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Abstract

This paper presents a complete system for expressive vi-
sual text-to-speech (VTTS), which is capable of producing
expressive output, in the form of a ‘talking head’, given an
input text and a set of continuous expression weights. The
face is modeled using an active appearance model (AAM),
and several extensions are proposed which make it more
applicable to the task of VTTS. The model allows for nor-
malization with respect to both pose and blink state which
significantly reduces artifacts in the resulting synthesized
sequences. We demonstrate quantitative improvements in
terms of reconstruction error over a million frames, as well
as in large-scale user studies, comparing the output of dif-
ferent systems.

1. Introduction
This paper presents a system for expressive visual text-

to-speech (VTTS) that generates near-videorealistic output.

Given an input text, a visual text-to-speech system gener-

ates a video of a synthetic character uttering the text. Ex-
pressive VTTS allows the text to be annotated with emo-

tion labels which modulate the expression of the generated

output. Creating and animating talking face models with

a high degree of realism has been a long-standing goal, as

it has significant potential for digital content creation and

enabling new types of user interfaces [16, 19, 27]. It is be-

coming increasingly clear that in order to achieve this aim,

one needs to draw on methods from different areas, includ-

ing computer graphics, speech processing, and computer vi-

sion. While systems exist that produce high quality anima-

tions for neutral speech [6, 16, 25], adding controllable, re-

alistic facial expressions is still challenging [1, 5]. Currently

the most realistic data-driven VTTS systems are based on

unit selection, splitting up the video into short sections and

subsequently concatenating and blending these sections at

the synthesis stage, e.g. [16, 25]. Due to the high degree of

variation in appearance during expressive speech, the num-

ber of units required to allow realistic animation becomes

excessive.

In our approach we draw on recent progress from the

area of audio-only text-to-speech (TTS), which also has to

deal with coarticulation, whereby phonemes are affected by

other nearby phonemes. The most successful approach to

solving this task currently is to model tri- or quinphones us-

ing hidden Markov models (HMM) with three or five emit-

ting states, respectively [29]. Concatenating the HMMs and

sampling from them produces a set of parameters which can

then be synthesized into a speech signal. In order to extend

this approach to visual TTS, a parametric face model is re-

quired. In this paper we propose using the established active

appearance model (AAM) to model face shape and appear-

ance [7]. While AAMs have been used in VTTS systems

for neutral speech in the past [10, 23], there are a number

of difficulties when applying standard AAMs to the task of

expressive face modeling. The most significant problem is

that AAMs capture a mixture of expression, mouth shape

and head pose within each mode, making it impossible to

model these effects independently. Due to the large varia-

tion of pose and expression in expressive VTTS this leads

to artifacts in synthesis as spurious correlations are learned.

AAMs are also inherently poor at modeling very localized

actions such as blinking, without introducing artifacts else-

where in the model when used for synthesis. In this paper

we propose a number of extensions that allow AAMs to be

used for synthesis tasks with a higher degree of realism. In

summary, the contributions of this paper are:

1. a complete visual text-to-speech system allowing syn-

thesis with a continuous range of emotions, introduced

in section 4,

2. extensions to the standard AAM that allow the separa-

tion of modes for global and local shape and appear-

ance deformations, detailed in section 3, and

3. large-scale, crowd-sourced user studies, allowing a di-

rect comparison of the proposed system with the state

of the art, see section 5. The experiments demonstrate

a clear improvement in synthesis quality in expressive

VTTS.
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2. Prior Work
This section gives an overview of recent approaches to

visual text-to-speech, grouping them based on their genera-

tive model.

Physics based methods model face movement based on

simulating the effects of muscle interaction, thereby al-

lowing anatomically plausible animation [1, 20]. However

building accurate models requires significant effort and re-

sults are currently not videorealistic.

Unit selection methods allow videorealistic synthesis

as they concatenate examples actually seen in a training

set [16, 25]. The type of unit can be a single frame for

each phoneme [12] or a sequence of frames [5] which are

blended with their temporal neighbors. The advantage of

longer units is that they better model coarticulation, how-

ever more units are required in this case to handle all

phoneme combinations. The main drawback of unit se-

lection approaches is their lack of flexibility, as they can-

not easily be extended to handle new expressions without

greatly increasing the number of units.

