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Abstract

The objective of this work is to detect all instances of a
class (such as cells or people) in an image. The instances
may be partially overlapping and clustered, and hence quite
challenging for traditional detectors, which aim at localiz-
ing individual instances.

Our approach is to propose a set of candidate regions,
and then select regions based on optimizing a global clas-
sification score, subject to the constraint that the selected
regions are non-overlapping. Our novel contribution is to
extend standard object detection by introducing separate
classes for tuples of objects into the detection process. For
example, our detector can pick a region containing two
or three object instances, while assigning such region an
appropriate label. We show that this formulation can be
learned within the structured output SVM framework, and
that the inference in such model can be accomplished using
dynamic programming on a tree structured region graph.
Furthermore, the learning only requires weak annotations
– a dot on each instance.

The improvement resulting from the addition of the ca-
pability to detect tuples of objects is demonstrated on quite
disparate data sets: fluorescence microscopy images and
UCSD pedestrians.

1. Introduction

Understanding images containing a large-number of ob-

jects of interest is a task of great importance for study and

monitoring of both the macroworld (e.g. crowds of pedes-

trians, or animal and plant populations) and within the mi-

croscopy domain (cells of in-vitro cultures and developing

embryos, blood samples, histopathology images, etc.).

Most computer vision methods for this task fall into two

classes. The first is based on individual object detection.

Such detection can be based on a sliding window or Hough

transform, followed by an appropriate non-maxima sup-

pression procedure [3, 8, 14], stochastic fitting of interact-

ing particles or object models [9, 10, 24], or region-based

detection [2, 18, 19]. The second class contains the meth-

ods that avoid the detection of individual instances but in-

stead perform analysis based on local or global texture and

appearance descriptors, e.g. by recovering the overall real-

valued count of objects in the scene [5, 12, 16, 22] or by es-

timating the local real-valued density of the objects in each

location of interest [11, 15].

Depending on the degree of overlap between objects, the

first or the second class of methods might be more appropri-

ate. For low object-density images with infrequent overlaps

between them, detection methods may perform very well,

while regression/density estimation methods can e.g. hallu-

cinate small but non-zero object density/object count spread

across the parts of images that do not in fact contain any

objects. Furthermore, the localization of individual objects

in the detection-based approaches facilitates more intricate

analysis by revealing patterns of co-location, providing the

possibility for shape and size estimation of individual in-

stances, and allowing the linkage of individual detections

through time for video analysis.

For the high-density images, however, detection-based

analysis may fail badly, especially when the amount of over-

lap and inter-occlusion between objects makes the detec-

tion of individual instances hard or impossible even for hu-

man experts. In such situations, the performance of den-

sity/global count estimation methods degrade more grace-

fully than detection-based methods. The analysis in this

case is essentially reduced to texture matching between the

test image and the training set, which may be feasible even

when individual instances are not distinguishable.

In real life, many applications require the processing al-

gorithm to handle both the high and the low-density sce-

narios. Furthermore, the two cases may co-exist within the

same image. E.g. an image from a surveillance camera may

contain multiple individual pedestrians but also few groups

of people which are hard to segment from each other [7].

Likewise, a microscopy image may contain both regions of

low and high cell density (sometimes corresponding to dif-

ferent morphological parts or different tissues).

In such situations neither of the methods mentioned

above will perform optimally and this motivates the ap-

proach we present here. This approach generalizes and

builds upon our region-based detection method [2]. The

main novelty of the proposed method is its ability to parse

the input image by detecting groups of objects of differ-

ent integer sizes (with a “group” of size 1 being a par-

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.415

3228

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.415

3228

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.415

3230



1 
1 

1 

1 

2 
2 

2 
1 

1 

1 

2 

2 3 
1 

1 

1 
1 

1 
2 

2 

1 
1 

1 
1 

1 
1 

1 
2 

a) input and

ground truth

b) pool of

nested regions
c) solution

with loss=0

d) postproc. of

(c)
e) solution

with loss=0

f) solution

with loss=1

g) solution

with loss=3

Figure 1: Given an input image (a) our model considers a pool of nested regions (b) and accomplishes detection by picking a

non-overlapping subset of regions (c), where each region is assigned a label corresponding to the estimated number of objects

