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Abstract

In this paper, we introduce a new approach to con-
strained clustering which treats the constraints as features.
Our method augments the original feature space with ad-
ditional dimensions, each of which derived from a given
Cannot-link constraints. The specified Cannot-link pair
gets extreme coordinates values, and the rest of the points
get coordinate values that express their spatial influence
from the specified constrained pair. After augmenting all
the new features, a standard unconstrained clustering al-
gorithm can be performed, like k-means or spectral clus-
tering. We demonstrate the efficacy of our method for ac-
tive semi-supervised learning applied to image segmenta-
tion and compare it to alternative methods. We also eval-
uate the performance of our method on the four most com-
monly evaluated datasets from the UCI machine learning
repository.

1. Introduction

Clustering is a fundamental problem in data analysis and
is widely used in many fields. Unconstrained or unsuper-
vised clustering problems, where none of the data is la-
belled, remain an active research field in many domains.
However, sometimes some supervision is given on a sub-
set of the data in the form of labelled data, or as pairs of
constraints; namely, Must-link and Cannot-link constraints
that define a pair of data points that should or should not be
associated with the same cluster [1].

Must-links and Cannot-links impose direct constraints
on the specified pair of data points; however, the main chal-
lenge is that they should have a non-local influence on the
clustering result and should affect data points that are fur-
ther away from the specified pairs. Must-link constraints
are usually considered an easier case than Cannot-link con-
straints, since Must-link constraints are transitive and can be
represented as a shortening of the distance between the pair
to zero or some other small constant [2, 3]. On the other
hand, Cannot-link constraints are non-transitive and have
no obvious geometric interpretation [2, 6, 7] and therefore

1634

Daniel Cohen-Or
Tel Aviv University

cohenor@gmail.com

considered a difficult problem.

In this paper, we introduce a new approach for realizing
constrained clustering, focusing on Cannot-link constraints.
The key idea is to embed the data points into a higher di-
mensional space, which augments the given space with ad-
ditional dimensions derived from Cannot-link constraints.
The data points are augmented with additional coordinates,
each of which is defined by one of the given Cannot-link
constraints. The all-pairs distances among the data points in
the augmented space combines both the original distances
and the distances of points according to each Cannot-link
constraint. The actual clustering is then performed by some
convenient clustering technique, like k-means or spectral
clustering.

The strength of our approach stems from the fact that the
realization of a Cannot-link constraint does not impose an
early hard classification of data points by the two “poles”
of the given Cannot-link constraint. The technique that we
introduce augments the space with additional coordinates
that softly distribute the influence of the Cannot-link con-
straints, and defer the hard decisions to the actual clustering
phase. We present a method to define scalar values to each
data point that admit to their spatial inference by the in-
troduction of a Cannot-link constraint, thereby defining the
augmented coordinates (see Figure 1).

We demonstrate the performance of our method on a
number of well known datasets from the UCI benchmark,
and to other semi-supervised methods. We also show how
it performs as the basic machinery of an active learning ap-
plication for image segmentation. (no good)

2. Background

The problem of constrained clustering has been a sub-
ject of research in the context of semi-supervised learn-
ing where only a (typically small) subset of the data is la-
beled. Wagstaff et al. [5] has first formulated the con-
straints in the form of pair-wise Must-Link and Cannot-
Link constraints. The early work in constrained clustering
approaches considered the constraints by directly modify-
ing existing clustering methods by including explicit actions
induced by the Must-Link or Cannot-link constraints,e.g.,



Figure 1. An augmented dimension derived from a Cannot-link constraint. On the left is the original two-dimensional dataset. The
colouring is the ground-truth clustering of the data. The Cannot-link constraint is marked by a black line between a pair of points. On the
right is the high-dimensional space where an extra dimension was derived from the Cannot-link constraint and augmented to the original
space. In the middle are the corresponding distance matrices: the bottom distance matrix can much more easily be clustered to the two

ground-truth clusters.

[1, 8, 4, 2]. These methods were only considering hard-
constraints, where any inconsistency in the given con-
straints led to poor results or to break [8, 4].