Statistical modeling approaches use a training set to

build models of the speech generation process. HMMs

are currently the most popular approach [4, 8]. Statistical

models are able to generate high quality results which are

sometimes over-smoothed compared to unit selection ap-

proaches. The main advantages of these methods are the

flexibility they provide in dealing with coarticulation and

their ability to handle expression variation in a principled

manner.

2.1. Face models for VTTS

A number of different face models have been proposed

for videorealistic VTTS systems.

Image based models use complete or partial images

taken directly from a training set, concatenating them using

warping or blending techniques. The resulting appearance

is realistic, but this technique limits the synthesis method to

unit selection [16, 26].

Data-driven 3D models use captured 3D data to gen-

erate controllable 3D models. Their main advantages are

their invariance to 3D pose changes and their ability to ren-

der with an arbitrary pose and lighting at synthesis time.

Currently a limiting factor is the complexity of the cap-

ture and registration process. While computer vision tech-

niques continue to drive progress in this area [3, 17], un-

til now only relatively small training sets have been ac-

quired, insufficient in size to generate realistic expressive

models [5, 24]. Good results have been achieved animating

3D models that do not attempt to appear videorealistic, this

avoids the uncanny valley and produces visually appealing

synthesis such as that in [21].

Data-driven 2D models can be created from video data,

thereby simplifying the capture process of large training

corpora. The most common 2D models used are AAMs [10,

23] and Multidimensional Morphable Models (MMMs) [6].

Both of these models are linear in both shape and appear-

ance, but while AAMs represent shape using the position

of mesh vertices, MMMs use flow fields to represent 2D

deformation.

2.2. Active appearance models

In this paper we use AAMs as they produce good re-

sults for neutral speech while the low-dimensional para-

metric representation enables their combination with stan-

dard TTS methods. There have been many modifications

to the standard AAM designed to target specific applica-

tions, see [13] for an overview. The specific requirements

for our system are that the model must be able to track ro-

bustly and quickly over a very large corpus of expressive

training data and that it must be possible to synthesize vide-

orealistic renderings from statistical models of its parame-

ters. There has been extensive work on tracking expressive

data, for example the work of De la Torre and Black [9]

in which several independent AAMs representing different

regions of the face are created by hand are linked together

by a shared affine warp. Modifications for convincing syn-

thesis from AAMs on the other hand are much less well

explored. When AAMs have been used for VTTS in the

past, small head pose variations have been removed by sub-

tracting the mean AAM parameters for each sentence from

all frames within that sentence [10] however this approach

works for small rotations only and leads to a loss of expres-

siveness. Bilinear AAMs that factor out pose from other

motion have been proposed, but the amount of training data

required for a VTTS system makes their use prohibitive in

our application [14]. The most similar approach to dealing

with pose to the method that we propose is that of Edwards

et al. [11] in which canonical discriminant analysis is used

to find semantically meaningful modes and a least squares

approach is used to remove the contributions of these modes

from training samples. However this approach is not well

suited to modeling local deformations such as blinking and

the least squares approach to removing the learned modes

from training samples can give disproportionate weighting

to the appearance component.

3. Extending AAMs for Expressive Faces
This section first briefly introduces the standard AAM

with its notation and then details the proposed extensions

to improve its performance in the expressive VTTS set-

ting. As a baseline we use the AAM proposed by Cootes

et al. [7] in which a single set of parameters controls both

shape and appearance. Throughout this paper we assume

that the number of shape and appearance modes is equal

but the techniques are equally applicable if this is not the

case; modes with zero magnitude can be inserted to en-
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Figure 1: Pose invariant AAM modes. The first two modes of a
standard AAM (left) encode a mixture of pose, mouth shape and
expression variation. (right) The first two modes of a pose invari-
ant AAM encode only rotation, allowing head pose to be decoupled
from expression and mouth shape.

sure that the number of modes is equal. An AAM is de-

fined on a mesh of V vertices. The shape of the model,

s = (x1, y1, x2, y2, ...xV , yV )
T , defines the 2D position

(xi, yi) of each mesh vertex and is a linear model given by

s = s0 +
M∑
i=1

cisi, (1)

where s0 is the mean shape of the model, si is the

ith mode of M linear shape modes and ci is its cor-

responding parameter. We include color values in the

appearance of the model, which is given by a =
(r1, g1, b1, r2, g2, b2, ...rP , gP , bP )

T , where (ri, gi, bi) is

the RGB representation of the ith of the P pixels which

project into the mean shape s0. Analogous to the shape

model, the appearance is given by

a = a0 +

M∑
i=1

ciai, (2)

where a0 is the mean appearance vector of the model, and

ai is the ith appearance mode. Since we use a combined

appearance model the weights ci in equations 1 and 2 are

the same and control both shape and appearance.