(green=1, blue=2, purple=3). Such solution can be further refined to estimate individual object locations (d). The learning

in our model is performed based on weak annotation (red dots) and is driven by an instance count loss. Solutions with zero

loss (c and e) as well as non-zero loss (f and g) are shown. In the latter case, arrows indicate violations from the perfect

correspondence between the solution and the ground truth dotting.

ticular case). Via training performed on a set of weakly-

annotated training images, the proposed method learns to

choose different group sizes depending on the object den-

sity. Thus, similarly to local density estimation, it can avoid

trying to discern individual objects when they are clumped

together. Unlike local density estimation, however, the pro-

posed method is able to enforce the fact that each group has

an integer number of objects.

Similarly to our initial approach [2], the parsing process

is based on an efficient and exact inference procedure that

detects a set of non-overlapping extremal regions delivering

a maximum to the parsing functional. The learning is per-

formed in a structured SVM framework and optimizes the

(convex upper bound on the) counting loss. We observe that

such learning yields a desirable bias to prefer the most de-

tailed explanation, e.g. to choose the groups of the smallest

size whenever objects are discernable, as this strategy tends

to provide the highest counting accuracy.

We conduct a set of experiments with real and synthetic

fluorescence microscopy images, as well a surveillance data

from the UCSD pedestrian dataset. We observe that the pro-

posed method achieves very good detection accuracies de-

spite large amount of overlap, and very low effective reso-

lution. For all datasets, the proposed method outperformed

other detection methods, including a considerable improve-

ment over the baseline [2], and is comparable with the meth-

ods that are trained to count (and do not perform detection).

2. Background and Contributions

Detection of overlapping instances. Our main contribu-

tion is to extend standard object detection by introducing

separate classes for tuples of objects into the detection pro-

cess. Thus rather than trying to reason about the boundary

and part assignment between several tightly overlapping re-

gions [3, 8, 14, 21], tuples of objects are detected as a whole,

making the object detection process more resilient to strong

object overlap. At the inference stage, our model automati-

cally chooses the level of granularity (Figure 1-c), i.e. which

objects will be detected as singletons and which as part of

a group. If necessary, each group can be separated into sin-

gletons in a simple post-processing step (Figure 1-d).

Object recognition through extremal regions. Our ap-

proach to detection does not use a scanning-window de-

tector. Instead, we follow the observation [18] that good

object support hypotheses can be provided by extremal re-

gions of the image, for example MSER [17] (Figure 1-b).

These regions are well suited to biomedical data [2] and

text detection [19]. As an additional contribution, we ex-

tend the applicability of this approach by using extremal re-

gions of a derived image (rather than the input image itself).

For example, we use the extremal regions of a soft back-

ground difference image to generate detection hypotheses

for a surveillance image stream (whereas extremal regions

of the input images themselves would provide a poor hy-

potheses set). Note that this approach does not rely on ob-

taining a binary foreground mask from the background dif-

ference image (as is commonly done, see e.g. [10, 22]).

Extremal regions with non-overlapping constraint. Our

computational model is based on our previous work [2]

that also used non-overlapping extremal regions. Whilst

that initial model achieves good results on those biomedi-

cal datasets where objects are clearly discernable from each

other as extremal regions, it struggles to achieve high recall

when that is not the case (i.e. when for some object X, any

extremal region containing X also contains another overlap-

ping object Y; in this case [2] has no hope of detecting both

X and Y as they have to be detected as separate extremal re-

gions). This problem is overcome by our current approach,

where spatially-close objects that are not clearly discernable

from each other are detected together (as a pair, a triple, a

quadruple, etc.).