Kamvar et al. [2] interrupt the Must-Link constraints
geometrically by setting a zero-distance between all such
pairs, and then recalculate the distance matrix using an all-
pair-shortest-path algorithm which enforces the triangle in-
equality and thereby restores a metric property. However,
they were unable to treat the Cannot-link in analog fashion
since it remains unclear which distance should be associated
with the constraint, and unlike the Must-link, Cannot-link
are not transitive. In our work, we adopt their solution to the
Must-Link constraints, and introduce a novel technique that
also interprets the Cannot-Link constraints geometrically.

Another approach to consider the pair-wise constraints is
to learn and define a distance metric that respects the given
constraints. These methods attempt to find an optimal lin-
ear transformation that warps the standard Euclidean met-
ric into a Mahalanobis one [9, 10, 11, 25]. The advantage
of this approach is that the new distances can then be used
with standard unconstrained clustering algorithms. The de-
coupling of clustering method and the pair-wise constraints
data embedding is also realized in our approach. However,
the metric learning methods do not embed the constraints
in the dataset itself, thus they might not be able to warp
or bend the space significantly enough to respect the given
constraints.

A recent approach is to apply the constraints into spec-
tral clustering methods. Spectral clustering considers the
affinity matrix A, which expresses the similarity of pairs of
points (A; ;), rather than directly the distance matrix. Sev-
eral attempts were made to redefine the affinity matrix itself
according to the given constraints. The idea was first pre-
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sented by Kamvar and Klein [12] by applying simple local
changes to the affinity matrix: Must-Link pairs were set to
A;; = 1 meaning they are very similar, and Cannot-Link
pairs were set to A, ; = 0 meaning they are very dissimilar.
This method avoids the problem of determining a proper
constant-value for Cannot-Link pairs. However, although
elegant, such a naive realization of the concept leads to
only limited local geometric impact, and requires many con-
straints to be placed before a significant effect takes place.
Some attempts have been made at improving this method
by propagating the constraints themselves to nearby pairs
[13, 26, 27]. Other methods propagate the constrained en-
tries in the affinity matrix to nearby entries [14]. Since the
affinity matrix is derived directly from the distance matrix,
these methods are usually effective with Must-Link con-
straints, but remain limited when dealing with Cannot-Link
constraints [15, 16, 17].

Recently, Wang et al. [18] presented a spring-based
method where the actual location of data points in the fea-
ture space is altered to agree with the given constraints.
Must-Link constraints attract points together and Cannot-
Link constraints push points apart, while springs are at-
tached to all pairs of points. Solving the spring-system
re-embeds the data points and redefines the distance ma-
trix. However, a Cannot-link constraint repulses the con-
straints pair together with their nearby points and often cre-
ates cluttered regions and conflicts. Figure 2 illustrates the
difference between our method and the spring-system based
method. As demonstrated, the main caveat of this approach
is that the displacements of the points occur within the origi-
nal dimensions, leaving the relations among the data points
in their original subspace untouched. Our method avoids
these problems by not altering the original dimensions, but



adding a new dimension for each Cannot-Link constraint
instead.

3. Overview

We present a constraint clustering approach, where the
input points {X;}X, are M-dimensional vectors. Typi-
cally, each dimension represents a measurement of a fea-
ture, and the distance D; ; between X; and X; expresses
the similarity between them in that feature space. However,
in most cases, the feature space is imperfect, so without any
constraint, the clustering of the points is likely to be erro-
neous. The key idea is to convert a given constrained clus-
tering problem to an unconstrained one. More specifically,
we assume that we are given a set of points X; and the con-
straints are given as Must-links and Cannot-links pairs. The
constraints are assumed to be sparse, constituting a semi-
supervised clustering problem.

Once the constrained problem is converted to an uncon-
strained one, any clustering method can be used. Some
unconstrained clustering techniques, like spectral methods,
do not require as input the embedding of the points in
space, but only a distance matrix D; ; that encodes the dis-
tances between every pair of points in the feature space.
The method that we present takes as input a distance ma-
trix D; ; (extracted from a feature space of M dimensions)
and N pairs of constraints and creates an altered distance
matrix Di’j (representing distances measured in an aug-
mented space of M + N dimensions). The embedding of the
points X in the augmented feature space is also available, if
needed.