3.1. Pose invariant AAM modes

The global nature of AAMs leads to some of the modes

handling variation which is due to both 3D pose change as

well as local deformation, see figure 1 left. Here we propose

a method for finding AAM modes that correspond purely

to head rotation or to other physically meaningful motions.

More formally, we would like to express a face shape s as a

combination of pose components and deformation compo-

nents:

s = s0 +
K∑
i=1

cis
pose
i +

M∑
i=K+1

cis
deform
i . (3)

We would also like to obtain the equivalent expression for

the appearance. The coupling of shape and appearance in

AAMs makes this a difficult problem. We first find the

shape components that model pose {sposei }Ki=1, by record-

ing a short training sequence of head rotation with a fixed

neutral expression and applying PCA to the observed mean

normalized shapes ŝ = s − s0. We then project ŝ into the

pose variation space spanned by {sposei }Ki=1 to estimate the

weights {ci}Ki=1 in (3):

ci =
ŝTsposei

||sposei ||2 . (4)

Having found these weights we remove the pose compo-

nent from each training shape to obtain a pose normalized

training shape s∗:

s∗ = ŝ−
K∑
i=1

cis
pose
i . (5)

If shape and appearance were indeed independent then we

could find the deformation components by principal com-

ponent analysis (PCA) of a training set of shape samples

normalized as in (5), ensuring that only modes orthogonal

to the pose modes are found, in the same way as [11]. How-

ever, there is no guarantee that the weights calculated using

(4) are the same for the shape and appearance modes, which

means that we may not be able to reconstruct the training

examples using the model. This can be problematic, for ex-

ample if the original AAM tracking method proposed in [7]

or the method introduced in section 3.4 are to be used, as

these require the AAM descriptors for each training sam-

ple. To overcome this problem we compute the mean of

each {ci}Ki=1 of the appearance and shape weights:

ci =
1

2

(
ŝTsposei

||sposei ||2 +
âTaposei

||aposei ||2
)
. (6)

The model is then constructed by using these weights in

(5) and finding the deformation modes from samples of the

complete training set. Note that this decomposition does not

guarantee orthogonality of shape or appearance modes, but

we did not find this to be an issue in our application.

3.2. Local deformation modes

In this section we propose a method to obtain modes

for local deformations such as eye blinking. This can be

achieved by a modified version of the method described in
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the previous section. Firstly shape and appearance modes

which model blinking are learned from a video containing

blinking with no other head motion. Directly applying the

method in section 3.1 to remove these blinking modes from

the training set introduces artifacts. The reason for this is

apparent when considering the shape mode associated with

blinking in which the majority of the movement is in the

eyelid. This means that if the eyes are in a different position

relative to the centroid of the face (for example if the mouth

is open, lowering the centroid) then the eyelid is moved to-

ward the mean eyelid position, even if this artificially opens

or closes the eye. Instead of computing the weights of abso-

lute coordinates in (6) we therefore propose to use relative

shape coordinates using a Laplacian operator:

cblinki =
1

2

(
L(ŝ)TL(sblinki )

||L(sblinki )||2 +
âTablinki

||ablinki ||2
)
. (7)

The Laplacian operator L() is defined on a shape sample

such that the relative position, δi of each vertex i within the

shape can be calculated from its original position pi using

δi =
∑
j∈N

pi − pj

||dij ||2 , (8)

where N is a one-neighborhood defined on the AAM mesh

and dij is the distance between vertices i and j in the mean

shape. This approach correctly normalizes the training sam-

ples for blinking, as relative motion within the eye is mod-

eled instead of the position of the eye within the face.

3.3. Segmenting AAMs into regions

Different regions of the face can be moved nearly inde-

pendently, a fact that has previously been exploited by seg-

menting the face into regions, which are modeled separately

and blended at their boundaries [2, 9, 22]. While this ap-

proach tends to be followed in 3D models, it is difficult to

apply to synthesizing with AAMs as these are not invariant

to 3D pose, and mixing components could result in implau-

sible instances where different regions have different pose.