Our model is thus a strict generalization of [2] and, for

the purpose of self-containment, in the following section
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we describe our complete approach without focusing on the

distinctions from [2]. The gains resulting from the general-

ization will be demonstrated in the experiments section.

3. The Model
For an input image I containing multiple instances of an

object class (some of which may be overlapping) we want

to automatically detect the instances and provide an esti-

mate of their location. We start by generating a pool of N
nested regions, such that for each pair of regions Ri and Rj

in the pool, these regions are either nested (i.e. Ri ⊂ Rj or

Ri ⊃ Rj) or they do not overlap (Ri ∩Rj = ∅). In the sim-

plest case, a pool can comprise extremal regions of the in-

put image (i.e. connected components of the binary images

I > τ where τ is an arbitrary threshold). More generally,

we can transform the input image in various ways, creat-

ing a new map I where higher-value regions correspond to

higher probabilities of an object’s presence. The pool of

candidate regions can then be generated as a set of extremal

regions in the transformed image I.

Once the pool of nested regions is generated, each region

is scored using a set of classifiers that evaluate the similar-

ity of such region to each of D classes, where each class

signifies the integer number of instances of the object that

the region contains (i.e. a region of class d contains d in-

stances). During the learning stage, these classifiers are

trained in a coordinated fashion within the structured output

framework. Given the scores of the classifiers, an inference

procedure selects a non-overlapping subset of regions, and

assigns each selected region in the subset a class label, thus

indicating the number of objects that our system believes

this region represents. The choice of the region subset and

the class labels are driven by the optimization process that

simply maximizes the total classifier score corresponding to

selected regions and class labels subject to the non-overlap

constraint.

More specifically, let Vi(d) denote the classifier score

of a region Ri for class d (the higher the score, the more

this region looks like a typical region containing d ob-

ject centroids). For notational simplicity, we also define

Vi(0) = 0. We introduce the optimization variables y =
{yi|i = 1 . . . N}, where yi = 0 means that the region Ri

is not selected, and yi = d ∈ 1 . . . D means that the region

Ri is selected and assigned class d. We denote with Y the

set of all y that meet the non-overlap constraint, i.e. such

that ∀i, j : if Ri ∩ Rj �= ∅ then yi · yj = 0. Then the in-

ference is accomplished through the following constrained

maximization:

F (y) =
N∑
i=1

Vi(yi)→ max , s.t. y ∈ Y (1)

This maximization of (1) can be performed exactly and

efficiently using dynamic programming (since the region

pool has a tree structure – this follows from the nestedness

property of the regions). The optimization method is de-

scribed in the implementation details below.

3.1. Learning the model

The model for the evaluation of the regions can learn

from weak annotations, i.e. a dot inside each instance of the

object on a set of training images (rather than, say, a bound-

ing box around each instance). Such learning is driven by

an instance count loss (IC-loss) (2) that penalizes all devi-

ations from the one-to-one correspondences between anno-

tation dots and the selected regions (Figure 1).

Suppose we have M training images Ij indexed by j.

Let dji now be the number of dots contained in the region

Rj
i , and N j be the total number of dots in Ij . The IC-

loss imposed by such annotation on each possible region

labeling y is formulated as:

L(yj) =
Nj∑
i=1

[yji > 0]Δ(dji , y
j
i )+N j−

Nj∑
i=1

[yji > 0]dji (2)

Here, the first term penalizes the deviations between the

assigned class label yji of the selected regions and the true

number dji of dots inside of it. The penalty is determined by

the function Δ(·, ·), described later in this section. The last

two terms correspond to the total number of unmatched (un-

covered) dots for the yj configuration under the non-overlap

constraint, and thus penalize false negatives (missed detec-

tions).

