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Abstract

Visual speech recognition is a challenging problem, due
to confusion between visual speech features. The speaker
identification problem is usually coupled with speech recog-
nition. Moreover, speaker identification is important to sev-
eral applications, such as automatic access control, bio-
metrics, authentication, and personal privacy issues. In
this paper, we propose a novel approach for lipreading and
speaker identification. We propose a new approach for man-
ifold parameterization in a low-dimensional latent space,
where each manifold is represented as a point in that space.
We initially parameterize each instance manifold using a
nonlinear mapping from a unified manifold representation.
We then factorize the parameter space using Kernel Par-
tial Least Squares (KPLS) to achieve a low-dimension man-
ifold latent space. We use two-way projections to achieve
two manifold latent spaces, one for the speech content and
one for the speaker. We apply our approach on two public
databases: AVLetters and OuluVS. We show the results for
three different settings of lipreading: speaker independent,
speaker dependent, and speaker semi-dependent. Our ap-
proach outperforms for the speaker semi-dependent setting
by at least 15% of the baseline, and competes in the other
two settings.

1. Introduction

Audio visual speech recognition (AVSR) has been inves-

tigated intensively in the last few decades [19]. Specially af-

ter bimodal fusion of audio and visual stimuli in perceiving

speech has been demonstrated by the McGurk effect [15].

For example, when the spoken sound /ga/ is seen as /ba/,

then most people perceive the sound as /da/ [15]. Good sur-

vey for work on AVSR can be found in [19]. In the last

two decades, with the advances in computer vision, visual

speech recognition (VSR), also called lipreading, have at-

tracted research attention [25]. VSR systems gain impor-

tance with the need for controlling machines verbally in a

noisy environment. Example of such an environment is the

car, where the noise (e.g. from motor and radio) makes it

very hard for audio speech recognition. Another potential

example is to control robot in the outer space where there

is no media for audio transmission. Nevertheless, visual

speech recognition is a challenging problem, due to confu-

sion between visemes 1. Specially, when using information

only from plan marker-less and real life images.

Several approaches have been adopted for solving the

lipreading problem. Two main approaches are commonly

used in VSR literature: a Hidden Markov Model (HMM)

based approach and classifier based approach. In the HMM

approach, after choosing suitable descriptor for the visual

unit (usually visemes) corresponding to every node, this de-

scriptor employs as observations for the model. Then HMM

model is trained using Baum-Welch algorithm for encoding

the stochastic temporal relationship between these observa-

tions [14]. Consequently, the Viterbi algorithm [20] is used

for classification. The classifier based approach is based on

extracting a single feature vector for the whole clip of ut-

tered phrase (usually single word, or short sentence), and

train a classifier (usually SVM) based on that [27, 6]. The

proposed approach in this paper belongs to the latter cate-

gory.

Speaker identification and authentication are tightly cou-

pled with speech recognition [13, 23, 25]. Speaker identifi-

cation is defined as the ability to identify the speaker within

a group of users from solely speech related features, like

voice or mouth motion. Meanwhile, speaker authentication

is the ability to authenticate users. We tackle the former

problem in this paper. Speaker identification is related to

several research fields such as automatic access control, bio-

metrics, and personal privacy issues.

In this paper, we present a new approach for embedding

of manifolds in a low-dimensional latent space. We ini-

1Viseme is the visual phoneme. It is defined as the smallest discrimi-

native unit for visual speech
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tially parameterize each manifold using a nonlinear map-

ping from a unified manifold representation, similar to [5].

However, unlike [5], where factorization of the manifold pa-

rameterization is achieve using unsupervised subspace pro-

jection, we factorize the parameterization space in a super-

vised way. We propose to use kernel partial least square

(KPLS) on the mapping coefficient space to achieve a super-

vised low-dimensional latent space for manifold parameter-

ization. We use two-way projections to achieve two man-

ifold latent spaces, one for the speech content and one for

the speaker. The resulting low-dimensional parameteriza-

tion can be considered as a global spatio-temporal descrip-

tor for each speech sequence, which can be effectively used

for speech recognition and speaker identification.

The contribution of the paper can be contrasted in two

ways. From learning point of view, we propose a new way

to learn a low-dimensional supervised parameterization of

manifolds where each manifold is represented as a point in

a latent space. From the visual-speech point of view, we

propose a new approach for projecting visual speech fea-

tures into dual latent spaces that are capable of discriminat-

ing speech and speaker.

