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Abstract

We describe a method to efficiently generate a model
(map) of small-scale objects from video. The map encodes
sparse geometry as well as coarse photometry, and could be
used to initialize dense reconstruction schemes as well as to
support recognition and localization of three-dimensional
objects. Self-occlusions and the predominance of outliers
present a challenge to existing online Structure From Mo-
tion and Simultaneous Localization and Mapping systems.
We propose a unified inference criterion that encompasses
map building and localization (object detection) relative
to the map in a coupled fashion. We establish correspon-
dence in a computationally efficient way without resorting
to combinatorial matching or random-sampling techniques.
Instead, we use a simpler M-estimator that exploits puta-
tive correspondence from tracking after photometric and
topological validation. We have collected a new dataset to
benchmark model building in the small scale, which we test
our algorithm on in comparison to others. Although our
system is significantly leaner than previous ones, it com-
pares favorably to the state of the art in terms of accuracy
and robustness.

1. Introduction
1.1. Motivation

We are interested in building models of three-

dimensional (3-D) objects for the purpose of manipulation,

reconstruction, detection, and recognition. We envision a

scenario whereby a video of an object is captured while ma-

nipulating or moving around it with a hand-held camera or

phone. It is then used to infer, causally and in real time,

the coarse geometry and photometry, described in a man-

ner amenable to matching under significant viewpoint and

illumination changes. In this context, precision is not cri-

tical, but robustness and run-time are. Despite a wealth of

work in Structure From Motion (SFM), Simultaneous Lo-

calization and Mapping (SLAM) and 3-D reconstruction in

general, the goal of a simple yet robust modeling scheme

for this scenario remains elusive.

Self-occlusions are dominant in our scenario. As the

object moves relative to the camera, different views are

revealed, each of which contains only a small number of

salient features (Fig. 1). Also, the object occupies a small

portion of the visual field, resulting in a small effective field-

of-view that presents a challenge for SFM and SLAM. Even

with some moderate effort to place the object on a texture-

less surface, it is often the case that most features are de-

tected in the background, rather than the object.

Global bundle adjustment (BA) methods [13] extract the

majority of information of interest in the data, but this

comes at a computational cost. Even simpler batch fac-

torization schemes that exploit the weak-perspective nature

of small objects can introduce significant latency. Exist-

ing real-time SFM systems are too brittle, and SLAM sys-

tems that incrementally build a map and localize the viewer

relative to it still fail in the presence of significant self-

occlusions. Some of these shortcomings have pushed many

practitioners to turn to active sensors such as RGB+D sys-

tems [19], but these are not well-suited for outdoor lighting.

Although our goal is to eventually use these models for

recognition, and therefore our effort naturally relates to

[23], here we focus on the reconstruction aspect. We aim

for a method that is robust, simple to use, and designed to

support classification tasks (Fig. 2), but we do not tackle the

(a) (b)

Figure 1. A close view of an (a) object and (b) its model, visualized

as a point cloud. Each point is endowed with a descriptor, and

camera motion relative to it comes as a byproduct. Even though it

appears that the object dominates the image, it only occupies 20 %

of the area of the image.
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Figure 2. Models acquired by our method can provide support in

recognition tasks such as tracking of small-scale objects. In this

example, the bounding boxes (blue) are computed from the repro-

jections of a point cloud (black) segmented in 3-D space.

latter here. In addition, our model can be used as initiali-

zation for post-process BA refinement for accurate (sparse)

reconstruction and pose estimation, or as one of the buil-

ding blocks in some of the recent algorithms for dense re-

construction in real time [9, 11, 18, 21, 25, 27].

Perhaps the most closely related work is Klein’s and

Murray’s Parallel Tracking And Mapping (PTAM) [15],

popular in robotics. It thrives on large, static fronto-parallel

scenes, preferably with a dominant plane, but struggles

with small objects and significant self-occlusions (Sect. 3).

It performs best when the initial motion is orthogonal to

the optical axis. We operate under assumptions similar to

PTAM: The scene is static, rigid, and for the most part,

Lambertian. We assume the camera has been previously

calibrated, and both, temporal and spatial scale, are rela-

tively moderate. We aim at real-time performance (w.r.t. the

time constant of the acquisition hardware, i.e., video frame-

rate).

