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Abstract

This paper is concerned with model fitting in the pres-
ence of noise and outliers. Previously it has been shown
that the number of outliers can be minimized with polyno-
mial complexity in the number of measurements. This pa-
per improves on these results in two ways. First, it is shown
that for a large class of problems, the statistically more de-
sirable truncated L2-norm can be optimized with the same
complexity. Then, with the same methodology, it is shown
how to transform multi-model fitting into a purely combina-
torial problem—with worst-case complexity that is polyno-
mial in the number of measurements, though exponential in
the number of models.

We apply our framework to a series of hard registration
and stitching problems demonstrating that the approach is
not only of theoretical interest. It gives a practical method
for simultaneously dealing with measurement noise and
large amounts of outliers for fitting problems with low-
dimensional models.

1. Introduction
Even though it is widely accepted that the truncated L2-

norm is a good way to model noise and outliers, its use has

been hindered by the difficulty in solving the correspond-

ing optimization problem. Local descent techniques are

plagued by the many local minima often present and more

sophisticated global optimization approaches suffer from

the worst-case exponential time-complexity. In this paper,

we show that the problem is in fact solvable in polynomial-

time. This basic result serves as a basis for developing a

practical and yet optimal approach to geometric fitting, si-

multaneously dealing with noise and outliers.

One motivating example is given in Figure 1. Here the

objective is to register slices of prostate tissue stained in dif-

ferent colours. The staining shows the morphological char-

acteristics of the tissue and is routinely used by uropatholo-

gists to diagnose cancer. As the images originate from dif-

ferent tissue slices, the local structure may look quite differ-

ent in different images. Therefore, in order to obtain at least

some correct correspondences, the acceptance threshold for

Figure 1. (Left) Images of two different stainings from a prostate

biopsy with 791 hypothetical correspondences (cyan) obtained

from SIFT. (Right) Same images, but now with 21 inlier corre-

spondences (green) of the optimal truncated L2-fit. The running

time of our MATLAB implementation is 3s. See text for details.

the feature detector must be generously set. The downside

is that this may produce a considerable amount of false cor-

respondences. Note that the example in Figure 1 is the most

difficult case in a database of 88 image pairs and more than

97% of the matches are outliers.

Related work. The most frequently used approach for

dealing with outliers is based on RANSAC [10]. The basic

assumption is that all minimal inlier-samples will produce

an acceptable solution. However, it has been empirically

observed that this is not valid in practice [12] and therefore

numerous improvements of the basic technique have been

proposed. For example, guided sampling methods have

been proposed in [16, 6] and a strategy for local model re-

finement was developed in [12]. RANSAC and its variants

have also been applied to multi-model estimation [18, 15].

Still, the fact remains that the estimator has no guarantee of

finding the optimal solution.

Several recent works have focused on computing an op-

timal estimate based on branch-and-bound. For example, in

[9, 8], robust estimators for 3D reconstruction is proposed

and in [13], a formulation based on mixed integer program-

ming is given. Similar ideas are presented in [3] for line

clustering and vanishing point detection. These methods do

not depend on initialization and converge to a global opti-

mum. However, as they are based on branch-and-bound, the

complexity of the algorithm is exponential.

In [14], it was shown that the problem of maximizing the

number of inliers can be solved in polynomial-time in the

number of measurements. This result was recently general-

ized in [7] by improving the complexity bound and weaken-
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ing the conditions on the class of residual functions that can

be handled. Our work is closely related at the conceptual

level. Still, only the 0 − 1 loss function (or more precisely,

a piece-wise constant function) can be handled in [7], and

not the statistically motivated truncated L2-norm.

In the case of multiple models, the above methods (opti-

mal or not) for estimating a single model can be applied se-

quentially. The sequential (or greedy) approach removes all

correspondences that are deemed inliers for the most dom-

inant model, and then the process is repeated. This, how-

ever, will not produce the optimal solution [18]. The ap-

proach may even produce “phantom” solutions [17]. Sev-

eral heuristics have been proposed to overcome such arte-

facts, though there is no guarantee of optimality.