The calculation of the distance matrix D is performed
in two steps. First, the Must-links constraints modify D
by shortening constrained pairs and running the all-pair-
shortest-path algorithm as described by Kamvar et al. [2],
yielding the distance matrix D. Then to respect the Cannot-
link constraints, D is augmented by adding additional co-
ordinates to yield D. The modified distance matrix ﬁ”
is first embedded in M dimensional feature-space. Then,
to account for the Cannot-link constraints new coordinates
are introduced in additional dimensions, where each coor-
dinate is derived directly from one Cannot-Link constraint.
As a result, each additional coordinate can be regarded as
a new feature representing a constraint. Assuming N pairs
of Cannot-link constraints, the augmented feature space is
now in M + N dimensions, and the D distance matrix can
be defined, respectively.

In Section 4 we elaborate more on the initial modifi-
cation of the feature space to respect the Must-link con-
straints. In Section 5 we present the conversion of a Cannot-
link constraint to a novel feature dimension. In Section
6 we discuss the elementary requirements of an interac-
tive semi-supervised clustering system, where in Section 7
we demonstrate such a system with a simple active semi-
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supervised image segmentation application. In Section 8§ we
evaluate the performance of our method on the UCI bench-
mark and compare it to other methods.

4. Converting Constraints to Features

The first step is to modify the input distance matrix D by
respecting all the Must-link constraints to define D. Fol-
lowing [2] we recalculate all-pair-shortest-path using the
following steps:

e Extract the minimal distance d,,;, greater than zero
from the input distance matrix D.

e Initialize the updated matrix D=D

e For every Must-Link constrained pair (4, 5), shorten
their distance to D; j = dynin.

e Restore triangle-inequality by updating ﬁm,y
min(Dy,y, Dy i + D; j + Dj ), for every pair z, y.

The above algorithm shortens the entries in the distance
matrix D between constrained pairs to a minimum constant
and then updates all other distances in the matrix appropri-
ately so the triangle-inequality holds. The restoration of the
triangle-inequality for each pair x,y is a single operation
and does not necessitate an iterative process since the short-
est path must either be the existing path between x, y or the
path that goes directly through ¢, 7. Since now D defines
a valid metric, it can be used to re-embed the data points
back into feature space. We choose to use a positive con-
stant d,,;,, instead of zero, so as to avoid two distinct points
being re-embedded in the same exact location.

The implementation requires going through every pair
of points for every Must-Link constraint, thereby its time-
complexity is O(N - K?), where N is the number of Must-
Link constraints, and K is the number of data points.

Once D is available, we need to account for the NV
Cannot-link constraints to define D:

I (c)
DY;=Df+ Y (a- D),
c=1..N

(1

where D(© are constrained distance matrices, /N is the num-
ber of Cannot-Link constraints and « is a factor determining
the degree of influence the Cannot-Link constraints have. «
can also be a function of N to account for cases where the
number of constraints is relatively large with respect to M.
The altered distance matrix D is calculated in p-norm. In
our implementation we used the Euclidean norm (p = 2)
and set & = d,qz, Where d,,,q, 1S the maximum distance in
D, so that constrained distances are normalized to the scale
of distances in D.

In the following we show how to define D(¢) for a given
Cannot-link constraint.



©
'.:o . *~ o0,
. * - ®
° °
o L e
4 o, ®
o' .
° o ¥ ¢ o
% ®
LJ °
° g0
o [
° oo
® °
° g0 @0
° °
o we €
¢
o %o *
°
.
.
o o
°
® e .
° °
. r o ..n
AL .
o, ¢ °
g L | é;% ° N
e o . L
° o0 %
°
° °
%e® * 2 ., (Y
3 e .

Figure 2. Two comparisons of our method to the spring-system based method. In each row: (a) original feature space with groundtruth
clustering and a Cannot-Link constraint in black. (b) the spring-system re-embeds the points in an undesired clutter. (c) our method
augments a dimension in which the desired points are distanced without damaging local structure or creating a clutter of points.

5. Converting a Cannot-link constraint to a
feature

For each Cannot-Link constraint we derive a new feature
dimension encoded in D(®). The framework of our method
is not coupled with any specific algorithm for deriving the
new dimension, but the algorithm should obey the following
guidelines:

e The constrained points in a pair should be placed as far
apart as possible by giving them extreme values along
the new dimension: one minimum and the other maxi-
mum.

All other data points should be assigned a scalar that
expresses their relation with the constrained pair, or
their likelihood to be clustered with one of the con-
strained pair.

