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Abstract

This article presents a new global approach for detecting
vanishing points and groups of mutually orthogonal vanish-
ing directions using lines detected in images of man-made
environments. These two multi-model fitting problems are
respectively cast as Uncapacited Facility Location (UFL)
and Hierarchical Facility Location (HFL) instances that are
efficiently solved using a message passing inference algo-
rithm. We also propose new functions for measuring the
consistency between an edge and a putative vanishing point,
and for computing the vanishing point defined by a subset
of edges. Extensive experiments in both synthetic and real
images show that our algorithms outperform the state-of-
the-art methods while keeping computation tractable. In
addition, we show for the first time results in simultaneously
detecting multiple Manhattan-world configurations that can
either share one vanishing direction (Atlanta world) or be
completely independent.

1. Introduction

A set of parallel lines in the scene project into a pencil

of lines intersecting in the so-called vanishing point (VP).

The VP is the image of the point at infinity where the par-

allel lines intersect and encodes their common direction.

In the case of man-made environments, the sets of parallel

lines are usually orthogonal to each other, and the detection

of the corresponding VPs enables to accomplish different

tasks. Applications include intrinsic camera calibration [9],

estimation of the camera rotation with respect to the scene

[1, 12], 3D reconstruction [20], and recognition [2].

The automatic detection of VPs using sparse edges [6]

or edge gradients [19] is a problem of multi-model fit-

ting where the models are line pencils. It is in general

a ”chicken-and-egg” problem because we neither know

the number and parameters of the models (the vanishing

points), nor the edges that belong to each model (the mem-

(a) Manhattan World (b) Multiple orthogonal triplets

Figure 1. Two images of man-made environments.

bership). The first attempt of automatic detection of VPs

goes back to the 80’s when Barnard proposed to use the

Hough transform on a quantized Gaussian sphere [3]. It

was latter shown that the accuracy of such an approach

highly depends on the choice of the voting bins, and that

the detection results are often spurious. In [1], Antone and

Teller suggests to carry the VP detection using Expectation-

Maximization (EM) with the E-step computing the proba-

bility distributions of the input lines passing through the hy-

pothesized VPs, and the M-step refining the VP models by

maximizing the likelihood of the observed data. Latter on,

the EM framework was successfully extended to the case of

uncalibrated cameras [12, 19]. However, the process is iter-

ative and requires a good initial estimate that is typically ac-

complished by clustering the edges assuming a world dom-

inated by either 3 (Manhattan) [1, 12] or 5 (Atlanta) [19]

mutually orthogonal vanishing directions (VDs). In [18],

Rother combines RANSAC search with several heuristics

for recovering the VPs of Manhattan directions, but the final

algorithm is computationally expensive and requires distin-

guishing between finite and infinite VPs. Finally, Tardif has

recently proposed a new image-based consistency metric to

be used with J-Linkage for clustering the edges into pencils

of lines [21]. The algorithm is fast, robust, and accurate,

being one of the best performing VP detectors that are cur-

rently available.

The works above perform the separate estimation of the

VPs in the image, which, in many cases, is followed by
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grouping the result into directions that are mutually orthog-

onal [21]. A different approach is to consider a priori that

the scene follows the Manhattan world assumption and de-

termine the rotation that is aligned with the 3 dominant

VDs. In this case, the VP detection is no longer a prob-

lem of multiple model fitting, but the problem of fitting a

single triplet of mutually orthogonal VPs in the presence of

edges that are outliers. Such fitting can be accomplished

through EM [6], by using minimal solutions as hypothe-

sis generator in a RANSAC paradigm [17], or by applying

Branch-and-Bound to solve a consensus set maximization

that assures global optimality [4]. The disadvantages of this

type of approach are that additional VDs that might exist are

passed undetected, and the methods cannot handle images

with more than one set of Manhattan-world directions for

which multi-model fitting is again required (see Fig. 1(b)).