Contributions. The main contribution of this work is a

proof as well as a practical algorithm that shows that the

problem of estimating a model under the truncated L2-norm

can be achieved in polynomial time (in the number of mea-

surements) given that there exists a method for solving the

standard least-squares problem. Experimental results and

comparisons to (exhaustive) RANSAC are given for chal-

lenging registration and stitching problems.

The second contribution concerns the problem of fitting

multiple models. We show that maximizing the number of

inliers can be done in polynomial-time given a fixed number

of models and model parameters. Unlike greedy approaches

that estimate one model at the time, we can guarantee that

the optimal solution is obtained. The proof is based on sim-

ilar ideas and concepts as in the truncated L2-case.

2. Problem Formulation

Noise modelling. As noted above, most approaches for

robust estimation in vision count the number of inliers to

assess the quality of a solution, where inliers are - by defi-

nition - residual errors less than some prescribed threshold

ε. This approach is simple and generally yields good re-

sults, but it does have its limitations. One problem is that

the method might be sensitive to the choice of ε, but also

that the distribution of the inlier errors is not modelled. In

[4] a more refined loss function is proposed. The assump-

tion is that inlier residuals have a clock-shaped error distri-

bution similar to the Gaussian distribution, whereas outlier

residuals have approximately uniformly distributed errors.

These assumptions lead to the loss function

l(r) = − log
(
c+ exp (−r2)) (1)

where r is the residual error; see Figure 2. It is also noted

that a good approximation can be obtained by truncating the

ordinary squared error.

0 1 2 3 4
0

1

Residual
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Figure 2. A robust loss function (solid black) as suggested in [4],

and the truncated L2-error (red) which can be optimized using the

proposed framework; in this case truncated at ε = 1.

A single model. We will work with a truncated quadratic

loss function. For a residual r we compute the loss as

�(r) =

{
r2 if |r| ≤ ε,

ε2 otherwise.
(2)

Problem 1. Let D be a d-dimensional differentiable man-
ifold, embedded in R

m (m ≥ d) by a set of equality con-
straints hj(θ) = 0. Given a set of residual functions
ri : D → R, i = 1, . . . , n, estimate a model θ ∈ D such
that

n∑
i=1

�(ri(θ)) (3)

is minimized.

Example. To make this more concrete, we look at the reg-

istration problem. Given two sets of points in R
2, {xi} and

{yi}, we want to find

R =

(
θ1 −θ2
θ2 θ1

)
and t =

(
θ3
θ4

)
(4)

mapping one point set to the other. Here D is a 3-

dimensional manifold that we embed in R
4 using the equal-

ity constraint,

h(θ) = θ21 + θ22 − 1 = 0. (5)

The residuals are simply the Euclidean distances

ri(θ) = ||R(θ)xi + t(θ)− yi||. (6)

Multiple models. In this case it is normally too difficult

to work with the L2-norm, so we settle with the 0− 1 loss

�(r) =

{
0 if |r| ≤ ε,

1 otherwise.
(7)

Problem 2. Estimate a set of k models {θ1, . . . , θk} with
θj ∈ D, such that

n∑
i=1

min
j=1,...,k

�(ri(θj)) (8)

is minimized.

This corresponds to minimizing the number of outliers.
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A reformulation. Instead of solving our original prob-

lems directly, we will show that one can obtain the sought

solutions by solving a number of simpler subproblems.

Definition 1. Given two sets of residual functions I and O,
let D(I,O) denote the set of θ ∈ D such that ri(θ) ≤ ε for
all ri ∈ I and ri(θ) ≥ ε for ri ∈ O.

Just as in [7], we introduce an dummy goal function f .

In the end, f will be chosen to achieve simple equations,

but now it is sufficient to say that it should be differentiable.