In this work, we use cosine similarity as a kernel on

the parameterization space. Moreover, we use two differ-

ent techniques for classifying new speech clip: one of them

is SVM, we learn multi-class SVM based on the projected

manifolds. The other one uses KPLS regression for classi-

fication on the latent space.

To test the effectiveness of our approach, empirically, we

show that our approach outperform previous approaches ap-

plied on two databases: AVLetters [14] and OuluVs [27].

We tackle three different lipreading problems: speaker inde-

pendent, speaker dependent, and speaker semi-dependent.

In both databases, our approach outperforms for speaker

semi-dependent setting by at least 15% over the baseline

[27], and competes in the other two settings.

This paper is organized as follow: after this introduction,

the related work will be reviewed in Section 2. The problem

statement will be defined clearly and the manifold parame-

terization will be described in Section 3. Synopsis for KPLS

is presented in Section 4. Thereafter, the proposed frame-

work will be presented in details in two sections: first the

manifold parameterization is described in Section 5, and the

manifold embedding using KPLS is presented in Section 6.

Section 7.1 lists the used datasets, and reveals all technical

details used in the experiments. Experimental results will

be shown in Section 7.

2. Related Work
Encoding the dynamics of speech video as a descrip-

tor has a long history within lipreading research. Graphi-

cal models have been used extensively in VSR and AVSR.

In [14], HMM was used for encoding the visual dynam-

ics of speech using Active Shape Model (ASM) and Ac-

tive Appearance Model (AAM). A more general Dynamic

Bayesian Network(DBN) model has been used in [22] with

different visual articulation units called articulatory fea-

tures. Graph embedding has been used in [28] for estimat-

ing the curve that represent the dynamics in video. These

methods try to capture the smooth temporal changes be-

tween the used visual units, but they may loose some visual

information that may be crucial for discriminating small

speech chunks like single letter utterance.

On the other hand, the work in [27] is based on extracting

a single spatio-temporal feature vector for representing the

visual and temporal information for the whole speech video.

In [24] optical flow was used for extracting the whole word

features. These two approaches outperform in the case of

small size videos but it might be sensitive to frame outliers.

In our method, we care about smoothness, since we ex-

tract the geometric deformation of the lip-moving manifold

and at the same time use all the appearance information for

learning a parameterization for this manifold. We test our

model on two databases, one contains small clip (AVLet-

ters) and the other database contains slightly longer clips

(OuluVs). As the best of our knowledge, we are the first to

use homeomorphic manifold analysis and KPLS in the field

of visual speech recognition.

3. Problem Definition and Framework
Overview

We have a set of images sequences representing differ-

ent activities. Let us denote the k-th sequence by Sk =
{xk

i ∈ RD, i = 1 · · ·nk}, where the images are represented

using suitable features of dimensionality D. Let yk repre-

sents the class labels for the k-th sequence. In this paper,

for the particular case of speech recognition and speaker

identification, yk ∈ {c1, · · · , cK} × {p1, · · · pL}. Here ci
is the activity class label (speech unit), while pj is the per-

former class label (speaker). Each sequence lies on a low-

dimensional manifold, denoted by Mk, embedded in the

feature space RD. We will denote these manifolds by in-
stance manifolds. The basic assumption is that all these

manifolds are topologically equivalent, however each of

them has different geometry in RD. In other words, all these

manifolds are deformed instances of each others. This as-

sumption is fairly met in the domain of activity recognition.

For example, periodic locomotive activities intuitively lie

on one-dimensional closed manifolds, and hence topologi-

cally equivalent. For instance, sequence of features repre-

senting a Viseme, starting from a neutral pose and reaching

a peak pose, lies on a one-dimensional manifold (curve) in

the feature space.

The goal is to achieve a low-dimensional latent space

of instance manifolds. In that space each manifold is rep-

resented by a single point. Based on that space, instance
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classification can be achieved. We learn two classification

functions fspeech(S) and fspeaker(S) based on two latent

spaces for speech and speaker respectively.