1.1. Contributions

This article addresses the problem of detecting VPs in

uncalibrated images using either edges or line segments,

and (given the intrinsic calibration) the problem of grouping

the detection results into sets of mutually orthogonal VDs.

The contributions with respect to the state-of-the-art are:

1. A global solution for VP detection: It has been recently

argued that methods that greedily search for models

with most inliers (within a threshold) while ignoring

the overall classification of data are in general a flawed

approach to multi-model fitting, and that formulating

the fitting as an optimal labeling problem with a global

energy function is usually preferable [11]. Our article

goes towards this direction and formulates for the first

time the detection of VPs as an Uncapacited Facility
Location (UFL) problem [14] that can be solved using

a local message passing approach [14, 15]. Experi-

ments show that such a global approach is very com-

petitive with the state-of-the-art algorithm [21] that re-

lies in J-Linkage and EM. Very recently, Tretyak et al.

[22] presented a method that integrates the estimation

of line segments, lines, VPs, the horizon and zenith in a

single energy optimization framework. Besides of be-

ing complex and time consuming, this formulation al-

ready assumes that a discrete number of accurate VPs

has been obtained.

2. New functions D(e,v) and W (S): Independently of

the multi-model fitting approach, the detection of VPs

always requires a consistency function D(e,v), which

measures the likelihood of the edge e being in a line

l passing through the putative VP v, and a function

W (S) that computes the most likely VP given a set of

edges S. Many prior works formulate the consistency

function in the Gaussian sphere after back-projecting

the edges and VPs [3, 1, 12, 4, 19]. However, and as ar-

gued in [21], measurements in the image space are usu-

ally preferred because the non-linear mapping into the

sphere changes the statistics of noise ultimately lead-

ing to biased estimation results [18]. Therefore, Tardif

proposes to formulate D(e,v) and W (S) using the ge-

ometric distance measured in the image [21]. How-

ever, and in order to avoid iterative non-linear mini-

mization, he works with the maximum orthogonal dis-

tances to the edge endpoints rather than considering

the mean distance to all points. We show that this

minimization problem can be solved in closed-form

and propose new functions D(e,v) and W (S) that im-

prove the overall fitting results while keeping compu-

tation tractable.

3. A global solution for detecting multiple sets of mutu-
ally orthogonal VDs: The existing methods for de-

tecting mutually orthogonal VDs assume that the im-

age depicts a single Manhattan-world configuration

[17, 4]. In practice these algorithms often become un-

stable and/or inaccurate whenever there is no image

evidence for one of the Manhattan directions, and can-

not cope with frames like the one of Fig. 1(b) show-

ing more than one group of mutually orthogonal direc-

tions. We propose for the first time an algorithm that,

given an initial set of VPs, it is able to detect multi-

ple Manhattan-world configurations that can either be

complete or incomplete (two directions), and be inde-

pendent or have one direction in common (Atlanta-

world). The multi-model fitting is solved in a global

manner by casting the problem as an Hierarchical Fa-
cility Location (HFL) problem [8].

1.2. Notation and Organization

We denote scalars in italic, e.g. s , vectors in bold char-

acters, e.g. p, and matrices in sans serif font, e.g. M. Geo-

metric entities are represented in homogeneous coordinates,

e.g. q= (q1 q2 1)
T

, and the skew-symmetric matrix is de-

noted by [ ]×. Finally, the orthogonal image distance be-

tween a point q and a line l is given by

d⊥(q, l) =
|qTl|√
lTIsl

with Is =

⎛
⎝1 0 0
0 1 0
0 0 0

⎞
⎠ .

The article is organized as follows: Sec. 2 presents the

FL and HFL problems, and shows how they can be solved

using a message passing approach; Sec. 3 presents the algo-

rithm for the detection of VPs; Sec. 4 concerns the detection

of multiple orthogonal VP triplets; and finally, the experi-

mental results are presented in Sec. 5 and 6.