Problem 3. Given two sets of residual functions I and O
and a differentiable function f : D �→ R,

min
θ∈D(I,O)

f(θ). (9)

The constraints on θ can also be written,

gi(θ) = ri(θ)− ε ≤ 0, for all i ∈ I

gi(θ) = ε− ri(θ) ≤ 0, for all i ∈ O

hj(θ) = 0, for all j , (10)

whith hj as in condition 1. Note that all residuals ri,
i = 1, . . . , n need not be in I ∪ O. In fact, we will only

consider instances of Problem 3 with subsets. The size of

the problem is defined to be the number of residuals |I∪O|.
We will show in the next two sections that both Problems 1

and 2 can be solved by considering instances of Problem 3

of size ≤ d.

Definition 2. An FJ-point to an instance of Problem 3 is a
point that satisfies the Fritz-John conditions1 for local op-
timality; see [2]. More precisely, a feasible point θ is an
FJ-point if there is a non-trivial solution to

μ0∇f(θ) +
∑

μi∇gi(θ) +
∑

λj∇hj(θ) = 0 (11)

with μi ≥ 0 and μigi(θ) = 0 for all i.

Naturally, we cannot solve any problem on this form.

The following conditions will be sufficient for the theoretic

discussion.

Condition 1. We require that D is a d-dimensional dif-
ferentiable manifold embedded in R

m using constraints
hj(θ) = 0. We also require that the hj are continuously
differentiable and that the gi’s are differentiable.

Condition 2. If I is non-empty then D(I,O) is bounded.

1The Fritz-John conditions are closely related to the more well-known

Karush-Kuhn-Tucker conditions.

Figure 3. The residual functions trace out regions in D and for all

θ in such a region, the inlier/outlier partition is constant. In order

to find one point in the green region (left), it is enough to consider

a subproblem with only d = 2 residuals (right).

Example. It is not hard to show that this condition holds

for registration. Given a corresponding point pair (xi, yi),
assume that the translation |t| > |xi| + |yi| + ε. By the

triangle inequality

|Rxi + t− yi| ≥ |t| − |Rxi| − |yi| > ε. (12)

Hence the translation is bounded as long as there is at least

one inlier, and as the rotation part has unit length this shows

that D(I,O) is bounded.

3. Fitting Under Truncated L2-norm
For any feasible model point θ ∈ D, the set of residuals

will be partitioned into two sets, an inlier set I for which

ri(θ) ≤ ε for all ri ∈ I and the complement set of outliers

O. The basic idea is to compute all such partitions - the

main result is that there are onlyO(nd) partitions - and then

solve a standard least-squares problem for each inlier set.

The result is illustrated in Figure 3.

If Condition 2 is satisfied and the residual functions are

continuous, then there exists a minimizer to Problem 1. Due

to lack of space, we omit the proof. The minimizer will have

the following characteristic.

Lemma 1. A minimizer θ∗ to Problem 1 is also the global
minimum to

min
θ

∑
ri∈I∗

r2i (θ), (13)

where I∗ = {ri : ri(θ∗) ≤ ε}.
Proof. Assume to the contrary there exists a θ′ such that∑

ri∈I∗
r2i (θ

∗) >
∑
ri∈I∗

r2i (θ
′). (14)

Let O∗ denote the set of residuals that are not in I∗. If we

add ε2|O∗| to the left hand side we get the total loss at θ∗,

hence
n∑

i=1

�(ri(θ
∗)) >

∑
ri∈I∗

r2i (θ
′) + ε2|O∗|

≥
∑
ri∈I∗

�(ri(θ
′)) +

∑
ri∈O∗

�(ri(θ
′)) =

n∑
i=1

�(ri(θ
′)) (15)

which is a contradiction.

∇f− ∇f−
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Lemma 1 shows that if we somehow knew the correct

set I∗, we could find an optimal solution in truncated L2

sense by solving a standard least squares problem. In many

cases, this can be done efficiently. The key is then to find

all candidates for the correct inlier set and the following

theorem implies how this can be achieved.

