unknown d.

1Details are provided in the supplementary materials.
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5.1. Non-linear refinement

Non-linear refinement can be done by minimizing the
image re-projection error for all checkerboard points. The
projection of a 3D point can be obtained by solving a 4th

degree equation for a spherical mirror as shown in [2]. Let
x denote all calibration parameters and p̂(i, j) be the projec-
tion of P(i) for ith point and jth mirror. Let p(i, j) be the
corresponding detected checkerboard corner in the image.
We use lsqnonlin in Matlab to refine x by minimizing
the total squared error J =

∑
(p(i, j)− p̂(i, j))2.
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Figure 3. Simulation results for multiple spherical mirrors. Error
in axis, translation and rotation after initial estimation.
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Figure 4. Error in axis, translation and rotation after non-linear
refinement for simulation in Figure 3.
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Figure 5. Simulation results for multiple spherical mirrors. Error
in sphere locations and sphere radius after non-linear refinement
for all four mirrors.

6. Simulations
We first show simulation results for axes and pose es-

timation. We use a realistic scenario with four spherical
mirrors of radius 0.5 inch, viewed from a camera with fo-
cal length 55 mm and resolution 2000 × 2000 pixels, at a
distance of 120 mm. We assume a 9× 6 checkerboard grid

with each square of size 60 mm. We add different amount
of Gaussian noise with standard deviation σ varying from
0 to 1 pixel. For each σ, we run 100 trials and average the
error in the estimated rotation, translation and axes. Trans-
lation error is computed as the norm of the translation er-
ror vector, normalized with the true translation magnitude.
Rotation error is computed as the minimum angle of rota-
tion between estimated and true rotation. Error in axis is
computed as the angle between the estimated and true axes,
and is averaged over all spheres. Figure 3 plots the error
in axes, translation and rotation with increasing noise. The
axes and rotation error are within few degrees. Thus, our
approach can provide a good initial estimate for subsequent
non-linear refinement.

Next, we analyze the complete estimation of all calibra-
tion parameters. After estimating the axes and pose, the
mirror parameters are estimated, followed by non-linear re-
finement. Figure 4 plots the error in axes, translation and
rotation after non-linear refinement. Figure 5 shows the er-
ror in sphere locations and radii for all four mirrors, as a
percentage of the true values. Notice that the maximum er-
ror is less than 0.7%.

7. Multiple Refractive Spheres
Now we consider a camera looking through multiple re-

fractive spheres (ball lenses) as shown in Figure 8. Similar
to mirrors, the axis is defined as the vector joining the cam-
era center to the center of the refractive sphere. The cal-
ibration parameters consist of centers, radii and refractive
indices of the balls along with the unknown checkerboard
pose. We assume that the refractive index μ is known and is
identical for all spheres. As described in Section 3 and Sec-
tion 4.1, we can compute the checkerboard pose and axis
of each refractive ball in exactly the same manner using the
multi-axial property. Only the estimation of ball center and
radius is different from the previous case due to refraction.

7.1. Recovering Refractive Sphere Parameters

As in before, the analysis can be done on the plane of re-
fraction π (see Figure 2), since the entire light path remains
on π. We follow Section 5. Let M1 = kw be the common
point on the refractive ball and the camera ray w. Then we
have

(kwx)
2 + (kwy − d)2 = k2 − 2kwyd+ d2 = β, (11)

similar to (8). The normal at M1 is given by n1 = M1 − S,
where nT

1
n1 = β. The first refracted ray v1 is given by the

Snell’s law [2] as

v1 =
1

μ
w + b1n1, (12)

where

b1 =
−wT n1 −

√
(wT n1)2 − (1− μ2)β

μβ
. (13)
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The second refraction point M2 can be written as M2 =
M1+λv1 for some constant λ. Since M2 lies on the sphere,

β = (M2 − S)T (M2 − S) = (n1 + λv1)
T (n1 + λv1),

= β + 2λnT
1

v1 + λ2vT
1

v1. (14)

This gives λ = −2nT
1

v1/(vT
1

v1). The normal at M2 is then
given by n2 = M2 − S. The outgoing ray v2 can be writ-
ten as v2 = μv1 + b2n2, for some b2. Taking dot product
with n2 on both sides, b2 = (vT

2
n2 − μvT

1
n2)/β. From

the symmetry of the sphere, we have vT
2

n2 = −wT n1 and
vT
1

n2 = −vT
1

n1. Thus,

b2 = (−wT n1 + μvT
1

n1)/β. (15)

Finally, the outgoing ray v2 should pass through u. Thus,

v2 × (u−M2) = 0. (16)

After substituting all the terms, the above equation simpli-
fies to an equation which is 5th degree in d, 4th degree in
k and quadratic in β. Eliminating k between this equation
and (11), we obtain a single equation in d and β, which is
12th degree in d and fourth degree in β.