1.2. Contributions

Our system is considerably simpler than PTAM: While

the latter employs a full-fledged epipolar geometry pipeline

for initialization (feature selection and tracking, epipolar

constraint, incremental bundle adjustment etc.), our ap-

proach bypasses all that and trivially starts with all points

on the image plane. Empirically, we find that this works

faster and better for the conditions discussed above1. Our

first contribution is a unified optimization criterion (Sect.

2.2) that addresses both localization and mapping in a cou-

pled fashion. This would at first seem to go against the

wisdom of [15], but presents additional benefits in terms

of simplification and management of correspondence, that

represents our second contribution: In Sect. 2.3, we pro-

pose a putative correspondence mechanism based on track-

ing to generate inlier hypotheses, and a simple photome-

tric validation mechanism based on a contrast-invariant de-

scriptor. It accommodates the percentage of outliers the M-

estimator [12], favored in [15] over slower combinatorial

or acceptance/rejection sampling methods, can tolerate be-

fore breakdown. Our third contribution consists of feeding

1This choice is not well-suited for forward motion, where PTAM also

fails.

back the motion estimates from local BA to infer the scale-

and rotation-covariant component of the descriptor, to re-

duce nuisance variability. A temporal aggregate of such de-

scriptors can then be the basis for a classification scheme

that uses our system for detection, recognition, localization

of the learned objects in cluttered scenes. Finally, publicly

available datasets for evaluating SLAM methods and recog-

nition of 3-D objects are few. Our fourth contribution is

to expand and adapt the benchmarks [8, 17] to the task of

small-scale object modeling. An experimental assessment

of the performance of our system in comparison with offline

SFM (at the high-end) and PTAM (at the low-end) is re-

ported in Sect. 3.

1.3. Other related work

Mair et al. developed a system for close-range 3-D re-

construction [16]. Unlike ours, it includes inertial measure-

ments to cope with drift occuring at large time scales. Early

examples of real-time monocular SFM include [14, 20], im-

proved by [10]. The latter two rely on accelerated versions

RANSAC for hypothesis generation, based on the 5-point

algorithm, and separately triangulate new depths. This leads

to the decoupling that we find detrimental to performance

and hence wish to avoid. In [6], Engels et al. provide a

review of BA, whereas the authors of [24] argue that batch

processing based on keyframes performs better marginali-

zation than a causal filtering approach, although the con-

clusions contravene some of the basic tenets of causal data

processing. The setup of Zhang et al. described in [28] co-

incides with ours because correspondences are collected by

tracking. Although their algorithm falls under the category

“offline SFM”, we will include it as a baseline in our com-

parison in Sect. 3.

2. Method
2.1. Setting

In the following, matrices are in bold, vectors in bold

italic; points in space X ∈ R
3 are capitalized when pos-

sible. The canonical pinhole projection π : R
3 → R

2,

X �→ x, maps a point in space onto the image plane, where

X = x̄ρ for some depth ρ > 0, and x̄ = (x� 1)�. We

can define a function π−1
ρ : D → R

3 that, given some fixed

ρ, backprojects x onto X . A vantage point at time t ∈ N

is represented by gt = (Rt,Tt), Rt ∈ SO(3), Tt ∈ R
3,

element of the special Euclidean group SE(3), which trans-

forms the world coordinate system g0 = id to the reference

frame located at −R�t Tt with axes parallel to the columns

of R�t . The inverse of gt is denoted by g−1
t .

Given a collection of images {Iτ : D → R
+}tτ=0 up

to time t, we wish to estimate the camera motion and the

geometry of the scene in a computationally efficient man-

ner. To this end, we focus on a sparse collection of points
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M = {Xj}mj=1, the map, and their corresponding projec-

tions xi
s in each image where Xj is visible. Since M does

not include surface topology, visibility boils down to a com-

binatorial matching problem; we will address it using tools

from robust inference and without explicitly determining

the inlier/outlier sets.

2.2. A unified inference criterion

Two feature points xi
t ∈ D at time t, and xk

s ∈ D at time

s, are said to correspond if there exists a location in space

Xj that projects to both: x̄i
tρ

i
t = Xj = x̄k

sρ
k
s . If such

image-to-image correspondences xi
t ↔ xk

s were known,

we could compute the inter-frame motion and depths by

minimizing the reprojection error

Er(gt, ρ
i
s) :=

∑
i∈V (gt,gs)

‖π(gtg−1
s π−1

ρi
s
(xi

s))− xi
t‖1. (1)

Here, with an abuse of notation, i ∈ V (gs, gt) indexes im-

age correspondences whereby, after a suitable permutation

of indices, xi
s stands for x

k(i)
s . Analogously, if scene-to-

image correspondences were known, we could infer pose gt
by minimizing the projection error

Ep(gt) :=
∑

j∈V (gt)

‖π(gtXj)− xj
t‖1. (2)

Here, V (gt) indexes scene-to-image correspondences,

again with an abuse of notation whereby xj
t stands for x

i(j)
t .