Theorem 1. Assume that Conditions 1 and 2 are satisfied.
Let I be a non-empty subset of the residuals { ri }ni=1 and
O the remaining ones such that D(I,O) 	= ∅. Then at least
one point in D(I,O) is an FJ-point to an instance of Prob-
lem 3 of size ≤ d.

Lemma 2. Let v, e1, . . . , en be elements in R
d (n > d).

Suppose
μ0v +

∑
μiei = 0, (16)

where μi ≥ 0, not all zero. Then (possibly after renumber-
ing), there exists μ̄i ≥ 0, not all zero, such that

μ̄0v +
d∑

i=1

μ̄iei = 0. (17)

Proof. According to the Theorem of Caratheodory, 0 can

be written as a positive linear combination of no more than

d+ 1 of the vectors. If at most d of the ei’s are used we are

finished. It remains to consider the case when

0 =

d+1∑
i=1

biei (18)

with all bi > 0. If these ei’s do not span R
d they are in a

subspace and we can use Caratheodory again to reduce the

set. If they do span R
d then there exist ci such that

v +
d+1∑
i=1

ciei = 0. (19)

Pick j such that cj/bj is minimized. Using (18) and (19),

bj · (19)− cj · (18) = bjv +

d+1∑
i=1

(cibj − cjbi)ei = 0. (20)

All coefficients here are≥ 0 and the jth coefficient is 0.

Proof (Theorem 1). Consider Problem 3 for this I and O.

As D(I,O) is closed and bounded, and f is continuous, a

minimizer θ exists. By Theorem 4.3.2 in [2], θ will satisfy

the Fritz-John conditions. More specifically,

μ0∇f(θ) +
∑

μi∇gi(θ) +
∑

λj∇hj(θ) = 0, (21)

where μi ≥ 0, gi(θ) = ri(θ) − ε are inequality constraints

and μigi(θ) = 0, i = 1, . . . , n. As the hj’s are an em-

bedding of a d-dimensional manifold in Rm, the set {∇hj}

will span a (m− d)-dimensional subspace perpendicular to

the manifold tangent space at θ. Let P be the projection

operator onto this tangent space. By projecting (21) we get

μ0P∇f(θ) +

n∑
i=1

μiP∇gi(θ) = 0. (22)

Lemma 2 tells us that after renumbering, we can write

μ̄0P∇f(θ) +

d∑
i=1

μ̄iP∇gi(θ) = 0. (23)

Now consider μ̄0∇f(θ) +
∑d

i=1 μ̄i∇gi(θ). Clearly it must

be perpendicular to the tangent space at θ and hence there

exists λ̄j such that

μ̄0∇f(θ) +
d∑

i=1

μ̄i∇gi(θ) +
∑

λ̄j∇hj(θ) = 0. (24)

It follows that θ is an FJ-point to an instance of Problem 3

of size ≤ d.

This theorem tells us that if we can compute all FJ-points

for all instances of Problem 3 of size |I ∪ O| ≤ d, we can

also find all possible partitions of inlier and outlier sets. For

each FJ-point we simply check which residuals are < ε and

> ε, respectively. The only problem is residuals that are

exactly ε. Generically, there will be at most d such residuals

and hence we have 2d possible inlier sets to examine. In

practice, only one of these sets will make θFJ a real FJ-

point satisfying the constraint μi ≥ 0 from (11).

Algorithm 1 Single-Model Fitting

For the O(nd) instances of Problem 3 of size ≤ d.

Compute all FJ-points, denoted θFJ .

For each θFJ ,

Compute all ri(θFJ).
Find the partitioning I , O induced by θFJ .

Compute least squares solution θ∗ for I .

If this has the lowest loss so far, store θ∗.

Complexity. To actually find the FJ-points we need to

study the Fritz-John conditions somewhat closer. It is clear

that an FJ-point will have between 0 and d active inequality

constraints. This leads to equations of the kind gi(θ) = 0.