2. The Facility Location Problems
This section briefly introduces the problems of Unca-

pacited Facility Location (UFL) and Hierarchical Facility
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Location (HFL) that play a key role in the global approaches

for detecting VPs and clustering mutually orthogonal VDs.

To the best of our knowledge these frameworks were sel-

dom used in the context of computer vision. In [15] and [16]

the problems of subspace segmentation and two-view mo-

tion segmentation are formulated as UFL problems, respec-

tively, while in [23] Xiao et al. formulated the simultaneous

segmentation of registered 2D images and 3D points as a

hierarchical exemplar-based clustering instance [7], a prob-

lem that is closely related to UFL, and that was solved us-

ing a greedy bottom-up affinity propagation approach [23].

The UFL is a classical NP-hard problem that can be solved

by applying an optimization method based on the max-sum

algorithm [14, 15]. This method is more robust than the

greedy solver for UFL discussed by Delong et al. in [5],

and has been recently extended for also handling the HFL

problem [8]. Since this extension has never been applied in

computer vision, we briefly outline the solver that relies in

local message passing.

2.1. Uncapacited Facility Location (UFL) problem

Suppose that you need to open a set of facilities v0
j to

serve N customers ei∈E whose locations are known. Given

a set V0 comprising M0 possible facility locations, the cost

c0ij : E × V0 → R for assigning the facility v0
j to the cus-

tomer ei, and the cost v0j : V0 → R for opening the par-

ticular facility v0
j , the goal of the UFL problem is to se-

lect a subset of V0 such that each customer is served by

one facility, and the sum of the customer-facility costs plus

the sum of facility opening costs is minimized. This leads

to an integer programming problem that is usually formu-

lated using unary indicator variables y0j and binary indica-

tor variables x0
ij , and whose objective is to find the vector

x0 = {x0
11...x

0
ij ...x

0
NM0

} such that :

min
x0

N∑
i=1

M0∑
j=1

c0ij x
0
ij +

M0∑
j=1

v0j y
0
j

subject to

⎧⎪⎪⎨
⎪⎪⎩

x0
ij , y

0
j ∈ {0, 1}, ∀i, j

M0∑
j=1

x0
ij = 1, ∀i

y0j ≥ x0
ij , ∀i, j

(1)

The equality in the second constraint ensures that each cus-

tomer is assigned to exactly one facility, while inequality

of the last constraint guarantees that each customer is only

served by facilities that were opened.

2.2. Hierarchical Facility Location (HFL) problem

Let’s now imagine that the facilities v0
j need to be

stocked by storage facilities v1
k, which in turn need to be

stocked by larger warehouses v2
m, and so forth till the graph

of the UFL problem is extended by L additional levels

�
��

�
��

�����	

�����	�

Figure 2. A HFL problem with two layers is shown. The first layer

l = 0 corresponds to the UFL problem, where the customers ei
need to be served by the facilities v0

j . The second layer l = 1
contains the storage facilities v1

k that are the suppliers of v0
j .

(Fig. 2). Given a set of potential Ml facility locations Vl
at layer l, the cost vlj : Vl→R for opening the facility vl

j ,

and the cost cljk : Vl−1×Vl →R for the facility vl
k supply-

ing the facility vl−1
j , the goal of HFL is to find the vector

x = {x0...xl...xL} that minimizes the following function:

min
x

N∑
i=1

M0∑
j=1

c0ijx
0
ij +

L∑
l=1

Ml−1∑
j=1

Ml∑
k=1

cljkx
l
jk +

L∑
l=0

Ml∑
j=1

vljy
l
j

s.t.:

⎧⎪⎪⎨
⎪⎪⎩

xl
ij , y

l
j ∈ {0, 1}

M0∑
j=1

x0
ij = 1, ∀i

∧ Ml∑
k=1

xl
jk = yl−1

j , ∀j, l>0

y0j ≥ x0
ij , ∀i, j

∧
ylk ≥ xl

jk, ∀j, k, l>0

The additional restrictions compared to Eq. 1 are that (i)

if a facility vl−1
j is closed in layer l−1, then vl−1

j will not

need to be stocked by a storage facility vl
j , whereas (ii) if a

facility vl−1
j is open, then it must be stocked by a facility in

the next layer l. Note that in the case of a single layer, the

HFL problem reduces to the UFL problem (see Fig. 2).