Assuming that the properties of each region Rj
i are char-

acterized by the feature vector f ji , we set the classifica-

tion scores to be linear functions of these feature vectors:

V j
i (d) = (wd · f ji ), where wd is the parameter vector for

the dth class, and has the same dimensionality as the fea-

ture vector. The aim of the learning is to find a vector

w =
[
wT

1 ,w
T
2 , . . . ,w

T
D

]T
so that the inference (1) pro-

duces configurations with low IC-loss.

A simple approach for learning w is to train binary clas-

sifiers for each of the D classes, in a one-versus-rest fash-

ion. However, such an approach ignores the inference pro-

cess and the non-overlap constraint, and we therefore per-

form learning within a structured output learning frame-

work; specifically, a structured SVM—[23]. Thus, since the

loss (2) cannot be optimized directly, a convex upper bound

is optimized instead. The minimization objective on w can

then be written as:

||w||2+ C

M

M∑
j=1

max
yj∈Yj

(
L(yj) + w · (Ψ(f j ,yj)−Ψ(f j , ȳj)

))
(3)

where the first term is the regularization on w, the second

term is the upper bound on the training error, C is a con-

stant that controls the trade-off between them, ȳj is some

given “ground-truth” configuration (see later) with the zero
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IC-loss, and Ψ(f j ,yj) is the joint feature representation de-

fined as follows:

Ψ(f j ,yj) =
[ ∑Nj

i=1[y
j = 1]f ji , . . . ,

∑Nj

i=1[y
j = D]f ji

]T
(4)

The optimization objective (3) can be minimized with a

cutting plane algorithm [23], for which an efficient way of

computing the most violated constraint is required. Specif-

ically, we need to compute the second term of equation (3)

for a fixed w (loss-augmented inference). Fortunately, in

our case the loss (2) decomposes in an appropriate way, and

the loss-augmented inference corresponds to the following

optimization (after removing the terms independent from

yj):

max
yj∈Yj

Nj∑
i=1

[yji > 0]
(
Δ(dji , y

j
i )− dji

)
+ w · (Ψ(f j ,yj)

)
(5)

The maximization of (5) is then reduced to the optimiza-

tion (1) with V j
i (y

j
i ) = wyj

i
·f j

i +Δ(dji , y
j
i )−dji and solved

with the same dynamic programming inference.

Penalization function Δ. The direct extension of the pe-

nalization function Δ(dji , y
j
i ) in [2] for the case of multi-

ple objects would be Δu(dji , y
j
i ) = |dji − yji |; where the

penalization would have the same behaviour regardless of

the estimated class or the true number of dots inside the re-

gion. However, when considering the possibility of regions

containing multiple objects, we must take into account the

increasing intraclass variability (e.g. of region shape) for

higher-order classes that would bias the labels assigned to

the regions towards low-order classes. In order to counter-

balance such effect, we use a re-scaled penalization based

on the true number of dots dji inside the region Rj
i . Intu-

itively, assigning a class 7 to a region that contains 6 in-

stances is not as bad as assigning a class 3 to a region with

2 instances, thus it is not penalized so hard.

After experimentation with several variants of Δ(·, ·),
we found the best performing to be Δr(dji , y

j
i ) ={

(yji − dji )/(d
j
i + 1), if yji ≥ dji

dji − yji , if yji ≤ dji
.

Reestimating the “ground truth” configuration. In the

derivation above, the “ground truth” configuration ȳ was as-

sumed given for each image; however, only dot-annotations

are given at training time (not labeled regions), thus mul-

tiple “correct” (i.e. zero-loss) region configurations can be

consistent with such annotation (Figure 1c,e). To handle

this, we follow a conventional way [25] and add the “ground

truth” configuration for each image into the optimization (3)

as a latent variable hj ∈ Hj (where Hj denotes the set of

all labelings with the zero IC-loss). The learning is refor-

mulated as the following optimization:

min
w,hj∈Hj

⎧⎨
⎩||w||2 + C

M

M∑
j=1

max
yj∈Yj

(
L(yj) + w ·Ψ(f j ,yj)

)