The decomposition into pose and deformation compo-

nents in (3) allows us to further separate the deformation

components according to the local region they affect. We

split the model into R regions and model its shape accord-

ing to:

s = s0 +
K∑
i=1

cis
pose
i +

R∑
j=1

∑
i∈Ij

cis
j
i , (9)

where Ij is the set of component indices associated with

region j. The modes for each region are learned by only

considering a subset of the model’s vertices according to

manually selected boundaries marked in the mean shape.

Modes are iteratively included up to a maximum number,

by greedily adding the mode corresponding to the region

which allows the model to represent the greatest proportion

of the observed variance in the training set. The analogous

model is used for appearance. Linear blending is applied

locally near the region boundaries.

We use this approach to split the face into an upper and

lower half. The advantage of this is that changes in mouth

shape during synthesis cannot lead to artifacts in the upper

half of the face. Since global modes are used to model pose

there is no risk of the upper and lower halves of the face

having a different pose.

3.4. Extending the domain of an existing AAM

This section describes a method to extend the spatial do-

main of a previously trained AAM without affecting the ex-

isting model. In our case it was employed to extend a model

that was trained only on the face region to include hair and

ear regions in order to add more realism.

The set of N training images for the existing AAM

is known, as are the original model coefficient vectors

{cj}Nj=1, cj ∈ RM for these images. We proceed by la-

beling the regions to be included in the model, resulting

in a new set of N training shapes {s̃extj }Nj=1 and appear-

ances {ãextj }Nj=1. Given the original model with M modes,

the new shape modes, {si}Mi=1, should satisfy the following

constraint

[
s̃ext1 . . . s̃extN

]
=

[
s1 . . . sM

] [
c1 . . . cN

]
, (10)

which states that the new modes can be combined, using

the original model coefficients, to reconstruct the extended

training shapes s̃extj . Assuming that the number of training

samples N is larger than the number of modes M the new

shape modes can be obtained as the least-squares solution.

New appearance modes are found analogously.

3.5. Adding regions with static texture

Since the teeth and tongue are occluded in many of the

training examples, the synthesis of these regions contains

significant artifacts when modeled using a standard AAM.

To reduce these artifacts we use a fixed shape and texture for

the upper and lower teeth. The displacements of these static

textures are given by the displacement of a vertex at the

center of the upper and lower teeth respectively. The teeth

are rendered before the rest of the face, ensuring that the

correct occlusions occur. A visual comparison is provided

in figure 4(h).

4. Synthesis framework

Our synthesis model takes advantage of an existing TTS

approach known as cluster adaptive training (CAT). The

AAM described in the previous section is used to express
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each frame in the training set as a low dimensional vec-

tor. The audio and video data are modeled using separate

streams within a CAT model, a brief overview of which is

given next.

4.1. Cluster adaptive training (CAT)

Cluster adaptive training (CAT) [28] is an extension to

hidden Markov model text-to-speech (HMM-TTS). HMM-

TTS is a parametric approach to speech synthesis [29]

which models quinphones using HMMs with five emitting

states. Concatenating the HMMs and sampling from them

produces a set of parameters which can then be resynthe-

sized into synthetic speech. Typically, a decision tree is

used to cluster the quinphones to handle sparseness in the

training data. For any given quinphone the means and vari-

ances to be used in the HMMs may be looked up using the

decision tree.

The key addition of CAT is the use of multiple decision

trees to capture speaker- or emotion-dependent information.

Figure 2 shows the structure of the CAT model. Each clus-

ter has its own decision tree and the means of the HMMs are

determined by finding the mean for each cluster and com-

bining them using the formula

μexpr
m = Mmλexpr, (11)

where μexpr
m is the mean for a given expression, m is the

state of the HMM, Mm is the matrix formed by combining

the means from each cluster and λexpr is a weight vector.

Each cluster in CAT may be interpreted as a basis defin-

ing an expression space. To form the bases, each clus-

ter is initialized using the data of one emotion (by setting

the λ’s to zero or one as appropriate). The Maximum-

Likelihood criterion is used to update all the parameters

in the model (weights, means and variances, and decision

trees) iteratively. The resulting λ’s may interpreted as co-

ordinates within the expression space. By interpolating be-

tween λexpr1 and λexpr2 we can synthesize speech with an

expression between two of the originally recorded expres-

sions. Since the space is continuous it is possible to synthe-

size at any point in the space and generate new expressions.

For more details the reader is referred to [15].