2.3. Solving the UFL and HFL problems using the
max-sum algorithm

In [15, 14] Lazic et al show how to solve the UFL prob-

lem using a local message passing approach. They formu-

late the UFL problem as a maximum-a-posteriori (MAP)

problem and represent it using a factor graph [13]. The

MAP estimates for x0
ij can then be inferred using the max-

sum algorithm [13], which is a log-domain equivalent of

the max-product solver [13]. More recently, Givoni et al.

[8] extended this message passing framework for solving

the HFL problem. The basic idea is to iteratively update the
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following messages until convergence1:

ηlij=−clij +min(τ li ,−max
k �=j

(αl
ik − clik)), l>0

ηlij=−clij −max
k �=j

(αl
ik − clik), l=0

αl
ij=min[0,−vlj+φl

j +
∑
k �=i

max(0, ηlkj)], l<L+ 1

αl
ij=min[0,−vlj+

∑
k �=i

max(0, ηlkj)], l=L+ 1

where the messages

τ l+1k =
M l∑
j=1

max(0, ηljk)− vlk , φl−1
j =max

k
(αl

jk − f l
jk)

are required for connecting successive layers. The message

τ l+1k is passed upwards from layer l to layer l+1, while the

message φl−1
j goes down from layer l to layer l−1. The max-

sum algorithm is guaranteed to converge on tree graphs, and

has shown good performance for L=1 on graphs with cy-

cles in many applications, e.g. [15]. It is important to men-

tion that a practical way of dealing with message oscilla-

tions is to damp the messages at each iteration [14]

η = γηprev + (1− γ)η

where γ ∈ [0, 1[ is the damping factor and ηprev is the previ-

ous message. Upon convergence, the set of facilities F l in

layer l that are open are F l = {vl
j |
(
αl
ij + ηlij

)
> 0}. The

optimal MAP estimation for x is given by

xl
ij =

{
1 if clij ≤ clik

∧
vl
j ,v

l
k ∈ F , ∀j, k

0 otherwise

3. Algorithm for vanishing point detection
This section shows that the detection and estimation of

VPs can be formulated as an instance of the UFL problem

discussed in Sec. 2.1. Such formulation requires defining

a consistency metric D(ei,v
0
j ) that measures the consis-

tency of an edge ei with a putative VP v0
j , and a function

W (S,w) that, given a subset of edges S, computes the most

likely vanishing point v.

3.1. Vanishing point detection as a UFL problem

Let ei ∈ E with i = 1...N be the ith edge extracted from

an image. The objective is to assign to each edge ei a VP

v0
j ∈ V 0 using as few unique VP models as possible. This

multi-model fitting problem can be casted as an instance of

the UFL problem as follows: consider that the edges ei are

the customers and the putative VPs v0
j are the facilities. Let

the cost c0ij be given by the function D(ei,v
0
j ) that evaluates

1Remark that initially η = 0 and α = 0.

the consistency between ei and v0
j , and let v0j be the cost for

adding v0
j in the final VP assignment. The goal is to select

a subset of VPs in V0 such that sum of the consistency mea-

sures c0ij and the costs v0
j is minimized, which corresponds

exactly to the minimization of Eq. 1. There are however

some issues that must be addressed: (i) the selection of the

set V0 of VP hypotheses, (ii) the definition of the function

D(ei,v
0
j ) that provides the client-facility cost c0ij by mea-

suring the consistency between edge ei and a putative VP

v0
j , and (iii) the choice of the function W (S,w) that, after

clustering a subset S of edges, updates the VP location.

The set V0 containing the initial VP hypotheses depends

mainly on the time constraints of the particular application.