These two terms can be combined to provide coupled
localization and mapping, by minimizing

E(gt, ρ
i
s) := Er + αEp, (3)

where α ∈ R+ is a positive scalar that weighs off the influ-

ence of the two separate error terms according to the ratio

of #V (gs, gt) and #V (gt). Note that (3) covers all aspects

of a SLAM algorithm: At initialization, when the map is

empty, we have V (gt) = ∅; Ep = 0, and E = Er is

equivalent to the classical BA functional. When image-to-

image correspondence fails, V (gs, gt) = ∅ but so long as

#V (gt) ≥ 3, minimizing (3) yields a camera pose gt re-

lative to the now nonempty map. Finally, the general case

where V (gt), V (gs, gt) are both nonempty covers the two

subproblems of map expansion and motion estimation by

minimizing (1) (in lieu of simply triangulating new depths)

respectively (2). Note that both are coupled through the

variable gt, and such coupling is critical to avoid gauge am-

biguities beyond the initialization stage.

It is easy to underestimate the novelty of (3). After all,

each of its terms is well-known, and joining them in a linear

combination is not a revolutionary idea. Indeed, the two

terms reflect the same model, and could be further coupled

by imposing that g−1
s π−1

ρi
s
(xi

s) in (1) be equal to Xj in (2).

Unfortunately, i 	= j, and the two energies are summed over

different domains V (gs, gt), V (gt).

2.3. Correspondence

Of course, the sets V (gs, gt) and V (gt) are not known

a-priori, and SFM/SLAM methods differ primarily on how

they handle the unknown correspondences. One could de-

termine the set of features V (gs, gt) that are co-visible
between s and t by combinatorial matching and voting

schemes such as [7] during minimization of the reprojec-

tion error. Similarly, one could determine the set of features

V (gt) in the map that are visible at time t using the iterative

closest-point method [1] or one of its variants. However,

this becomes prohibitively expensive when the cardinality

of these sets increases. Alternatively, like [15], one could

forgo explicit determination of the correspondence sets and

use a robust statistical estimator to minimize (3), cf. [12].

Unfortunately, such techniques have a low breakdown point

(percentage of outliers) and can still fail in practice.

We adopt an intermediate criterion, where image-to-

image putative correspondence is established by short-

baseline tracking, and verified using a local contrast-

invariant, rotation- and scale-covariant descriptor. If s is

the instance when a feature first appears, and the feature

is tracked through {xi
τ}tτ=s, ideally we would have that

i ∈ V (gs, gτ ) for all τ = s + 1, . . . , t. In practice, how-

ever, short-baseline trackers are subject to drift, and there-

fore, as time goes by, the track may continue to exist but fail

to correspond to a stationary point on the map. Therefore,

we design a photometric consistency test based on a local

contrast-invariant descriptor. That is, a function of the im-

age in a neighborhood of the tracked point, φ(Iτ |xi
τ , gτ )

that is invariant to contrast changes (monotonic continu-

ous transformations h of the image intensity, h(Iτ ), i.e.,

φ(h(Iτ )|xi
τ , gτ ) = φ(Iτ |xi

τ , gτ )). We choose BRIEF [3],

and test the Hamming distance dH between the descriptor

computed at the time of first appearance s and the current

time t against a threshold θ > 0. So,

V (gs, gt) = {i | dH
(
φ(Is|xi

s, gs), φ(It|xi
t, gt)

) ≤ θ.

A shortcoming of this initial naive approach is that the

neighborhood around xi
s usually undergoes nonrigid trans-

formations, and the above condition is violated even though

the feature remains visible. While in the absence of sur-

face topology, analyzing the map for occlusions is infeasi-

ble, analyzing the camera motion relative to it is not. Thus,

we feed-back and compensate for domain transformations

using portions of the estimated motion gt (Fig. 3). In this

sense, the test is co-variant with respect to scale and in-

plane rotation2. We can do the same for map-to-image

matching, by augmenting each point Xj in the map M with

2Notice that in the reprojection error, gt and gs only appear as a prod-

uct, which may suggest that the co-visibility only depends on inter-frame

motion gtg
−1
s . However, this is not the case, since the dependency on the

absolute pose gt is reflected in the dependency on the scene.
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the descriptor(s) from the image taken at the time it first ap-

pears.