The first step in our framework is to parameterize these

manifolds to obtain a descriptor for each of them. The man-

ifold parameterization we use is based on [5, 11]. We learn a

regularized mapping function from a unified (average) low-

dimensional embedded representation of all manifolds to

each input manifolds. These mapping functions encode the

geometric deformations between the unified representation

and the original data manifolds. Therefore, the space of

coefficients of these mapping functions provides a parame-

terization of the input manifold.

The obtained parameterization is high-dimensional,

which makes it hard to learn classification functions that

can generalize well. In [5] subspace analysis was used to

obtain a latent representation of the manifold parameteriza-

tion space. However such approach does not benefit from

available class labels. Alternatively, we propose a super-

vised way to achieve a low-dimensional latent manifold pa-

rameterization space, which benefits from the class labels.

Given the instance manifold parameterization, we propose

two alternative manifold kernels based on the parameteriza-

tion space. Given a manifold kernel, we use KPLS in the

parameterization space to obtain a latent low-dimensional

manifold parameterization space. We apply KPLS indepen-

dently for the speech and speaker factors.

It worth mentioning that the unified manifold represen-

tation is supposed to be topological equivalent to each in-

stance manifold. This can not simply be obtained by tradi-

tional Dimensionality Reduction (DR) on the whole input

data. This is because the goal of DR approaches is to find

an embedding that preserves the local (or global) geometry

of the data. In contrast, the unified manifold representa-

tion is a collapsing of all instance manifolds to one aver-

age manifold. There are various ways that can be used to

achieve this. In [5] individual manifolds are embedded and

warped to compute an average embedding. Alternatively, if

the topology of the manifold is known, a conceptual repre-

sentation can be imposed; for example a unit circle can be

used as topologically equivalent representation of all closed

one-dimensional manifolds [11]. Another alternative is to

use manifold alignment (e.g. [7]) to learn a unified embed-

ding. In this paper, we work on top of such unified repre-

sentation, independent of the approach used to achieve it.

4. Background: Kernel Partial Least Squares
Projection of data to a low-dimensional latent space is

widely used in pattern classificaiton problems. The most

common techniques for projection to a latent spaces are

PCA and LDA [4]. Another technique that is widely used

in chemometric pattern recognition is Partial Least Squares

(PLS) [26, 21, 2]. Projection using PCA tends to keep most

of the variance of the input space. In contrast, LDA tends

to increase the clustering ability between different classes

by maximizing the interclass and minimizing the intraclass

distances [4]. PLS compromises by creating orthogonal

components (in the latent space) using the existing corre-

lations between explanatory variables (in the input space)

and corresponding labeling, while keeping most of the vari-

ance of the points in the input space. A good interpreta-

tion for PLS and its relationship with iterative PCA can be

found in [12, 2]. Additionally, PLS has been proven to be

useful in situations where the number of the explanatory

variables (dimensionality of the input space) exceeds sig-

nificantly the number of observations and/or a high level of

multicollinearity2 among those variables.

For understanding the PLS, synopsis for PLS analysis [2]

is presented here. PLS is a least squares regression-based

technique. Like PCA regression (PCR), PLS finds a regres-

sor w, so that, yi � x�i w, ∀i, where xi is the observation

and yi is its response (output). If we put that in a matrix

form, the objective is to minimize the least squares error

‖XW − y‖2. Bennett [2] showed that

‖XW − y‖2 ≤ ‖X− yW‖2 .
Therefore, if we minimize ≤ ‖X− yW‖2, we satisfy the

objective. Then, he shows that

min
W
‖X− yW‖2 ∝ max

W
cov(XW,y), s.t.W�W = I,

(1)

where cov stands for covariance. The solution of the Eq 1

has been shown to be

W =
X�y

y�XX�y
, (2)

which provides a closed form for W.

However, for the high-dimensional observation space,

Eq 2 is not robust and computationally inefficient. On the

other hand, the NIPALS algorithm [26] is an iterative robust

procedure for solving eigen-values and eigen-vectors prob-

lem, see Algorithm 1. Then NIPALS has be used later for

PLS solution [26].

Henceforward, Lewis proves in [12] that we can get the

same results by using the variance-covariance matrix XX�

instead of X, which is significantly more computationally

efficient than NIPALS in the case of dimensionality of the

input space exceeds the number of observations. Moreover,

he presents NIPALS-PLS algorithm for solving PLS in an

iterative efficient way.