Thus, each correspondence results in a single equation
in d and β. Similar to the mirror case, we need two cor-
respondences for two equations. However, eliminating β
turned out to be quite difficult due to high complexity of
this equation. We therefore assume that the radius of refrac-
tive ball (and hence β) is known a-priori2 and solve for the
single unknown d by solving the above derived 12th degree
equation. Similar to the mirror case, we perform non-linear
refinement after the above initial estimation. The projec-
tion of a 3D point can be obtained by solving a 10th degree
equation for refractive sphere as shown in [2].

Simulation: We use similar settings as in Section 6 to
simulate a camera looking through four refractive spheres
of radius 12.7 mm and refractive index 1.5. The center
of the spheres are placed at a mean distance of 80 mm
from the camera. The checkerboard is placed at T =
[3.4, 1.2, 250] mm from the camera with the rotation angles
of [2.2, 3.4, 5.3] degrees. Neither the spherical array nor the
checkerboard is fronto-parallel to the imaging plane. Fig-
ure 6 and Figure 7 shows the error in estimated axes, sphere
distances and checkerboard pose using our algorithm af-
ter non-linear refinement, with Gaussian noise of increas-
ing variance added to checkerboard corners. These plots
show that accurate calibration can be obtained using our ap-
proach. For example, the maximum error in sphere distance
is less than 0.7%.

8. Real Experiments
We performed real experiments using Canon Rebel XT

camera having a resolution of 3256×2304 pixels with 18−
2In practice, radius may be known from manufacture to a good preci-

sion.
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Figure 6. Simulation results for multiple refractive spheres assum-
ing known sphere radii. Error in sphere axes and sphere locations.
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Figure 7. Simulation results for multiple refractive spheres assum-
ing known sphere radii. Error in checkerboard rotation and trans-
lation.

55 mm Canon zoom lens. The lens was set to the maximum
zoom setting. The camera was internally calibrated off-line
using [4]. To avoid defocus issues, we use a small (f/10)
aperture.

Refractive Spheres: Figure 8 shows a camera looking
through four acrylic spheres3 of radius 0.5 inch and refrac-
tive index 1.49 at a checkerboard. Notice the checkerboard
distortion due to refraction. Checkerboard corners were de-
tected using [20]. To obtain the ground truth (GT) pose
of the checkerboard, we took another photo (not shown)
by directly viewing the checkerboard. Table 1 compares
the ground truth pose with the estimated pose using our ap-
proach. Figure 8 also shows the detected corners (red) and
re-projected corners as well as the sphere boundary (green)
using the estimated calibration parameters. The final root
mean square (RMS) reprojection error was 2.35 pixels.

Spherical Mirrors: In Figure 9, the camera looks at the
scene reflected from four spherical mirrors4 of radius 25.4
mm (1 inch) each. Notice the checkerboard distortion due
to mirror reflection.

For the case of reflection, the camera does not view the
checkerboard directly. To obtain the ground truth checker-
board pose, we need to estimate its extrinsic without a direct
view [21, 10]. We use the recent method proposed by Taka-
hashi et al. [25], which requires capturing three images of
the checkerboard using a planar mirror in different orien-
tations. The algorithm in [25] estimates the planar mirror
poses as well as the checkerboard pose. Table 2 compares

3Available at plasticballs.com for 80 cents each.
4We use off-the-shelf stainless steel balls from McMaster-Carr.
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Figure 8. Real results on refractive spheres. Detected corners (red)
and re-projected checkerboard points/sphere boundary (green) us-
ing estimated calibration parameters are shown.