− C

M

M∑
j=1

w ·Ψ(f j ,hj)

⎫⎬
⎭
(6)

The new objective can then be optimized by alterna-

tion. This implies that we need to provide a way of im-

puting the latent variable such that the problem is reduced

to the standard structural SVM in (3) for each iteration

of the alternation algorithm. Specifically, at the begin-

ning of iteration t for each training image j, we need to

find hj ∈ Hj that maximizes
∑M

j=1

(
w ·Ψ(f j ,hj)

)
. To

achieve this, we run the optimization (1) over Yj but set

V j
i (y

j
i ) = w ·Ψ(f j ,hj) + dji · v− [yji �= dji ] ·N j v, where

v is a very large positive constant. This choice of V j
i en-

sures that the maximum in (1) is attained for a zero-loss

configuration from H and that the costs of all such con-

figurations differ from
∑M

j=1

(
w ·Ψ(f j ,hj)

)
by the same

constant N j v.

3.2. Implementation details

Dynamic programming for inference. The maximiza-

tion of (1) can be performed exactly and efficiently by ex-

ploiting the nestedness property of the region pool. Indeed,

one can consider a tree-structured model, where each node

corresponds to a region and where parent-child links cor-

respond to the nestedness property. Namely, the node Rj

becomes a parent of the node Ri if Rj is the smallest re-

gion in the pool that Ri strictly belongs to. In this way,

because of the nestedness, the region pool can be organized

into a forest. We can then introduce the auxiliary variables

zi. The auxiliary variables z are uniquely determined by the

initial variables y in the following sense: zi = d > 0 iff ei-

ther yi = d or some yk such that Rk is an ancestor of Ri in

the tree equals d (note that two ancestors of the same region

cannot be assigned non-zero labels simultaneously as long

as y ∈ Y). The optimization (1) can then be rewritten as a

pairwise tree-structured MRF on the auxiliary variables:

F (z) =
∑

i|p(i)�=0

Wi(zi, zp(i))+
∑

i|p(i)=0

Vi(zi)→ max (7)

where p(i) maps region Ri to the number of its parent re-

gion (p(i) = 0 for root regions in the forest), Wi(d, d) = 0,

Wi(d, 0) = Vi(d), Wi(0, d > 0) = −∞, and Wi(d1, d2 �=
d1) = −∞ as long as d2 > 0. After such variable change,

all y ∈ Y are one-to-one mapped to z configurations with

the finite values of the functional (7) and this mapping pre-

serves F . The optimization task (7) can be accomplished

via tree-based dynamic programming [20] (the max-product
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algorithm). It is then trivial to compute the optimal solution

of (1) from the optimal solution of (7).

Postprocessing for inference. Several potential applica-

tions and performance measures require the output of the

method to be in the form of the sets of individual instances.

We use a very simple post-processing in this case. For each

selected region Ri we run k-means with k = yi on the im-

age coordinates of all pixels in that region, thus obtaining

an estimate for the set of centroids of individual objects.

Initialization and termination for learning. The initial-

ization of w for the alternation-based maximization (6) is

obtained by learning and concatenating a set of D binary

classifiers w1,w2, · · ·wD in a one-versus-rest fashion. The

positive training examples for the binary classifier wd con-

sist of all regions in the training images that contain d dots.

The alternations are stopped once the amount of change in

the ground truth configuration with respect to the previous

iteration
||ȳt−ȳt−1||

M falls below a pre-specified threshold ε.

4. Experiments and Results
To show the performance and generality of the method

presented, results are reported for two different tasks: cell

detection in microscopy images (Figure 2) and pedestrians

detection in surveillance videos (Figure 3). We evaluated

the performance with two kinds of metrics. Our primary

metric is mean absolute counting error, which measures the

absolute mismatch in the number of objects in an image be-

tween the output and the GT. The secondary set of metrics

are precision, recall and the F1 score of the detection ac-

curacy defined in a standard way. Here, to define true and

false positives as well as missed detections for each image,

we use the Hungarian algorithm to match (one-to-one) the

GT and the predicted set of centroids, with the radius of

the smallest object being the threshold for the acceptance

of the match. In the case of the pedestrians dataset, where a

depth map of the scene is provided, the match threshold was

made inversely proportional to the pixel depth. All metrics

are average numbers over the test dataset.