We have chosen to implement a distance derivation for
the new dimension based on the Diffusion Maps, since the
distances between points in the diffusion space better re-
flect their likelihood to be clustered together [20]. Notice,
however, that we are not using the Diffusion Map to make
clustering decisions directly. The calculation of the Diffu-
sion Map will be explained below.

Given a Cannot-link constraint, its endpoints c1 and c2
are given fixed extreme values 1 and —1, respectively. All
other points are given values according to the following
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equation:
_ (p(i,2) = p(is cl))
b (i, e2) + (iye1))
where o (x,y) is the distance between points = and y in the
Diffusion Map, and v; is the value given to point ¢. Points
that are closer to c1 in the Diffusion Map get values closer to
1, points closer to c2 get values closer to —1, and points that
are as close to both get values close to 0. Figure 3 shows the
"closeness’ values in the Diffusion Map and demonstrates
why it is preferable over Euclidean distances.
We denote the constrained distance matrix between
points in the new dimension derived from constraint ¢ by:

3)

The distance matrix of the original dataset can be inter-
preted as an undirected graph that encodes “walking dis-
tances” between pairs of points. A “random traveller” on
that graph is more likely to walk on short edges than on
long ones; this likelihood is the affinity between two points
and is usually calculated using a Gaussian kernel:

@)

D(C) —

i.j |v; _Uj|

2
Dij

Aij=e o7,

“

where o is the kernel’s width, and the affinity matrix A is
normalized to create a stochastic matrix.

A Diffusion Map is a re-embedding of the dataset that
places two points close together if there is a likely “walk-
ing path” between them. Nadler et al. [20] showed that



eigen-analysis of matrix A is equivalent to the calculation
of random walk probabilities. Thus, each point x in the
dataset is re-embedded using coordinates derived from the
eigenvectors and eigenvalues of matrix A:

\Ijt(x) = (Xil/h ('T)v )‘éwZ(x)a ey )‘tKwK(l'))a

where \; is the i’th eigenvalue, 1); is the i’th eigenvector,
and ¢ is a “walking time” or scaling parameter which we
derive automatically from the dataset following [19].

The distance between two points z,y in the Diffusion
Map is then simply:

o(x,y) = [Vy(z) — Uy (y)|

&)

(6)

(a) (b)

Figure 3. Illustration of distances in Euclidean vs. Diffusion
spaces. The two elements marked black are the constrained end-
points. The coloring reflects how close are other elements to the
two endpoints. (a) Distances in Euclidean map. (b) Distances in
Diffusion map.

6. Interactive Semi-Supervised Clustering

Our method was designed to work well in interactive
Semi-supervised set-ups, where a user is first given an un-
constrained clustering result, and is then expected to add
constraints one-by-one or few at a time, until the clustering
result becomes satisfying. An interactive constrained clus-
tering method should follow these guideline in order to be
effective:

e Calculations should be relatively efficient in time-
complexity, since the system is interactive.

e Every addition of a constraint should have a noticeable
effect, otherwise the user will be discouraged quickly.

e Early constraints should have relatively significant ef-
fects, later constraints should have finer effects. This
allows the user to lead the system into stable conver-
gence.

The time complexity of our method is reasonable, allow-
ing interactive semi-supervision. Adding any single Must-
Link constraint is a O(K?) operation since it only includes
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updating the all-pair-shortest-path matrix Dsp); adding
a single Cannot-Link constraint can also be achieved in
O(K?) assuming the Diffusion Map is calculated in a pre-
process. This is achieved by calculating v; for each element
(O(K)), calculating DI(CJ) for each pair (O(K?)) and updat-
ing [Dﬁ ; by an element-wise sum (also O(K 2)). Of course,
the unconstrained clustering algorithm itself must also be
time-efficient.

Our method enables a quick convergence to a desirable
stable state. The first Cannot-Link constraints added by the
user have an immediate and significant effect on the result-
ing distance matrix D. This effect is a result of « (in Eq 1)
having a constant value, which is determined by the maxi-
mal distance in the original distance matrix. Thus, the first
constrained distance matrix D(®) is given a weight which is
equivalent to the weight of the original distance matrix. Ad-
ditional constraints all share the same total weight o, so the
incremental addition of more constraints causes each con-
straint to become gradually less significant. Notice, that the
order by which constraints are added does not affect the fi-
nal result. Different sequences produce different intermedi-
ary distance matrices, but produce the same final distance
matrix.