θx, θy, θz (degree) tx, ty, tz (mm)
GT 176.22,−4.77, 83.33 −77.95,−89.49, 420.01

Ours 175.32,−3.00, 83.30 −79.24,−88.02, 422.57
Table 1. Comparison of checkerboard pose obtained using our
method with ground truth (GT) pose for Figure 8. GT was com-
puted by directly looking at the checkerboard. Rotation error
equals 1.98◦ and the normalized translation error is 0.74%.

the ground truth pose (as estimated using [25]) with the
estimated pose using our approach. The rotation error is
1.2◦ and the translation error is 5.28%. The estimated radii
of mirrors were 25.54, 25.52, 25.45 and 25.65 mm, with
a maximum error of 0.97%. Figure 8 also shows the de-
tected corners (red) and the re-projected corners as well as
the sphere boundary (green) using the estimated calibration
parameters. Notice that the estimated contour matches well
with the actual sphere boundary. The final RMS reprojec-
tion error after calibration was 0.5 pixels.

Figure 10 shows an example with two mirrors of differ-
ent size (radius 12.7 and 25.4 mm respectively). Notice that
the mirrors are not arranged on a grid. The estimated radii
were 12.27 and 24.43 mm and the final RMS reprojection
error was 0.48 pixels. Table 3 shows the estimated checker-
board pose along with the ground truth pose estimated us-
ing [25].

Analysis: The stability of pose estimation (Section 4.1)
depends on axes being sufficiently non-parallel. If the an-
gles between the underlying axes are small, the linear esti-
mation of pose can become unstable. This could happen if
di � ri. For the above real experiments, the angle between
the axes was only≈ 10◦, indicating that the pose estimation
is quite stable.

Figure 10. Our approach can handle mirrors of different size ar-
ranged in any fashion, not necessarily on a grid. Captured photo
with detected (red) and re-projected checkerboard points (green)
after calibration. Sphere boundary (green) using estimated param-
eters is also shown.

θx, θy, θz (degree) tx, ty, tz (mm)
GT −144.53, 4.06,−94.12 213.50, 61.29, 254.74

Ours −143.58, 4.45,−93.91 226.32, 63.01, 242.43
Table 2. Comparison of checkerboard pose obtained using our
method with ground truth (GT) pose for Figure 9. GT was ob-
tained using the algorithm in [25]. Rotation error equals 1.02◦

and the normalized translation error is 5.28%.

θx, θy, θz (degree) tx, ty, tz (mm)
GT −118.86, 1.38,−81.22 196.34, 27.58, 307.81

Ours −118.87, 1.37,−81.08 197.02, 27.28, 297.50
Table 3. Comparison of checkerboard pose obtained using our
method with ground truth (GT) pose for Figure 10. GT was ob-
tained using the algorithm in [25]. Rotation error equals 0.14◦ and
the normalized translation error is 2.8%.

9. Discussions and Conclusions
We have presented a single image based calibration

approach for multi-axial systems, consisting of a camera
looking at multiple spherical mirrors or multiple refractive
spheres. We believe that ours is the first algorithm that al-
lows calibrating multiple refractive spheres based imaging
system using a single photo.

We also showed an interesting theoretical result that full
6-DOF pose estimation of such multi-axial systems can be
done in a semi-calibrated setting (without the knowledge of
complete calibration), by choosing rays from two or more
of the underlying axial systems. In general, three 2D-3D
correspondences are required for pose estimation, for both
central and non-central cameras [17] with complete calibra-
tion, since each correspondence provides two constraints.
However, the coplanarity constraint is a single constraint for
each correspondence. Therefore, pose estimation for multi-
axial systems in semi-calibrated setting requires a minimum
of six 2D-3D correspondences, instead of three. Neverthe-
less, this could be useful for localization, navigation and
SLAM based approaches using wide-angle catadioptric sen-
sors.
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Figure 9. Real results on spherical mirrors. (Left) Setup. (Right) Captured photo with detected (red) and re-projected checkerboard points
(green) after calibration. Sphere boundary (green) using estimated parameters is also shown.

References

[1] A. Agrawal, S. Ramalingam, Y. Taguchi, and V. Chari. A the-
ory of multi-layer flat refractive geometry. In CVPR, pages
3346–3353, June 2012.

[2] A. Agrawal, Y. Taguchi, and S. Ramalingam. Analytical for-
ward projection for axial non-central dioptric and catadiop-
tric cameras. In ECCV, volume 6313, pages 129–143, Sept.
2010.

[3] S. Baker and S. Nayar. A theory of single-viewpoint
catadioptric image formation. Int’l J. Computer Vision,
35(2):175–196, Nov. 1999.

[4] J.-Y. Bouguet. Camera calibration toolbox for matlab.
http://www.vision.caltech.edu/bouguetj.