Note that these do not depend on the partitioning between

I and O in Problem 3. Hence the number of equation sys-

tems that we need to solve to find all FJ-points is
∑d

j=0

(
n
j

)
.

Depending on the structure of the equations, each of these

systems may have multiple solutions, but it does not depend

on n. Finally, according to the discussion above each solu-

tion will normally only induce one partitioning, I , O of the

residuals. For this I , we need to solve a least squares prob-

lem, which can often be done inO(n) time. Hence the total

running time is O(nd+1) for Algorithm 1.
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4. Multiple Models

The previous results also hold in the multi-model case,

as fitting k d-dimensional models can be viewed as fitting

one kd-dimensional model. However, the algorithm is less

useful as it requires an efficient subroutine for computing

the L2-solution in the outlier-free case. This is in general

not possible. If, on the other hand, we use the 0 − 1 loss

function, we can make the following important observation.

Theorem 2. Assume that we to fit k models and that Condi-
tions 1 and 2 are satisfied. An optimal solution to Problem 2
is a set of k FJ-points to instances of Problem 3 of size≤ d.

Proof. As the goal function can only attain a finite number

of values, a minimizer is guaranteed to exist. Consider such

a minimizer, {θ∗1 , . . . , θ∗k}. We will study θ∗1 more closely,

but note that the discussion holds for any θ∗j . Let I∗1 and O∗
1

be the set of inliers and outliers, respectively, to θ∗1 . Note

that a residual can be an inlier to more than one model, but

this will not matter. Consider the set D(I∗1 , O
∗
1) as in Defi-

nition 1. Clearly this set is non-empty since it contains θ∗1 .

Moreover, for any θ in this set, {θ, θ∗2 . . . , θ∗k} is a solution

to Problem 2. By Theorem 1 at least one point in D(I∗1 , O
∗
1)

is an FJ-point to an instance of Problem 3 of size ≤ d. This

can be repeated for indices 2, . . . , k.

The maximum k-cover problem. Assume that we have

computed all FJ-points for instances of Problem 3 with

|I ∪ O| ≤ d residuals. The remaining problem is choos-

ing k of these hypotheses such that Problem 2 is solved.

Each hypothesis (or FJ-point) can be represented by its set

of inliers Ii and we want to find a maximum k-cover,

max
|C|=k

∣∣ ⋃
i∈C

Ii
∣∣. (25)

This is a well-known NP-hard problem, but it is easy to

see that it is fixed-parameter tractable with respect to the

number of models. More precisely, let H be the set of hy-

potheses, and assume that we want to fit k models. Since

there are only
(|H|

k

)
possible choices, an exhaustive search

can be done in polynomial time as long as k is fixed. Nor-

mally, a more efficient solution is to formulate the max k-

cover problem as an integer linear program, and use stan-

dard solvers for this type of problem.

In summary, in order to optimally estimate a set of k
models (Problem 2), one can use Algorithm 2. The worst-

case running time is O(nkd+1).

5. Applications

We will look at three applications in more detail: Image

registration, stitching and multi-model registration.

Algorithm 2 Multi-Model Fitting

For each instance of Problem 3 with size ≤ d.

Compute all FJ-points, denoted θFJ .

For each θFJ ,

Set IFJ = { i | ri(θFJ) ≤ ε }.
Solve MAX k-COVER using the index sets { IFJ }.

5.1. Image Registration

We return to the image registration problem introduced

in Section 2. Given two sets of 2-vectors, {xi} and {yi},
find a rotation R and a translation t that minimizes the trun-

cated L2-norm, as illustrated in Figure 1.