7. Constrained Image Segmentation

We have implemented a simple constrained image seg-
mentation application to demonstrate the applicability of
our method to interactive semi-supervised clustering prob-
lems. The application prompts the user to select an image
and a groundtruth segment labelling of its pixels. First, the
image is over-segmented into super-pixels using the method
provided by [21]. Each super-pixel is represented as a data
point with five features: average X coordinate, average Y
coordinate and average RGB values. The constructed fea-
ture space is fairly naive and does not convey many of the
usable features to segmentation like textures and edges. We
believe this represents many real-life problems, where an
ideal feature space is not available, thereby putting much
responsibility on the supervision.

An initial unconstrained segmentation is constructed us-
ing standard Spectral Clustering, taking the distances be-
tween the feature vectors in L2-norm. The user can then
either insert a manual constraint by clicking on the desired
pixels (for either Must-Link or Cannot-Link constraints),
or she can request the application to insert a random con-
straint respecting the groundtruth labelling. The application
constructs the constrained segmentation using 4 different
methods: Constraints as Features, Spectral Learning (Kam-
var 2003) [12], Affinity Propagation [14] and Constrained
Spectral Clustering (CSC) [15]. Only a 2-way clustering
algorithm was provided for the latter method; thus only
2-segment examples (foreground-background) were tested



ith Constraints

d

Kamvar 2003

Affinity Propagation

7 i
Feature Constraints

Figure 4. Result on Semi-Supervised image segmentation. Top
(left-to-right): Original image with a total of 3 constraints (two
Must-Links in blue and one Cannot-Link in black), oversegmen-
tation to super-pixels, ground truth segmentation, 3D view of the
Feature Space with constraints. Bottom (left-to-right): Our result,
and other compared methods. It is clear that our algorithm has a
superior result, though Affinity Propagation is a close match.
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Figure 5. Result on Semi-Supervised image segmentation. Left-to-
right: Original image with a total of 3 constraints (one Must-Links
in blue and two Cannot-Link in black), oversegmentation to super-
pixels, our result, other compared methods and unconstrained re-
sult. It is clear that our algorithm has a superior result.

Feature Constraints Kamvar 2003

Affinity Propagation

Uncor

Figure 6. Result on Semi-Supervised image segmentation. Left-
to-right: Original image with a total of 4 constraints (three Must-
Links in blue and one Cannot-Link in black), our result, other
compared methods and unconstrained result. Our algorithm has
a superior result, although not perfect.

here. We also attempted to use the method introduced in
[26] for this application, but failed to produce comparable
results

We have run our application on several images taken
from the Berkeley Segmentation Dataset[22]. Two of our
results are shown in Figures 4, 5. It is visually clear that
our method outperforms the competition. In Figure 7 we
show the results for random constraints drawn according to
the ground truth segmentation, for which we have also com-
pared to Information Theory Metric Learning (ITML) [25].
Our method reaches a good result with very few constraints,
and is able to quickly improve when more constraints are
added.
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We have also compared our constrained algorithm to the
other methods, with random constraints over the 117 im-
ages with four or less ground-truth segments that are in
the Berkeley Segmentation Dataset. Each image was tested
with 50, 100, 200 and 400 constraints; each test result is
the average result of 10 random constraints-set. Table 1
shows a histogram, counting which method outperformed
the rest for a total of 468 tests. Over all the 4,680 runs of
random constraints-sets, our method (denoted as ”Feature”)
outperformed the rest in 2,324 cases, Affinity Propagation
and ITML both separately in 1,097 cases, Spectral Learning
in 102 cases, and Constrained Spectral Clustering in only 60
cases. This ratio is consistent with the average results.

8. Results on UCI Datasets

We evaluate the performance of our method on the four
most commonly evaluated datasets from the UCI machine
learning repository [23]: Iris, Wine, Hepatitis and Iono-
sphere. Clustering results are evaluated using the Ad-
justed Rand Index [24]. Our results are compared with
five other methods: Spectral Learning (Kamvar 2003)[12],
Affinity Propagation [14], Constrained Spectral Clustering
(CSO)[15], Information Theory Metric Learning (ITML)
[25] and E2CP [26]. The Affinity Propagation, Constrained
Spectral Clustering and E2CP methods were implemented
and evaluated using the authors’ own MATLAB code; The
ITML method of finding a Mahanabolis distance metric
was implemented using the authors’ code, after which a
standard implementation of Spectral Clustering was used.
The Spectral Learning method was evaluated using our own
implementation following the implementation description
provided by the authors [12]. Implementation of the CSP
method was only available for 2-way clustering, thus fol-
lowing [15], we reduced the datasets to the two most diffi-
cult classes to discern.