[5] V. Caglioti, P. Taddei, G. Boracchi, S. Gasparini, and
A. Giusti. Single-image calibration of off-axis catadioptric
cameras using lines. In OMNIVIS, Oct. 2007.

[6] M. Demazure. Sur deux problemes de reconstruction. Tech-
nical Report 882, INRIA, 1988.

[7] Y. Ding, J. Yu, and P. Sturm. Multi-perspective stereo match-
ing and volumetric reconstruction. In ICCV, pages 1827–
1834, Sept. 2009.

[8] Y. Francken, C. Hermans, and P. Bekaert. Screen-camera
calibration using a spherical mirror. In Canadian Conf. Com-
puter and Robot Vision, pages 11–20, May 2007.

[9] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2000.

[10] J. A. Hesch, A. I. Mourikis, and S. I. Roumeliotis. Extrin-
sic camera calibration using multiple reflections. In ECCV,
pages 311–325, Sept. 2010.

[11] M. Kanbara, N. Ukita, M. Kidode, and N. Yokoya. 3D scene
reconstruction from reflection images in a spherical mirror.
In ICPR, volume 4, pages 874–879, 2006.

[12] Y. Kojima, R. Sagawa, T. Echigo, and Y. Yagi. Calibration
and performance evaluation of omnidirectional sensor with
compound spherical mirrors. In OMNIVIS, 2005.

[13] D. Lanman, D. Crispell, M. Wachs, and G. Taubin. Spherical
catadioptric arrays: Construction, multi-view geometry, and
calibration. In 3DPVT, pages 81–88, 2006.

[14] B. Micusik and T. Pajdla. Structure from motion with wide
circular field of view cameras. IEEE Trans. Pattern Anal.
Machine Intell., 28(7):1135–1149, 2006.

[15] S. Nayar. Sphereo: Determining depth using two specular
spheres and a single camera. In SPIE Conf. Optics, Illu-
mination, and Image Sensing for Machine Vision III, pages
245–254, Nov. 1988.

[16] K. Nishino and S. Nayar. The World in an Eye. In CVPR,
volume I, pages 444–451, June 2004.

[17] D. Nistér and H. Stewénius. A minimal solution to the gen-
eralised 3-point pose problem. J. Mathematical Imaging and
Vision, 27(1):67–79, 2007.

[18] S. Ramalingam, P. Sturm, and S. K. Lodha. Theory and cal-
ibration algorithms for axial cameras. In ACCV, 2006.

[19] R. Sagawa, N. Kurita, T. Echigo, and Y. Yagi. Compound
catadioptric stereo sensor for omnidirectional object detec-
tion. In IROS, volume 3, pages 2612–2617, Sept. 2004.

[20] D. Scaramuzza. Ocamcalib: Omnidirec-
tional camera calibration toolbox for matlab.
https://sites.google.com/site/scarabotix/ocamcalib-toolbox.

[21] P. Sturm and T. Bonfort. How to compute the pose of an
object without a direct view. In ACCV, pages 21–31, 2006.

[22] P. Sturm and S. Ramalingam. A generic concept for camera
calibration. In ECCV, 2004.

[23] P. Sturm, S. Ramalingam, J.-P. Tardif, S. Gasparini, and
J. Barreto. Camera models and fundamental concepts used
in geometric computer vision. Foundations and Trends in
Computer Graphics and Vision, 6(1-2):1–183, 2011.

[24] Y. Taguchi, A. Agrawal, A. Veeraraghavan, S. Ramalingam,
and R. Raskar. Axial-cones: Modeling spherical catadioptric
cameras for wide-angle light field rendering. ACM Trans.
Graph., 29(6):172:1–172:8, Dec. 2010.

[25] K. Takahashi, S. Nobuhara, and T. Matsuyama. A new
mirror-based extrinsic camera calibration using an orthog-
onality constraint. In CVPR, June 2012.

[26] J.-P. Tardif, P. Sturm, M. Trudeau, and S. Roy. Calibration
of cameras with radially symmetric distortion. IEEE Trans.
Pattern Anal. Machine Intell., 31(9):1552–1566, 2009.

[27] S. Thirthala and M. Pollefeys. Multi-view geometry of 1D
radial cameras and its application to omnidirectional camera
calibration. In ICCV, volume 2, pages 1539–1546, 2005.

14041404140414061406