As per previous discussions we need to find all FJ-points

to all instances of Problem 3 of size at most d = 3. We write

the constraints gi as

gi(R, t) = (Rxi + t− yi)
T (Rxi + t− yi)− ε2. (26)

We will need different polynomial solvers depending on the

number of active constraints. With 3 active constraints we

get 3 equations of type (26) and the embedding h(θ) =
θ21 + θ22 − 1 = 0. This amounts to 4 quadratic polynomial

equations in 4 unknowns. Using methods presented in [5]

we have implemented a minimal solver in MATLAB that

runs in about 0.6 ms on a standard computer (Intel I5).

For problems of size < 3 we also need to consider the

constraint posed on the gradients of gi, hj and f in (11).

This constraint implies linear dependence of the gradients.

These gradients are easy to calculate and using

det
( ∇f ∇g1 ∇g2 ∇h

)
= 0 , (27)

we obtain the necessary extra equations.

5.2. Image Stitching

We formulate the problem as Horn et. al. [11]. Given

two sets of unit 3-vectors, {xi} and {yi}, find a rotation R
such that

n∑
i=1

�(||Rxi − yi||) (28)

is minimized. As before, �(r) = min{r2, ε2}. Unless the

threshold ε is large, this is basically equivalent to minimiz-

ing squared angular errors.

The relevant inequality constraints for this problem are

gi(R) = yTi Rxi + ε2/2 − 1 ≥ 0. The parameter space

is 3-dimensional, one angle around each axis. We avoid

trigonometry in the unknowns and embed the rotation ma-

trix using a unit quaternion q. This does not alter the

form of gi(R(q)) ≥ 0 but introduces an equality constraint

h(q) = ||q||2− 1 = 0. Here R(q) merely denotes a rotation

matrix parametrized by the quaternion q.
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For problems defined by 3 active constraints we again

have a system of 4 equations in 4 unknowns. Using

methods presented in [1] a polynomial solver exploiting

the symmetry of the quaternion representation was con-

structed. For problems where only two inequality con-

straints are active we can no longer formulate a solvable

system. Again we need (11) to obtain a fourth equation

necessary to solve for the 4 unknowns in q. Just as for the

case of registration we use the implied linear dependence

and det(∇f ∇g1 ∇g2 ∇h) = 0 to obtain this equation.

To simplify this expression we select f(q) = q1, giving us

∇f = (1, 0, 0, 0)T reducing the above determinant calcu-

lation to a subdeterminant calculation. Single active con-

straints can be handled similarly. Our MATLAB imple-

mentation of the polynomial solvers runs in about 10 ms.

5.3. Multiple Model Registration

As discussed in Section 4, we need to calculate, again, all

FJ-points in where up to 3 constraints are active for single-

model registration. This part of the scheme is identical to

the single-model case. Each solution (or FJ-point) provides

us with an inlier set. Picking the maximum k-cover among

all possible inlier sets is then performed using CPLEX with

the provided MATLAB interface.

6. Fast Outlier Rejection
It would naturally be a great advantage if outliers could

be discarded early and not even considered as input to Algo-

rithm 1. This section will present such a method for fast out-

lier rejection which works both for registration and stitch-

ing. Note that only correspondences that can be shown to

not be part of an optimal inlier set will be discarded.

The technique iterates through the correspondences. For

each correspondence c, we obtain a bound of the following

type: If c is an inlier, then the total loss l is larger than. . . If

this bound is higher than the best solution so far, we can re-

move c permanently from the discussion. Rather than work-

ing directly with the truncated L2-norm we will use the fol-

lowing lower bound to the total loss, ε2|O| ≤ ∑n
i=1 l(ri),

where O is the minimal outlier set. Let us assume that resid-

ual i is below the threshold at optimum, that is, the ith cor-

respondence is an inlier. Under this assumption, we will

produce a bound on the optimal solution.

Proposition 1. Suppose that for a set of corresponding
points there exists a transformation T (for registration or
stitching) such that all residuals are less than ε. Then there
exists another transformation T ′ such that residual ri = 0
and all other residuals rj are less than 2ε, rj ≤ 2ε, j 	= i.