Then, Rosipal et al. [21] used the kernel trick3 for induc-

ing nonlinear version of the PLS (called KPLS). The KPLS

2Multicollinearity refers to a situation in which two or more explana-

tory variables in a multiple regression model are highly linearly related.
3Proposed in [1]. the kernel trick is commonly used technique in pat-

tern recognition (e.g. KPCA and KSVM).
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Algorithm 1 NIPALS algorithm - Single iteration

Ramdomly initialize t
repeat

p← X�t
t← Xp
t← t

‖t‖
until Convergence of t � the resulting t is a single

eigen-vector of X.

X← X− tt�Xy � Data deflation

algorithm 2 is based on NIPALS-PLS, however, it uses the

kernel form K = Φ(X)Φ(X)� instead of XX�.

Algorithm 2 KPLS algorithm

for i← 1→ m do � m-dim latent space
Ramdomly initialize ui
repeat

ti ← Kui

ti ← ti
‖ti‖ � normalize vetor t

ui ← y�ti
ui ← ui

‖ui‖ � normalize vetor u
until Convergence in ti
K← (I− titi

�)K(I− titi
�) � Kernel deflation

end for
T = [t1, · · · , tm]
U = [u1, · · · ,um]

5. Individual Manifold Parameterization
In this section we briefly describe parameterizing in-

stance manifold. Let {xk
i ∈ RD, i = 1, · · · , nk} be the

input images for instance manifoldMk, represented in aD-

dimensional feature space. Let {zki ∈ Re, i = 1, · · · , nk}
be the corresponding embedded representation in an e-
dimensional Euclidean space, which lie on the unified man-

ifold U . Notice that the number of points in each sequence

(manifold) does not need to be equal.

We learn mapping functions γk(·) : Re → RD, which

maps from U to each instance manifoldMk. To learn such

mappings, we learn individual functions γkl : Re → R for

the l-th dimension in the feature space. Each of these func-

tions minimizes a regularized loss functional in the form

nk∑

i

∥∥xk
il − γkl (zki )

∥∥2 + λ Ω[γkl ], (3)

where ‖·‖ is the Euclidean norm, Ω is a regularization func-

tion that enforces the smoothness in the learned function,

and λ is the regularizer that balances between fitting the

training data and smoothing the learned function. When

λ → 0, the regression function over-fits the training data.

From the representer theorem [9, 18] we know that such

mapping functions admit a representation in the form of

a linear combination of kernel basis functions in the em-

bedding space Re. To achieve a common parameterization

space of all the manifold, we use the same set of basis func-

tions K(·, wi), i = 1 · · ·n, where wi ∈ Re. The whole

mapping can be written in the matrix form as

γk(z) = Ckψ(z)

where Ck is a D × n matrix, and the vector ψ(z) =
[K(z,w1), · · · ,K(z,wn)] represents a nonlinear kernel

map from the embedded representation to a kernel induced

space. The solution of Eq 3 is shown [18] to have closed

form as

C�k = (A�k Ak + λG)−1A�k X
�
k , (4)

where Ak is an nk × n matrix with A(ij) = K(zi,wj)
and G is an n × n matrix with G(ij) = K(wi,wj). Xk

is the nk ×D data matrix for instance k. Solution for C is

guaranteed under certain conditions on the basis functions

[18]. In this paper, we use Gaussian Radial Basis Function

(Gaussian-RBF) for the kernel K(·, ·).

6. Manifold KPLS
6.1. Manifold Kernels

Given the manifold parameterization described above, a

kernel in the space of manifolds can be defined as a kernel

between their parameterizations, i.e.

Kmanifold(Mi,Mj)
.
= Kparameterization(Ci,Cj). (5)

Therefore, we need to define kernels over the space of pa-

rameterizations, which consequently, measure the similarity

between manifolds in terms of their geometric deformation

from the common manifold representation. We can use any

valid kernel, in this section we propose using a kernel based

on cosine similarity.

Cosine-manifold kernel:

Since each parameterization point Ck represents n-

dimensional subspace in RD. Therefore, we can use cosine

the angle between the two subspaces as a similarity in pa-

rameterization space. Therefore, the cosine-manifold kernel

can be defined as

Kcos(Ci,Cj) =
tr(CiC

�
j )

2

||Ci||F ||Cj ||F , (6)

where ‖·‖F is matrix Frobenius norm.