In the case of no time limitations, V0 can comprise all the

point intersections between pairs of lines li, lj fitting every

possible pair of image edges ei, ej , respectively. Otherwise,

a fast RANSAC procedure can be used for quickly extract

model hypotheses using minimal sample sets. The issues

(ii) and (iii) are addressed in the next sections.

3.2. The consistency function D(e,v)

Given an edge ei, comprising Pi points ek with k =
1...Pi, and a putative VP v0

j , the objective is to find a cost

function D(ei,v
0
j ) that evaluates how well a line lj in the

pencil centered in v0
j can fit the edge points ek. We pro-

pose to determine the line lj that minimizes the sum of the

squares of the geometric distances to the points, and use

the root mean value of this sum as the client-facility cost

c0ij . Contrary to what is suggested in [21], the minimization

problem can be solved in a closed-form manner. Any line

lj going through v0
j can be parametrized as follows

lj(λ) ∼ (1− λ)[a]×v0
j + λ[b]×v0

j ,

with a, b being any two points non-collinear with v0
j , and

λ being a free parameter. For the sake of convenience, the

points a, b are typically chosen as being the endpoints of a

line segment orthogonal to the edge ei and passing through

its midpoint. We want to find the λ value such that:

min
λ

Pi∑
k=1

d2⊥(ek, lj(λ))

From the formula for the orthogonal distance d⊥, it comes

after some algebraic manipulations that

Pi∑
k=1

d2⊥(e
k
i , lj)=

(v0
j
T
A2v

0
j )λ

2+(v0
j
T
A1v

0
j )λ+v0

j
T
A0v

0
j

(v0
j
T
B2v0

j )λ
2+(v0

j
T
B1v0

j )λ+v0
j
T
B0v0

j

(2)
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where

A0=
Pi∑

k=1

[a]×eke
T
k [a]×, A1=

Pi∑

k=1

([a]×eke
T
k [b]×+[b]×eke

T
k [a]×)−2A0

B0=
Pi∑

k=1

[a]×Is[a]×, B1=
Pi∑

k=1

([a]×Is[b]×+[b]×Is[a]×)−2B0

B2=
Pi∑

k=1

([b]×Is[b]×)−B0−B1, A2=
Pi∑

k=1

([b]×eke
T
k [b]×)−A0−A1

The minima and maxima of the objective function are the

λ values for which the derivative is zero. By differentiating

the expression of Eq. 2, it comes that these extrema can be

easily computed by solving a second order equation. Given

the particular arrangement between a, b, and the edge ei
we choose the root λ0 that is closest to 0.5, and replace the

result in the equation below:

D(ei,v
0
j ) =

√√√√√
Pi∑
k=1

d2⊥(ek, lj(λ0))

Pi
(3)

3.3. The functionW (S) for updating the VP estimate

After solving the UFL problem, the edges sharing the

same label are clustered into a subset S, and the objective is

to determine the most likely intersection point v ∼ W (S)
for the lines li fitting the edges ei ∈ S . We propose to up-

date the VP by finding the point location that minimizes the

weighted sum of the square of geometric distances to the

lines li. Taking into account the formula of the orthogonal

distance, it comes after some algebraic manipulations that

W (S) = min
v

vT Qv

subject to : vT p = 1

with

Q =

Ni∑
i=1

w2
i

li l
T
i

lTi Isli

where wi is the length of each edge ei, and p = (0 0 1)
T

.

Remark that the purpose of the constraint is to assure that

v3 = 1 complies with the formula for computing the or-

thogonal distance d⊥. We can rewrite the constrained mini-

mization problem as an unconstrained one:

W (S) = min
v, λ

vTQv−λ(vTp− 1).

with λ being a Lagrange multiplier. By differentiating the

objective function, it comes that the minima can be deter-

mined by solving following matrix equation

[
2Q −p]︸ ︷︷ ︸

Q′

(
v
λ

)
= 0,

Note that if the lines li are quasi-parallel, the problem be-

comes undetermined, which can be observed by the matrix

Q′ becoming poorly conditioned. In this case, the VP v
is at infinity, and its direction can be computed by simply

averaging over the directions of li.