Proof. (Registration) Set t′ = yi −Rxi and R′ = R. Then

||t− t′|| = ||t+Rxi − yi|| ≤ ε and hence for any j,

rj = ||R′xj + t′− yj || ≤ ||Rxj + t− yj ||+ ||t− t′|| ≤ 2ε.

Proof. (Stitching) Let α = ∠(yi, Rxi). Then a rotation Rα

about xi × yi will map xi exactly to yi and ||Rα|| ≤ ε. So,

set R′ = RαR and hence for any j,

||R′xj − yj || ≤ ||RαRxj −Rxj ||+ ||Rxj − yj ||
≤ ||Rα||+ ε ≤ 2ε.

This means that a bound for the number of 2ε-inliers

given that ri = 0 is also a bound for the number of ε-inliers

given that ri ≤ ε. For both registration and stitching, getting

a bound is fairly easy as this constraint fixes the transforma-

tion up to a one-dimensional rotation using correspondence

(xi, yi). We can parameterize this rotation with an angle α.

Each of the remaining correspondences yields an interval

constraint on this α (which should be interpreted modulo

2π). To get a bound on the number of inliers we need to

find a point that lies in as many of these intervals as pos-

sible. This can be done by sorting the intervals and going

through the sorted list. The computationally most costly

part here is the sorting and hence the cost of this algorithm

isO(n log n). If we do this for each correspondence we get

a cost of O(n2 log n), which is significantly cheaper than

the optimal algorithm.

7. Experiments
We have performed a number of experiments on real data

to demonstrate the validity of the approach on our three ex-

ample applications. We compare our results with RANSAC,

but in order for a fair comparison we use RANSAC with

an exhaustive sampling of minimal subsets. The aim is to

show that our approach is in fact practical, without having

the drawbacks of a non-deterministic and non-optimal ap-

proach. For registration and stitching, the fast outlier rejec-

tion method of Section 6 is applied as a preprocessing step

to Algorithm 1. Normally 90% to 98% of the outilers are

eliminated in this step, but in rare examples this ratio drops

and in the two worst examples only 0.2% and 11% are elim-

inated. For multi-model registration, we use Algorithm 2

with CPLEX for max k-cover, but before running the poly-

nomial solver we do a simple test verifying that pairwise

distances are consistent. This is a fast way to see if the

solver will yield any real-valued solutions.

7.1. Registration

For the registration experiments the problem of match-

ing two differently stained tissue slices of a prostate biopsy

is addressed. Examples of such images are shown in Fig-

ure 4(a) out of a database of 88 pairs. These images vary

greatly in the number of reliable matches, and can have high

ratios of outliers (recall the example in Figure 1).

Truncation level is set at ε = 3 pixels. Compared with

standard RANSAC which optimizes the size of the inlier set
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(a) (b) (c)
Figure 4. (a) Image pairs of prostate tissue in two different stainings. (b) Stitching example from FLICKR showing the view from the Eiffel

Tower. This challenging example consists of two images taken under very different illumination conditions and resolutions, resulting in

poor matching. (c) Image pair of a lung tissue biopsy which has three components. (Top) Hypothetical correspondences (cyan) obtained

from SIFT. (Bottom) Inlier correspondences (green, blue and red) from the three estimated motions.
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Figure 5. Histogram of performance differences between our opti-

mal method and standard RANSAC (left) and RANSAC which eval-

uates the truncated L2-error for each sample (right). The x-axis is

scaled such that 1 unit corresponds to the cost of 1 outlier.

and in the end, computes a least-squares fit on this set, there

were 8 pairs with no difference. The improvement for the

other 80 pairs is shown in the upper, left of Figure 5. Com-

pared with RANSAC that uses the same truncated quadratic

loss, 42 pairs gave no difference. The improvement for

the remaining 46 pairs is shown in the upper, right of Fig-

ure 5. The scaling of the x-axis is normalized by the squared

threshold ε. This allows one to interpret the result as num-

ber of additional outliers. It is clear from the histograms

that the optimal method significantly outperforms the best

possible obtainable result from a standard inlier optimizing

RANSAC approach. Even though the truncated L2-RANSAC

performs considerably better, it is still not optimal in half of

the cases.