4.1. Cell Detection

Detecting cells in microscopy images is a challenging

task in many real applications. Among the several dif-

ficulties that cellular images present for detection algo-

rithms, partial cell occlusion and image saturation (common

in fluorescence microscopy) are particularly challenging as

the boundaries between cells tend to disappear, effectively

merging different cells into one object in the images. We

have selected two datasets to show the applicability of our

method for this scenario: a synthetic and a real dataset of

fluorescence microscopy. A synthetic dataset has the ad-

vantage of containing perfect annotations, making it ideal to

evaluate the different components of our method as shown

in Table 1.

MCE Prec. Rec.

Fiaschi et al. [11] 3.2± 0.1 - -

Lempitsky & Zisserman [15] 3.5± 0.2 - -

Barinova et al.[3] 6.0± 0.5 - -

Baseline [2] 51.2± 0.8 98.87 72.07

This work w\Δu, no lat.var. 14.31± 0.5 97.79 90.82
This work w\Δr , no lat.var. 5.38± 0.1 93.45 94.33
This work w\Δr + lat. var. 5.06± 0.2 94.58 94.62

Table 1: Accuracy for the synthetic cell dataset and com-
ponents evaluation. The high cell confluency in the syn-

thetic cell dataset [15] poses a difficult challenge for detec-

tion algorithms due to very high cell overlap. Therefore, it

is expected that counting algorithms such as [11, 15] would

outperform detection methods. Nonetheless, our method is

able to produce a comparable mean counting error (MCE),

while providing estimates of object localization evaluated

with precision and recall. The baseline method [2] is un-

able to detect objects in groups, and thus fails badly in

this dataset. The extension to multiple classes (tuples) con-

tributes most to the improvement over [2], especially when

the penalization in the cost function is done according to

Δr, in comparison to Δu proposed in [2] (see section 3.1).

Further improvement is obtained when including the opti-

mization over the “ground-truth” in included through the

use of latent variables.

For both cell datasets, the candidate pools of regions

were obtained by taking the (stable) extremal regions of the

raw input images by running the MSER detector [17] thus

effectively sampling the set of all extremal regions (a very

low stability threshold was used, so that several hundred re-

gions were accepted for each image).

The feature vector used to encode each extremal region

in the cell images (similar to [2]) consists of the concate-

nation of the following descriptors: (i) a 150-dimensional

binary vector encoding the area (where the area is soft-

encoded by putting two non-zeros at the adjacent en-

tries corresponding to the region), (ii) a 12-dimensional

histogram of intensities inside the region, (iii) two 8-

dimensional histogram of difference of intensities between

the boundary of the extremal region and a dilation of it (over

two different dilation scales), (iv) a 60-dimensional shape

descriptor (see [2]), and finally, (v) a binary vector of the

same dimension as the number of classes which encodes

the number of leaf regions (i.e. regions without nested re-

gions in the pool) nested within a given region. This last

descriptor often indicates the presence of individual objects

existing inside the region being encoded.

Synthetic flourescence microscopy. The synthetic dataset

of flourescence microscopy from [15] consists of 200 im-

ages generated with [13], divided in half for testing and

training, with an average number of 171 ± 64 cells per
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Fluorescence microscopy of embryonic cells

Figure 2: (best viewed in color) Results for our method on fluorescence microscopy datasets. Input images are shown with

their ground-truth annotations overlaid (red dots) for comparison. The output images show the selected regions, colour-

coded according to the estimated number of objects inside of it (green=1, blue=2, purple=3, yellow=4, cyan=5, red=7), also

indicated with digits omitting class 1 for clarity. The estimated centroids obtained through postprocessing are shown in blue.