The methods were evaluated using 10 to 200 random
Must-Link and Cannot-Link constraints, drawn randomly
from the groundtruth clustering. We take average, mini-
mum and maximum results over 50 different random sets
of constraints for each number of constraints. Results are
presented in Figures 8 and 9. Our method is more success-
ful than other methods in most cases, and in other cases it
does only slightly worse than the closest competition. The
unconstrained results of each method is different, because
each has a different implementation of the diffusion map
or of K-means. The Constrained Spectral Clustering (CSP)
and Spectral Learning (Kamvar 2003) methods require rel-
atively many constraints to be placed before they make a
significant impact, and they usually exhibit a monotonically
increasing function of clustering accuracy against number
of constraints. On the other hand, the Affinity Propaga-
tion method and our method are able to achieve a significant
effect with relatively few constraints, but suffer from non-
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Figure 7. Result on Semi-Supervised image segmentation. Performance of four methods on two images, evaluated using the Adjusted Rand
Index (vertical) against a ground truth segmentation. Evaluated for 1 to 100 randomly chosen constraints (horizontal). Average, minimum

and maximum results over 50 iterations.

50 Constraints

100 Constraints

200 Constraints 400 Constraints

30 60 90 117 All |30 60 90 117 All |30 60 90 117 All |30 60 90 117 Al

Features 13 17 11 13 54 |14 20 16 12 62|15 22 20 18 75|15 16 12 16 59
Affinity 12 8 11 7 38|10 5 5 6 26| 8 0 O 1 91 8 5 14 4 31
ITML 5 4 7 5 21 6 5 8 8 271 7 1T 9 7 30, 8 9 13 T 27
Kamvar 0 1 1 2 41 0 0 1 1 21 0 1 1 1 300 0 1 0 1

Table 1. Image Segmentation Comparison of images from BSD. Test results of 117 images with 50, 100, 200 and 400 random constraints.
Each test is broken to top 30 images (with best maximal result), top 31 to 60, top 61 to 90, bottom 91 to 117, and overall; this shows that
our method outperforms the rest over images that are easy or hard to segment.

monotony: the addition of more constraints might some-
times cause less accurate clustering. The running time of
all methods is comparable, spectral analysis being the most
prominent factor in all of them.

9. Conclusions and Discussion

We have presented a technique for constrained cluster-
ing where new features derived from pair-wise constraints
are augmented to the original data feature space. Our al-
gorithm is decoupled from the actual clustering as it merely
redefines or warps the distances among the points in the fea-
ture space. We have performed an extensive evaluation to
demonstrate that our method outperforms alternative meth-
ods in most cases.

Similarly to commonly used techniques in optimiza-
tion, whereby a constrained problem of the sort min f(x)
s.t. ¢(x) = 0 is converted into the unconstrained prob-
lem min f(z) + pe(z), in our setting the hard Cannot-link
constraints are incorporated into an unconstrained system
where those constraints are not guaranteed to be satisfied.

Our method extends the dimension of the problem.
While this is the key of our method, it also incurs two intri-
cacies: first, if the number of constraints is relatively high
to the original space dimension, the complexity of the com-
putation increases significantly. However, in most cases,
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Figure 8. Results on the most common UCI datasets. All datasets
were reduced to 2-way clustering problems by selecting the hard-
est two classes to discern. The figure shows clustering results eval-
uated using the Adjusted Rand Index on the vertical scale, number
of constraints on the horizontal scale.

we care about a sparse set of constraints. The second prob-
lem is the weight of the additional dimension relative to the
original one. As we described in Section 5, in all our ex-
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Figure 9. Results on the 3-way datasets of Wine and Iris from UCIL.
These datasets were not tested on the Constrained Spectral Clus-
tering method [15] since it’s available implementation supports
only 2-way clustering. The figure shows clustering results eval-
uated using the Adjusted Rand Index on the vertical scale, number
of constraints on the horizontal scale.

periments we gave the additional dimension the same over-
all weight as the original ones. Although this was proved
to work well, it remains as an open problem for future re-
search.
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