4. Detection of multiple orthogonal triplets
We assume in this section that a set of VPs has already

been extracted using any type of VP detection approach e.g.

the approach proposed in Sec. 3, and the objective is to de-

tect multiple mutually orthogonal directions in the scene.

As will be shown, this problem can be easily cast as a HFL

problem.

Given the intrinsic calibration matrix K, two VPs v0
j and

v0
k are orthogonal if the following relation is verified

v0
j
T
ωv0

k = 0, (4)

where ω = K−TK−1 is the image of the absolute conic [10].

Let the set

v1
m = {v0

j ,v
0
k,v

0
l }

be a mutually orthogonal triplet, meaning that each pair of

VPs in v1
m verifies Eq.4. Given a set of edges ei ∈ E , a set

of VPs v0
j ∈ V0, and a set of orthogonal triplets v1k ∈ V1,

whose individual VP elements are known and are contained

in V0, the objective is to assign a VP to each edge ei, mini-

mizing not only the number of VPs, but also the number of

orthogonal triplets. This problem is cast as a HFL instance

with two different layers (see Fig. 2): at the bottom layer

l = 0 we have the edges ei and the VPs v0
j , and at the top

layer l=1 we have the orthogonal triplets v1k. In addition to

the costs c0ij and v0j described in Sec. 3, there is a new pe-

nalization v1k : V1 → R for v1
k being contained in the scene.

The connection costs c1jk between v0
j and v1

k are given by

c1jk =

{
0 if v0

j ∈ v1
k

∞ otherwise

There are three issues that must be addressed: (i) how to

propose an initial set of orthogonal triplets V1, (ii) there

might exist VPs in V0 that are not part of any orthogonal

triplet v1
k, and (iii) the orthogonal triplets can share a com-

mon VD.

The issue (i) is solved as follows: for each pair of VPs

v0
j ,v

0
k in V0 whose angle between the corresponding VDs

is in the range [π2−θ, π
2 +θ], we obtain an exact orthogonal

triplet v1
m computed as follows

v1
m = {v0

1,v
0
2,v

0
3}

v0
1 = v0

j ,v
0
2 = Null(ω(v0

1 v0
k)),v

0
3 = Null(ω(v0

1 v0
2)),

which is added to V1, and where the operator Null(M) re-

turns the left nullspace of the matrix M. Note that the ad-

ditional created VPs are also added to V0, which implies

having very similar or even equal VPs in V0. This problem

is easily handled by the HFL solver that prefers assignments

with less VPs. For solving (ii), we add the vanishing groups

v1
m = {v0

j} containing a single VP to V1 whenever there

is no other VP in V0 whose VD makes up an angle in the

13381338133813401340



range [π2−θ, π
2+θ] with the VD of v0

j . The costs v1m for sets

v1
m containing a single VP are always less than for orthogo-

nal triplets, keeping these VPs in the final labeling. Finally,

the issue (iii) is solved by noting that since we construct

each orthogonal triplet v1
m individually, we can keep track

of similar VPs in v1
m after the HFL labeling.

5. Experiments with synthetic data

0 0.5 1 1.5 2 2.5 3 3.5
3

3.05

3.1

3.15
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3.25
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N
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V
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Figure 3. Clustering of line pencils in synthetic data. We compare

UFL using four different consistency metrics.

In this section we conduct a set of experiments in a simu-

lation environment that considers an image of size 640×480
and the intrinsic parameters provided by the York Urban

Database (YUD) [6]. We randomly generate 3 VDs in the

Gaussian sphere, with the angles between them being al-

ways less than 20◦. For each VP vj , we generate a pencil

of N line segments in the image, which are sampled into a

discrete set of points ek with k = 1...Pi. Each set ei has a

length between 20 to 200 pixels. The points are then per-

turbed with Gaussian noise of different magnitudes and 200
trials are run for each noise level.