Despite large amounts of object overlap, the proposed method is capable of providing quite accurate parsings of the images.

image. In [15], this dataset is further divided (randomly)

into different splits in order to vary the size of the train-

ing and validation sets. In Table 1 we show the perfor-

mance of our method and its components for the case of

32 + 32 training+validation images (same splits as in [15]).

The improvement brought by each component presented in

this work is compared with the baseline [2], which essen-

tially corresponded to limiting our proposed model to a sin-

gle class, and with a single ground-truth estimation (same

features were used in the evaluation). Moreover, we com-

pare to the counting methods [11, 15] and the detection

method [3]. As expected, the counting algorithms can out-

perform the detection methods in cases of very high object

overlap such as this synthetic cells dataset. Nevertheless,

our method can achieve comparable results with high pre-

cision and recall. The baseline [2], restricted to one object

per extremal regions, cannot cope with the level of object

clustering in this dataset and thus performs poorly.

Real flourescence microscopy. To show the performance

on real microscopy data, we evaluated the method on the

small dataset of 9 embryo fluorescence images (about 500×
500 pixels; the dataset is derived from one used in [2, 4]

by more careful annotation and leaving out 3 images where

reliable dot annotation was impossible even for a human).

As before, we evaluated the method of [2] as baseline,

and also compare with the recent method of [4] in Table 2.

F1-Score Count Error

This work 0.87 5.11
Arteta et al.[2] 0.86 6.11
Bernardis et al.[4] 0.86 8.00

Table 2: The accuracy for the real cell data set. The pro-

posed method outperforms the two previous methods both

in terms of the detection accuracy and the counting accu-

racy. Methods were optimized for best counting perfor-

mance.

In general, the proposed method outperformed both com-

petitors, both in terms of detection accuracy and, more sub-

stantially, in terms of the counting error. While we have

not restricted the number of classes in our method, we have

observed that only classes from 1 to 3 were returned in the

results, indicating that the learning procedure has consid-

ered the higher-order classes detrimental.

4.2. Pedestrian detection

We apply our method to detect and count pedestrians in

the UCSD surveillance camera dataset [6]. It consists of

2000 frames (158× 238 pixels) from a video surveilleance

camera, annotated with a dot on each pedestrian and supple-

mented with an approximate depth image and the region of
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(a) Ground-Truth Annotations (b) Automatic Detections (c) Soft Background Difference

(d) Candidate Extremal Regions (e) Selected Regions

Figure 3: (best viewed in color) Results for our methods on the UCSD pedestrian dataset. Due to the amount of overlap

and low effective resolution, this dataset poses a big challenge for detection algorithms. Nonetheless, our method is able to

produce accurate detection results (b) as compared to (a) the human annotations. Extremal regions are collected from (c) the

soft background difference image (see text), and a portion of those regions is shown over the original image (d). The method

selects non-overlapping regions (e) and estimates the number of instances of the object that the region contains, which allows

the prediction of the location of the individual instances. Digits indicate the estimated number of instances inside the region,

and green regions correspond to single objects.

interest. The pedestrians frequently occlude each other and

are imaged at a very low resolution (the furthest pedestrians

are just a few pixels tall). All this makes detection very hard

for this dataset, and although a number of counting methods

have been evaluated on it, to the best of our knowledge, we

are the first to run detection algorithms.

As pedestrians can correspond to both dark and bright

regions, we cannot use the extremal regions of the input im-

ages. Instead, to generate the tree of regions for this data,

we computed the background image using a simple median

filtering of a sparsely sampled set. For each frame, we then

simply compute the absolute value of the difference with

the background and look for extremal regions in this differ-

ence image. To reduce the number of candidate regions to a

few hundreds, we applied a mild Gaussian smoothing to the

difference image (σ = 1 pixel).