7.2. Stitching

A stitching example of a pair of images taken by different

photographers at different times, downloaded from FLICKR

with keywords “view from the Eiffel tower” is given in Fig-

difference in # inliers

# models 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +13

2 2 7 13 9 8 6 2 1 1 1 0

3 1 3 4 8 5 10 5 4 5 4 1

Table 1. The improvement of our method compared to sequential

RANSAC. Note that RANSAC hardly ever finds the optimal solution

even though the sampling of minimal sets is exhaustive.

ure 4(b). In total, a database of 53 image pairs were tested.

The images were of size 640 × 480 and had very narrow

overlap. The truncation was set to ε = 0.001 corresponding

roughly to 1.5 pixels. Compared with standard RANSAC,

there were 5 pairs with no difference. The other 48 pairs

are summarized in the lower, left of Figure 5. Similarly with

the truncated L2-RANSAC, there were 38 pairs with no dif-

ference while 15 pairs obtained improved results compared

with the optimal method, see the lower, right of Figure 5.

The relative performance between our optimal method

and RANSAC follows the same pattern as for the registra-

tion experiment. There is a significant difference compared

to standard RANSAC while for the truncated L2-RANSAC

the performance difference is smaller. These findings are

consistent with [12] where a truncated quadratic loss is also

found to perform better than simply counting inliers in the

RANSAC-loop.

7.3. Multiple Model Registration

For the experiments on simultaneous multiple model reg-

istration we emulate structures as the one displayed in Fig-

ure 4(c). The image shows a lung biopsy with three compo-

nents, matched to adjacent layers of the same tissues. Due

to the lack of availability of such data we use our prostate

data to generate multi-model cases with close to the same

number of inliers. For the cases with two models we used

20 inliers per model, and in total 40 outliers. For the three

model case we used models of different dominance and set

the inlier sizes to 10, 20 and 30. The number of outliers
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Figure 6. Timing experiments for registration. (Left) Runtime as

a function of the number of correspondences for the fast rejection

method. (Right) Runtime for Algorithm 1 as a function of problem

size (≈ the number of inliers). The dashed line is a y = cx3-curve.

was set to match the total number of inliers. The results for

both methods, compared to using a sequential RANSAC is

displayed in Table 1. Average running time for the 2-model

examples was 18 s and 90 s for fitting 3 models.

7.4. Runtimes and Time Complexity

By randomly selecting subproblems of different sizes

from the registration data, we examined the running times

of the fast outlier rejection and Algorithm 1 as a function of

problem size. The results are shown in Figure 6. As most of

the outliers are removed by the outlier rejection step and the

runtime of the second step depends mainly on the number

of inliers. This means that the total execution time of our

algorithm varies from a couple of seconds to slightly over

3 h even if the number of input points is fixed. In practice

though, there would be no need to run Algorithm 1 exhaus-

tively in cases with hundreds of inliers.

The practical complexity for Algorithm 1 is cubic rather

than the theoretical O(n4). It shows that for this size prob-

lems the dominant cost is that of computing the FJ-points.

The runtime of RANSAC is about 1 s for all experiments.

8. Conclusions
We have shown how to minimize the truncated quadratic

loss function, which accurately models the noise for both

inliers and outliers. Our experiments demonstrate that this

yields a practical approach when combined with a fast out-

lier rejection step. One weakness is that for large number

of inliers, it becomes infeasible to compute the optimal es-

timate. On the other hand, in such a case, it is not crucial to

find all inliers in order to get an accurate estimate.

Our work opens up the possibility to develop new feature

detectors. Current detectors are optimized to find a good

inlier/outlier ratio, whereas our approach shows that it is

possible to handle large amounts of outliers.
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