The novelty of our approach hinges on the joint opti-

mization of (3). This may seem to go counter the results

of [15] and others. However, equation (3), combined with

tracking and the pre-rejection of inconsistent features, en-

ables us to operate without combinatorial or sequential out-

lier rejection, significantly decreasing run-time. To the best

of our knowledge, nobody has addressed the determination

of the visibility sets V by a combination of tracking and

contrast-invariant validation. This is the innovation that en-

ables faster outlier handling with standard robust-statistical

tools. Also notice that the joint energy functional enables us

to expand the map in a robust fashion, unlike [15] that per-

forms triangulation in a separate stage, while lacking outlier

filtering altogether.

2.4. Implementation

2.4.1 Tracking

To warrant sufficient parallax, structure and motion estima-

tion is customarily performed on a subset of the input im-

age sequence called keyframes. We rely on features from
accelerated segment tests (FAST) in such keyframes [22].

These are tracked with the help of the Kanade-Lucas-

Tomasi method (KLT) at the original video frame rate. One

is not bound to this particular choice of tracker because the

central part of our algorithm makes no assumption on how

correspondences are established. In contrast, PTAM uti-

lizes a more elaborate, affine deformation model [15]. Two

points in two keyframes correspond if they are connected

by a track. There are two situations in which a track ex-

pires: The associated feature either leaves the field of view,

or it is about to merge with another tracked feature3. We

check for occurrences of the second event in the following

way: Denote by δ(x) the Dirac distribution and xi ∈ D
the locations of n ∈ N interest points in the image, some of

which may already be tracked and others, which have been

qualified by the detector as candidates for addition. Then,

I(Ω) :=

∫

Ω

n∑
i=1

δ(x− xi)dx (4)

counts the number of features in the image region Ω ⊆ D.

When this region has the shape of an rectangular neighbor-

hood Br(x) := {y | ‖y − x‖∞ < r}, we only need to

compute I(D), then (4) can be evaluated very efficiently

with the help of the integral image trick [4]. At detection,

we only admit features xi for which there exists neighbor-

3The residual of the KLT model is a bad adviser in this matter because

it stipulates brightness conservation which is not given in the vicinity of

occlusions. But occlusions and only occlusions are precisely what we wish

to cause the death of a track.

(a) Translation-covariant frame

(b) Translation-rotation covariant frame

(c) Translation-rotation-scale covariant frame

Figure 3. Local perspective on the image sequence of different La-

grangian observers attached to a tracked feature: (a) Translation

invariance comes naturally with KLT tracking. (b)-(c) In-plane ro-

tations and scale changes are compensated online with the help of

motion estimates from local BA. This improves imaged-based oc-

clusion detection. The value of dH (see text) appears respectively

in the upper left corner.

hoods Brd(x
i) such that I(Brd) = 1. Concurrently, a ve-

rification routine removes all tracks that are not unique in a

neighborhood Brv around their current state. Note that the

radii rd and rv may be chosen differently under the con-

traint however that rd ≥ rv.

Remarks Pairwise distance comparisons are efficiently

implemented with the aid of tree-like data structures. How-

ever, they provide no guarantee that the true nearest neigh-

bor of a feature point is found, whereas the integral image

construction yields exact results. Hedborg et al. also en-

force a distance constraint but only before the pose estima-

tion step [10]. We do so immediately during tracking for

two reasons: First, we believe that a tracker prone to drift

such as KLT must monitor inter-feature distances to avoid

track duplication. Second, convergence of tracks indicates

an impending self-occlusion.

2.4.2 Numerical optimization

We take the standard reweighted least-squares approach to

minimizing (3), which consists of three nested optimiza-

tion loops: The outermost loop discounts the contribution

of each data point to the functional value depending on

whether they are outliers with respect to a robust covari-

ance estimate. By default, the resulting weighted nonlinear

least-squares problem is then solved with the Levenberg-

Marquardt (LM) method, which in turn is equivalent to

solving a sequence of linear least-squares problems.
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Figure 4. Distance between BRIEF descriptors computed around

a tracked feature at time t and the location it occupied at detec-

tion. In this example, a gain of almost 50 % is achieved by the

feedback of in-plane rotation and forward motion to the track va-

lidation module.