Fig. 3 compares four different consistency metrics for

quantifying c0ij for the UFL clustering method: (i) UFL+D
- our measure D(ei,v

0
j ) described in Eq.3 using all the

points in ei, (2) UFL+D2 - the same measure D(ei,v
0
j ) us-

ing only the two end points the edge ei; (3) UFL+Tar.D
- the consistency metric of Tardif described in [21], and

(4) UFL+Gauss - operate on the Gaussian sphere by an-

alyzing the angle between the normal to the line li and

v0
j . Clearly, UFL operating on the Gaussian sphere pro-

vides the worst labeling results with increasing magnitude

of noise. The performance of the three metrics operating

in the image plane are similar for low noise, but our met-

ric D(ei,v
0
j ), which uses all the points in ei being clearly

the top-performer for higher noise magnitudes. The consis-

tency metric D(ei,v
0
j ) operating on the two end points of

li performs slightly worse, but with a high increase in com-

putational efficiency (less input data). By taking this results

in consideration, we decided to select UFL+D2 for measur-

ing the consistency between edges and VPs, being a good

trade-off between accuracy and computational efficiency.

Given a cluster S containing N lines li, we need to com-

pute a better VP estimation. As in the previous experiment,

we randomly generate a pencil S containing N lines, sam-
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Figure 4. Accuracy of the estimation of VPs given a pencil of N
lines. The error corresponds to the angle in the Gaussian sphere

between the ground truth VP and the estimated VP.

ple the lines into a discrete set of points, perturb the points

using Gaussian noise of different magnitudes, and then fit a

line li to these points in the least-squares sense. We com-

pare in Fig. 4 our function W (S) described in Eq. 3.3 (W)

with the VP estimator proposed by Tardif in [21] (Tar.W).

A careful analysis of the graphic shows that our VP esti-

mator provides better estimates for the same pencil of lines,

being considerably more robust to the noise level. These re-

sults justify our choice for selecting W (S) as VP estimator.

6. Experiments in real images
The section presents experimental results carried in real

data. Our algorithm was implemented in Matlab, being the

UFL and HFL solver run in MEX files. We compute an ini-

tial set of 5000 VP hypothesis for UFL using RANSAC over

a minimal set of two edges. In order to handle possible out-

lier edges detected in the images, we added the empty sets

v0
∅ and v1

∅ to both UFL and HFL, which have the facility

costs v0,1
∅ =0 and constant connections costs.

6.1. Experiments in YUD using the supplied lines
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Figure 5. Comparison between our UFL approach with the method

proposed by Tardif [21] for the detection of VPs.

We tested our algorithm for VP detection in the YUD [6],

which consists in 102 calibrated images of man-made envi-

ronments. Each image contains two or three VPs, line seg-

ments that were manually extracted, and whose VP mem-

bership is provided. Given the set of line segments, we

run our UFL algorithm and compared the results against

the ones obtained using the algorithm proposed by Tardif
[21]. The results are shown in Fig. 5. The accuracy of the

estimation of the VPs positions is very similar. However,

our approach applies the UFL solver and computes for each
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Figure 6. Cumulative consistency error computed using our D for

the three groups of ground truth edges (belonging to orthogonal

VDs). For each image we compute the root-mean-square (rms)

consistency error across all lines fitting the estimated VPs; GT
corresponds to the ground truth VPs provided by YUD.
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Figure 7. Cumulative consistency error computed using D for the

three groups of ground truth edges. The results for Ours and

Tardif were obtained using edges automatically detected.

output cluster a VP using W (S,w) (Eq. 3.3) without any

refinement step, whereas Tardif’s method re-estimates the

position of the VP after the J-Linkage procedure using EM.