5. Experiments
We collected a corpus of 6925 sentences, divided be-

tween 6 emotions; neutral, tender, angry, afraid, happy and

sad. From the data 300 sentences were held out as a test

set and the remaining data was used to train the speech

model. The speech data was parameterized using a stan-

dard feature set consisting of 45 dimensional Mel-frequency

cepstral coefficients, log-F0 (pitch) and 25 band aperiod-

icities, together with the first and second time derivatives

of these features. The visual data was parameterized using

Figure 2: Cluster adaptive training (CAT). Each cluster is
represented by a decision tree and defines a basis in expres-
sion space. Given a position in this expression space defined by
λexpr = [λ1 . . . λP ] the properties of the HMMs to use for syn-
thesis can be found as a linear sum of the cluster properties.

the AAMs described below. We trained different AAMs in

order to evaluate the improvements obtained with the pro-

posed extensions. In each case the AAM was controlled by

17 parameters and the parameter values and their first time

derivatives were used in the CAT model.

The first model used, AAMbase, is a standard AAM as

described in [7], built from 71 training images in which

47 facial keypoints were labeled by hand. Additionally,

contours around both eyes, the inner and outer lips, and

the edge of the face were labeled and points were sam-

pled at uniform intervals along their length. The second

model, AAMdecomp, separates both 3D head rotation (mod-

eled by two modes) and blinking (modeled by one mode)

from the deformation modes as described in sections 3.1

and 3.2. The third model, AAMregions, is built in the same

way as AAMdecomp expect that 8 modes are used to model

the lower half of the face and 6 to model the upper half,

see section 3.3. The final model, AAMfull, is identical to

AAMregions except for the mouth region which is modified

as described in section 3.5. Please see the supplementary

video for samples of synthesis.

5.1. Evaluating AAM reconstruction

In the first experiment we quantitatively evaluate the re-

construction error of each AAM on the complete data set

of 6925 sentences which contains approximately 1 million

frames. The reconstruction error was measured as the L2

norm of the per-pixel difference between an input image

warped onto the mean shape of each AAM and the gen-

erated appearance. Figure 3(a) shows how reconstruction

errors vary with the number of AAM modes. It can be seen

that while with few modes, AAMbase has the lowest recon-

struction error, as the number of modes increases the differ-

ence in error decreases. In other words, the flexibility that

semantically meaningful modes provide does not come at

the expense of reduced tracking accuracy. In fact we found

the modified models to be more robust than the base model,

having a lower worst case error on average, as shown in fig-

ure 3(b). This is likely due to AAMregions and AAMdecomp

being better able to generalize to unseen examples as they
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Figure 3: AAM reconstruction errors. (a) Average errors vs. number of AAM modes. It can be seen that the average errors of all models
converge as the number of modes increases. (b) Cumulative number of sentences remaining below a given tracking error (for models using
17 modes). It can be seen that the proposed AAM extensions of AAMregions and AAMdecomp reduce the maximum errors compared to
the standard AAMbase. (c) An example of tracking failure for AAMbase since this combination of mouth shape and expression did not
appear in the training set.

do not overfit the training data by learning spurious corre-

lations between different face regions. An example where

this causes AAMbase to fail is given in figure 3(c).

5.2. User studies

We carried out a number of large-scale user studies in

order to evaluate the perceptual quality of the synthesized

videos. The experiments were distributed via a crowd

sourcing website, presenting users with videos generated by

the proposed system.

5.2.1 Preference studies

To determine the qualitative effect of the choice of AAM on

the final system we carried out preference tests on systems

built using the different AAMs. For each preference test 10

sentences in each of the six emotions were generated with

two models rendered side by side. Each pair of AAMs was

evaluated by 10 users who were asked to select between the

left model, right model or having no preference (the order

of our model renderings was switched between experiments

to avoid bias), resulting in a total of 600 pairwise compar-

isons per preference test. In this experiment the videos were

shown without audio in order to focus on the quality of the

face model.

From table 1 it can be seen that AAMfull achieved the

highest score, and that AAMregions is also preferred over

the standard AAM. This preference is most pronounced for

expressions such as angry, where there is a large amount of

head motion and less so for emotions such as neutral and

tender which do not involve significant movement of the

head. This demonstrates that the proposed extensions are

particularly beneficial to expressive VTTS.