In next section, we discuss the discriminant analysis for

those parameterizations.
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6.2. Manifold Latent Space

In our framework, we have a set of manifolds represented

by {(Ck, yk), k = 1 · · ·N}. yk is the categorical label-

ing of the manifold. We need to find nonlinear projection

function F : C → Rm, where C is the space of all co-

efficient matrices, and Rm is a low-dimensional Euclidean

space (m	 D), so that F satisfies the objective

min
F

∥∥C−F−1(F(C))
∥∥,

max
F

cov(F(C),y)

where C is the set of parameterizations and y is the set of

responses. We can write F in a nonlinear regression form

as

ŷ = Φ(C)B−E (7)

where B,E are the regression coefficients and residuals re-

spectively.

For solving Eq 7, we can use kernel-PCA (KPCR) or

kernel-Ridge Regression (KRR). However, using KPLS

[21], produces embedding that maximizes the correlation

with the response y. KPLS Algorithm 2 finds projec-

tion function that embeds the parameterizations {Ck, k =
1 · · ·N} into a low-dimensional latent space Rm, as {tk ∈
Rm, k = 1 · · ·N}. The result of KPLS regression is

ŷ = KU(T�KU)−1T�y (8)

Let R = U(T�KU)−1. R works as the projection

matrix[21]. Then, the matrix T , of all embedded points,

can be written as

T = KR (9)

For a new manifold Mν , represented by its parameteri-

zation Cν and label yν (unknown), the corresponding em-

bedded point can be given by

tν = vνR. (10)

Where vν = Kcos(Cν , .) (Eq 6) is an N -dimensional row

vector representing the similarity with all training manifold

parameterizations {Ck, k = 1 · · ·N}.
6.3. Multifactor Embedding

As aforementioned, we have set of labeled manifold pa-

rameterizations {(Ck, yk); k = 1 · · ·N}. Consider the

case where we have multiple labeling for the same mani-

fold. Therefore, we need to deal with different classifica-

tion tasks. In this paper, we have two simultaneous tasks:

speech recognition and speaker identification.

For phrase/speech recognition, the input manifolds have

labeling yhk , k = 1 · · ·N . We can learn projection matrix

Rh for embedded points Th (Algorithm 2).

(a)

(b)

Figure 1. AVletters: Similarity among points in the manifold pa-

rameterization original space (a), and after projection into the let-

ters’ latent space (b).

For any new manifold Mν , Cν is compute (Eq 4), then

get the corresponding embedded point by Eq 10, as thν =
vνR

h.

For speaker identification, we have different labeling

ypk, k = 1 · · ·N . Similarly, we learn the projection matrix

Rp and the embedded points Tp. For new manifold Mν ,

we compute the parameterization Cν , then get the corre-

sponding embedded point by tpν = vνR
p.

Figure 1 shows the affect of projecting into the letters’

latent space in the AVLetters database (see Section 7.1).

In Figure 1(a) , the similarity between speaker dominates

the similarity between letters. However in Figure 1(b) , the

similarity between letters (represented by diagonals) dom-

inates the similarity between speakers. In the same time,

self-similarity between speakers still exist which means that

the projection preserves the topological relationships in the

original space.

6.4. Manifold Classification

At this point, we have a set of labeled low-dimensional

representations for manifolds {(tk, yk) ∈ Rm × R; k =
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1 · · ·N}. Given a new manifold, parameterized by Cν , we

need to classify it, i.e. to get its class label ŷν . For achieving

this goal, we use two alternative approaches:

Regression for classification (RfC) Use regression re-

sults of KPLS [21]

ŷν = tνT
�y

where tν is computed from Eq 10.

Support vector machines (SVM) Learn one-vs-all SVM

classifier for every class on the latent space, and use it for

classifying the new embedded point tν , to get ŷν .

7. Experimental Results
7.1. Databases

There are many databases available for AVSR, such as

AVLetters [14], AVLetters 2 [3], AVICAR [10], AV-TIMIT

[8], GUAVE [17] and OuluVS [27]. All AVSR databases

can be used for VSR research by simply ignoring the audio

information. Our choice is based on several factors. First,

we are looking for recent work using solely visual data to

compare with. Second, we need to test on different length

spoken units. Third, reasonable image resolution. We find

that the most adequate databases are AVLetters [14] and

OuluVs [27] for speech recognition and speaker identifica-

tion. In all experiments, the recognition rate is measured

as the ratio between the correctly recognized clips and the

total number of clips.