Regarding the clustering of the lines, our approach shows

some improvements, having in 92% of the images less than

2% of the lines wrongly labeled. In terms of computation

time, Tardif takes on average 0.5 seconds on images of

YUD, while our UFL approach needs 1 second (note that

the number of initial VPs is the same for both).

Given the initial set of VPs obtained using the UFL al-

gorithm, the objective now is to detect the manhattan di-

rections, or similarly, a single rotation. We run our HFL

method and compared it against (1) the globally optimal

line clustering approach proposed by Bazin et al. [4], and

(2) the rotation obtained using the three most orthogonal

VDs of Tardif after fitting a perfect orthogonal frame to

these VPs [6]. The results are shown in Fig.6. Despite of

the close performance in terms of estimating the three or-

thogonal VDs, our method is computational more efficient,

running more than 50 times faster than Bazin.

6.2. Experiments in YUD using extracted edges

In this section, we test our HFL algorithm for detecting

the Manhattan frame in the YUD, but using edges extracted

trough Tardif’s detector [21] instead of the line segments

supplied by the database (see Fig.8). The comparison with

respect to Tardif is shown in Fig. 7. We consistently out-

perform Tardif, reaching 100% of success only approxi-

mately 1.5 pixels later than using the ground truth lines,

which proves the robustness of our approach. The Bazin

(a) We simultaneously detected the Manhattan directions

(red,green,blue) and 1 non-orthogoanl VD (magenta).

(b) Our algorithm detected 2 orthogonal triplets (middle and right),

and assigned the blue direction as being common for both.

Figure 8. Two cases from the YUD. The left images show the ex-

tracted edges (orange), while the detection results are shown on

the right. Black lines were assigned to the empty set (no VP).

Figure 9. (Left) extracted edges, and (right) detection results. In

each example (row) we detected 2 groups of orthogonal triplets

with the blue VD in common. The VD in magenta (row 3) was

detected but (incorrectly) not assigned to any triplet.

method was not included in this experiment due to its high

computational cost when compared to Ours and Tardif.
Fig. 8 shows two particularly interesting results obtained

by our approach. Using the HFL, we correctly identified

in Fig.8(a) the Manhattan frame and simultaneously esti-

mated the VDs corresponding to the handrails of the stairs.

In Fig.8(b), we identified two different mutually orthogonal

triplets (remark that for the analysis in Fig. 7, the orthogo-

nal triplet with more lines was automatically selected), one

corresponding to the Manhattan frame and the other is due

to the squares on the floor. We also identified that both or-

thogonal frames share the same vertical direction.

6.3. Experiments in scenes containing multiple or-
thogonal triplets

This section shows experiments on real images contain-

ing more than one orthogonal triplet of VDs. The images
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Figure 10. (Row 1) extracted edges (left) and clustering obtained

using UFL (right); (Row 2) 3 groups of orthogonal triplets were

detected using HFL, the 2 on the left have the blue VD in common

shown in Fig. 9 were obtained using a Panasonic DMC dig-

ital camera, while the image shown in Fig. 10 was down-

loaded from Flickr. We run Tardif’s edge detector for ob-

taining the input edges for our UFL and HFL algorithms.

The results are quite encouraging. We are able to han-

dle high-resolution images containing many edges, detect-

ing simultaneously both multiple orthogonal triplets as well

as single VDs. Fig. 10 shows results for both the UFL la-

beling (top,right) and the following HFL procedure (bot-

tom). There is one error in the hierarchical clustering (bot-

tom, middle). Our approach mistakenly assigns the edges

on the roof to one orthogonal triplet, but this issue can be a

consequence of either a poor estimation of the focal length

or an ineffective tuning of the facility costs for HFL.

7. Conclusions

We presented an automatic and global approach for the

detection of VPs and mutual orthogonal VDs. The core of

the framework is the formulation of these multi-model fit-

ting problems as UFL and HFL instances, which are solved

using a message passing approach. The effectiveness of the

framework is proved by challenging real scenarios contain-

ing multiple Manhattan-world configurations.
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