5.2.2 Comparison with other talking heads

In order to compare the output of different VTTS systems

users were asked to rate the realism of sample synthesized

sentences on a scale of 1 to 5, with 5 corresponding to ‘com-

pletely real’ and 1 to ‘completely unreal’. Sample sentences

that were publicly available were chosen for the evaluation,

and scaled to a face region height of approximately 200 pix-

els. The degree of expressiveness of the systems range from

neutral speech only to highly expressive. The results in Ta-

ble 2 show that the system by Liu et al. was rated most

realistic among the systems for neutral speech and with a

small degree of expressiveness. The proposed system per-

forms comparably to other methods in the neutral speech

category, while for larger ranges of expression it achieved a

significantly higher score than the system by Cao et al. In

this study each system was rated by 100 users.

5.2.3 Emotion recognition study

In the final study we evaluated the ability of the proposed

VTTS system to express a range of emotions. Users were

presented either with video or audio clips of a single sen-

tence from the test set and were asked to identify the emo-

tion expressed by the speaker, selecting from a list of six

emotions. The synthetic video data for this evaluation was

generated using the AAMregions model. We also com-

pared with versions of synthetic video only and synthetic

audio only, as well as cropped versions of the actual video

footage. In each case 10 sentences in each of the six emo-

tions were evaluated by 20 people, resulting in a total sam-

ple size of 1200. Example frames showing each emotion

are given in figure 4.

The average recognition rates are 73% for the captured

footage, 77% for our generated video (with audio), 52%

for the synthetic video only and 68% for the synthetic au-

dio only. These results indicate that the recognition rates
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AAM AAM AAM AAM Orig. No
base decomp region full video pref.

36 37 28

34 48 18

34 53 13

35 39 25

33 51 16

30 50 20

14 82 4

AAM AAM AAM AAM Orig. No
base decomp region full video pref.

40 36 24

37 47 15

45 41 14

42 35 22

38 48 13

28 46 26

11 83 6

AAM AAM AAM AAM Orig. No
base decomp region full video pref.

33 45 22

20 75 5

22 72 6

29 52 19

31 49 19

33 43 24

12 84 4

Table 1: Pairwise preference tests between different models. Scores shown as percentages of all votes for: (left) all emotions, (middle)
neutral, and (right) angry. There is a preference for the refined models for the average score over all emotions, this is mostly due to the
emotions with a large amount of movement, such as angry. The preference for the proposed model over other AAMs is particularly clear
for emotions with significant head motion, such as angry shown in the right table.

Method Expressions Realism Score
Chang and Ezzat [6] neutral 3.3 (4.5)

Deena et al. [10] neutral 3.4 (3.7)

Wang et al. [26] male neutral 4.0

Wang et al. [26] fem. neutral 3.9

Liu et al. [16] neutral 4.3 (4.6)

this paper neutral 3.7 (4.4)

Liu et al. [16] small range 3.6

Melenchon et al. [18] small range 3.1

Cao et al. [5] small range 2.6

Cao et al. [5] large range 2.7

this paper large range 3.8 (4.4)

Table 2: Comparative user study. Users rated the realism of
sample sentences generated using different VTTS systems where
higher values correspond to more realistic output. Scores for ac-
tual footage are shown in the last column for systems where data
was available. It can be seen that for high expressiveness the pro-
posed system achieves a higher score than that by Cao et al.

for synthetically generated results are comparable, or even

slightly higher than for the real footage. This may be due

to the stylization of the expression in the synthesis. Confu-

sion matrices between the different expressions are shown

in figure 5. Tender and neutral expressions are most eas-

ily confused in all cases. While some emotions are better

recognized from audio only, the overall recognition rate is

higher when using both cues.

6. Conclusions and future work
In this paper we have demonstrated a complete visual

text-to-speech system which is capable of creating near-

videorealistic synthesis of expressive text. We have carried

out user studies showing that its performance is state of the

art by comparing directly to other current VTTS systems.

To improve performance of our system we have adapted ac-

tive appearance models to reduce the main artifacts result-

ing from using a person specific active appearance model

for rendering. In the future we plan to extend the system

so that the identity of the speaker is controllable as well as

their expression.

Acknowledgments. We are grateful to all researchers in

the Speech Technology Group at Toshiba Research Europe

for their work on the speech synthesis side of the model. We

also thank Oliver Woodford, Sam Johnson and Frank Perbet

for helpful discussions on the paper.

References
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