AVLetters database 4 [14] has ten subjects. Each speaker

repeats every English letter (A · · ·Z) exactly three times,

with a total of 780 video sequences. The speaker was re-

quested to start and end utterance of every letter in a neutral

state (mouth closed). No head motion/rotation is allowed

from speakers. Every frame is a 60 × 80 pixel image of

the mouth area. This database is very challenging for VSR.

The best achieved accuracy for recognizing the spoken let-

ter has been on this database is about 62% [27]. We use

the following setting: For LBP features, we tried many

configuration. The results is reported in terms of two of

them: single cell eight-resolutions (LBP1:8×8) and 3 × 4
cell-grid with four-resolutions (3×4LBPu2

1:4×8). For more

details about LBP, reader is referred to [16].

OuluVS database [27] it consists of ten different every-

day phrases. Each phrase is uttered by 20 subjects up to

five times. The frame rate was set to 25 fps. The dataset

contains sequence of images for mouth area with average

resolution of 120 × 60 pixels. This database is less con-

strained than AVLetters, so that limited rotation and shift

4Public version is available on http://www.ee.surrey.ac.
uk/Projects/LILiR/datasets/avletters1/index.html

(a) (b) (c)
Figure 2. OuluVs: (a) Regular frames, (b) Partial mouth area

frames, (b) Non-mouth area frames.

was allowed in the recording time, Figure 2(a). Not all se-

quences are perfectly segmented, so that, some sequences

have few frames with partial-mouth (Figure 2(b)) or non-

mouth frames (Figure 2(c)). Some of the outlier sequences

(that contain very few mouth/partial-mouth frames) are ex-

cluded from the experiment. Consequently, we exclude four

speakers with very few sequences remaining (P004, P005,

P010 and P016). The feature configurations used on this

database are (LBP1:8×8) and (1×2LBPu2
1:8×8).

7.2. Visual speech recognition

We adopt three test protocols for visual speech recogni-

tion: speaker independent, speaker dependent and speaker

semi-dependent. To present a fair comparison, we restrict

ourselves by the configuration specified in [27].

Speaker Independent VSR (SI): the challenge here is to

recognize the uttered phrase, independent completely of the

speaker. By this configuration, we show that our framework

generalizes to users is not seen before in the training set. In

this experiment, we use one-speaker-out technique.

Speaker Semi-Dependent VSR (SSD): here we test on

one part of the available videos and train based on the re-

maining set of videos. With one condition that all speakers

and phrases have to be presented in the training set. The

challenge here is to classify the phrase/expression correctly

regardless the user identity.

Speaker Dependent VSR (SD): this experiment tests

how far our approach is adequate for use with limited data

available. For every speaker, we left one video out for test,

and trained based on the remaining videos for the same

speaker.

Table 1 and Table 2 show the SI speech recognition ac-

curacy for OuluVs and AVLetters, respectively. We can see

that for solving speaker independent problem, we need a

low-dimensional latent space (about 15 for OuluVs and 25
for AVLetters).

Table 3 and Table 4 show SSD results. In this case,

good results need higher dimensional latent space (about

100 for both databases) than in the SI case. This is ex-

pected, because in SSD case, almost all variational param-

eters have been learned already in the training phase, there-

fore, slightly over-fitting the training data is needed. While

in SI case, new variability (e.g. new speaker) is presented

in testing, therefore, smoothing the projection function is

required.
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Table 1. Subject independent (SI) results on OuluVs database

1×1LBPu2
1−8×8 1×2 LBPu2

1−8×8

m SVM RfC SVM RfC
10 58.28 55.15 57.18 54.53
15 61.09 62.18 62.18 58.59
20 60.93 60.46 54.68 57.65
25 61.56 62.34 56.09 57.50
30 59.06 61.56 55.93 58.28
40 55.62 59.37 56.71 58.91
50 58.75 60.46 56.87 58.75

Table 2. Subject independent (SI) on AVLetters database

3×4LBPu2
1−3×8 LBPu2

1−8×8

m SVM RfC SVM RfC
10 32.44 33.46 28.85 29.23
15 38.46 34.87 29.74 32.31
20 41.79 38.85 30.38 33.85
25 42.69 39.87 28.97 33.59
30 40.77 41.03 31.92 37.82
40 38.33 42.82 29.87 39.36
50 37.69 41.67 33.08 36.03

Table 3. Subject semi-dependent (SSD) on OuluVs database.