To describe each region, we have used (i) the histogram

of visual words computed with tree codebooks as in [15],

(ii) the area feature (as above), (iii) the histograms of inten-

sities for the difference image, (iv) the histograms of Canny

edge orientations as in [22], and (v) the nestedness feature

(as above). All vectors were concatenated to obtain f j
i .

We follow the protocol from [22] and split the data into

four groups in order to assess accuracy, scalability and prac-

ticality. The first split, ‘maximal’, contains 128 frames out

of a segment from the video, the splits ‘upscale’ and ‘down-

scale’ train on the most and least crowded frames respec-

tively, and the ‘minimal’ split trains on only 10 frames. The

counting results are shown in Table 3. In general, the pro-

posed method outperforms the baseline [2]. The counting

accuracy of our detection method is comparable with the

accuracy of methods that are trained to count and are not

able to estimate the locations of individual pedestrians (even

for singletons). For this dataset, we have observed that the

method produced classes 1 to 5, indicating that discerning

individual instances was harder than in the case of the real

cell images.

In terms of the detection accuracy, the proposed method

has also achieved an improvement over the baseline [2] (Ta-

ble 4). This is due to the fact that the proposed method,

while maintaining a precision similar to the baseline, is able

to increase the recall as it has the capacity to handle over-

lapping objects.

5. Summary and Discussion

We have presented a new model for object detection,

which is particularly suitable for images with multiple over-
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’max’ ’down’ ’up’ ’min’

Global count [12] 2.07 2.66 2.78 N/A

Segment+Count [22] 1.53 1.64 1.84 1.31
Density estim. [15] 1.70 1.28 1.59 2.02
Density estim. [11] 1.70 2.16 1.61 2.20

Baseline [2] 2.55 2.25 2.93 2.86
This work 1.98 1.55 2.16 2.35

Table 3: Mean absolute errors for people counting in the
surveillance video [6]. The columns correspond to the four

splits (’maximal’,’downscale’,’upscale’,’minimal’). Our detection

method approaches the counting accuracy of the counting meth-

ods, while outperforming the baseline detection [2] in all splits.

’max’ ’down’ ’up’ ’min’

Baseline [2] 87.22 87.66 88.30 86.47
This work 89.53 89.99 89.21 86.64

Table 4: Detection accuracy in terms of 100*F1 score for

the four splits of the UCSD pedestrian dataset. In this exper-

iment, we varied the bias of the learned classifiers to gen-

erate recall-precision curves and picked the point with the

highest F1-score on them. Generally, the proposed method

resulted in higher optimal F1-score (and also reached the

solutions with higher recall) compared to the baseline [2].

lapping object instances. Depending on the difficulty of the

detection task, the model has the flexibility to choose groups

of variable sizes (including individual instances if the task

is easy). The ability to pick the optimal level of granularity

(i.e. to determine whether the task is “hard” or “easy”) is

seamlessly obtained during the learning of the model. The

inference in the model is computationally efficient, requir-

ing only a few hundred classifier evaluations followed by

tree-based dynamic programming.

The use of the model is particular attractive for biomed-

ical images, where it considerably outperforms the base-

line [2] that can only predict individual instances all the

time. Thanks to the presented generalization of the region

pool generation process, we could also apply the model to

object detection in surveillance imagery, obtaining good de-

tection accuracy despite low resolution.

Limitations and extensions. One of the limitations of the

proposed method appears when the instances become even

denser than in the considered datasets and a higher number

of classes is needed to parse such images. In this case, our

structured output framework fragments the training data, so

that higher-order classes effectively receive less training ex-

amples. We are addressing this issue by investigating dif-

ferent learning frameworks for our model. Another obvious

possibility for improvement is a more sophisticated postpro-

cessing procedure (e.g. similar to [10]). Finally, it is worth

noting that all that is required of the candidate regions is

that they are nested. Thus, although we have used extremal

regions for candidates, they could instead be generated by

hierarchical image segmentation, e.g. [1].
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