1×1LBPu2
1−8×8 1×2 LBPu2

1−8×8

m SVM RfC SVM RfC
90 84.68 83.90 81.25 81.56
100 84.84 83.75 81.87 81.56
130 84.22 83.75 81.71 81.56
150 84.37 83.75 81.56 81.56
180 84.06 83.75 81.71 81.56
200 84.21 83.75 82.03 81.56
220 83.90 83.75 81.40 81.56
250 83.59 83.75 81.71 81.56

Table 4. Subject semi-dependent (SSD) on AVLetters database

3×4LBPu2
1−3×8 LBPu2

1−8×8

m SVM RfC SVM RfC
80 64.36 62.56 62.31 61.92
90 64.10 63.59 63.08 62.56
100 64.23 63.85 62.31 62.18
130 65.64 64.87 62.44 61.79
150 65.38 64.49 62.44 61.67
180 65.00 64.10 61.67 61.79
200 64.87 64.10 62.31 61.79
220 65.00 64.10 62.05 61.79
250 64.74 64.10 62.44 61.79

Table 5 shows that our framework outperforms the base-

line for SSD and compete for SI setting. The third column

in Table 5 refers to the results of [28], a recent extension

to [27]. The results for [28] are based on what is called

normalized and clean version of OuluVs, while we use the

Table 5. Comparative for OuluVs database.

Ours [27] [28]

SI 62.34 62.4 70.6
SSD 84.84 64.2 na

SD 73.59 na 85.1

(a) (b)
Figure 3. On OuluVs: (a) comparing SI results for our approach

(blue) and approach used in [27] (red) . (b) comparison between

SSD results (blue) and SD results (red) of our approach.

Table 6. Comparative results for AVLetters database.

Ours [27] [14]

SI 42.83 43.46 na

SSD (third fold) 64.23 58.82 57.3
SSD (total) 65.26 62.82 44.6

noisy version of OuluVs. Even though, we can compete

in the recognition rate. Moreover, the most practical set-

tings SSD is not presented in this paper. In addition, Fig-

ure 3 shows more results for OuluVs dataset. Figure 3(a)

shows per-phrase comparison between our results and the

results reported in [27], for SI settings. While Figure 3(b)

shows per-phrase comparison between our framewrok per-

formance in both SSD and SD settings.

Table 6 shows comparison between our results for

AVLetters database and the results in [27] and [14]. In this

dataset, even though the confusion among the letters clips

is high, our approach outperform both approaches, specially

in the SSD setting.

7.3. Speaker recognition:

The goal in this experiment is to find the speaker within

the register set of users. The challenge is to find the speaker

from the limited available information in the mouth area.

Moreover, we want to prove that although the manifold

parameterization encodes mainly the geometric deforma-

tion from the unified manifold to the original data man-

ifold, parameterization also hold speaker-related informa-

tion. The testing protocol used here is the same as in SSD

setting, since we take one repetition out for testing, and

we train over all other repetitions. In both databases, we

use the same configuration (LBPu2
1−8×8), and the results in

both datasets is about 100% regardless of the dimension la-

tent space. That was expected for two reasons: first, we

have limited number of speaker (10 in AVLetters and 16
in OuluVs). Second, since we use solely visual informa-
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tion, then the variability due to different speakers is signif-

icantly dominating the variability of speech, as shown in

Figure 1(a).

8. Conclusion
We proposed a framework that utilized the homeomor-

phic manifold analysis and KPLS for manifold classifica-

tion. We tackled two related classification problems speaker

identification and speech recognition. We use supervised

latent low-dimensional space embedding for solving the si-

multaneous multi-factor classification problem. We pre-

sented three different configurations of lipreading speaker

independent, speaker semi-dependent and speaker depen-

dent. The results show that our approach outperform in the

semi-dependent setting which we consider the most realistic

configuration and perform well in the other two settings.
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