Let J ∈ R
2(m+n)×(n+6) denote the Jacobian of the

squared version of (3), and r ∈ R
2(m+n) the underlying

residual vector. Each LM step seeks the minimum-norm so-

lution to the non-square linear system J�h = r, in which

h ∈ R
(n+6) is the update that takes the set of unknown

variables closer to the minimizer. The conjugate-gradient

least-squares (CGLS) solver achieves this without explicit-

ly forming the normal equation J�Jh = J�r. Krylov sub-

space methods have been shown to outperform direct ones,

e.g., based on Cholesky factorization, in the realm of large-

scale BA. Our numerical studies confirm that the observa-

tions made by Byröd and Åström in [2] carry over seam-

lessly to the present scenario, especially when LM iterates

are executed in an inexact fashion, i.e., the linear solver is

forced to terminate before convergence depending on the

value of (3) (as opposed to the residual of the normal equa-

tion). In contrast, we found preconditioning of the linear

system superfluous because at initialization, the map is re-

latively small and the amount of time consumed uncritical,

then, once the system is online, initial estimates are reason-

ably close to the desired solution. We set the regularization

parameter enforcing the trust region size in a manner ac-

cording to [2].

Extensive numerical tests have shown that initializing all

visible points to be at unit depth (on the image plane) con-

verges rapidly and robustly provided the initial motion is

not directly towards or away from the scene. In the latter

case, other systems also fail. This can be explained using

the analysis in [26], that shows that fronto-parallel motion

(perpendicular to the optical axis) yields a residual surface

with a large global minimum and an isolated local minimum

corresponding to a mirror-symmetric translational direction

(the “rubbery motion” ambiguity), quite far from the global

minimum. The epipolar geometric pipeline customary in

most SFM/SLAM systems like [15] occasionally produces

a twisted pair and places the initialization in the wrong basin

of attraction, producing worse results than a trivial initia-

(a) Experiment 64: “Occlusion” (b) Experiment 65: “Landscape”

Figure 5. Orientation error over time: (a) Especially in the pre-

sence of (self)occlusions, our method outperforms PTAM. (b)

Roles are reversed in PTAM’s native application scenario.

lization. To recap, everything here evolves around the cen-

tral functional (3).

For reweighting, we use the bisquare function, which in-

duces a soft partitioning of data points depending on the co-

variance of the statistical model for data formation. To ob-

tain a robust estimate of the covariance, one usually forms

the medium absolute deviation (MAD) over all entries of

r. In our opinion, this is not entirely adequate: The re-

gression problem underlying (3) compares measured pieces

of data with those predicted by the (re)projection model

π; and the latter is indeed bivariate, a fact which previous

works on SFM have failed to acknowledge. In their defense,

the MAD, which is the workhorse of robust covariance es-

timation for univariate data, does not easily generalize to

dimension greater than one. To address the issue and effec-

tively reduce the number of inlier/outlier misclassifications,

we propose to compute it restricted respectively to the two

components of projection and reprojection residuals. This

yields a crude approximation to the Stahel-Donoho estima-
tor [5].

3. Experimental evaluation
3.1. A new data set

Ground truth is indispensable in the analysis and evalua-

tion of any SFM/VSLAM system and its subcomponents,

yet, obtaining it with complementary sensing modalities

may require significant efforts all the while the relationship

between data from alternative sources and the “true” scene

remains unclear. On the other hand, modern rendering en-

gines – even those available under generous license condi-

tions – allow us to simulate arbitrarily complex real scenes,

cf. [8, 10]. We created 18 video sequences of varying de-

grees of difficulty (occlusions, background clutter, specu-

larities, motion blur, etc.) with the open-source software

Blender. The set of synthetic examples is completed by

50 videos of small objects captured by a digital consumer

camera. Unlike [17], we refrain from using lab equipment
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such as a turntable to best replicate the circumstances un-

der which a user would acquire an object model in real life,

e.g., with a mobile phone, and also to discourage the use

of motion priors. To obtain a baseline for the entire dataset

not just the synthetic part, we processed it by the Automatic

Camera Tracking System (ACTS), a state-of-the-art offline

SFM algorithm [28]. For the convenience of researchers in

the field of SFM/SLAM, besides the raw image sequences,

we will distribute the ACTS results as well as the Blender

scene files through the first author’s website.

3.2. Results

All experiments were run on a commodity computer with

12 GB of main memory and four-core processor running at

3.4 GHz. Our C++ code and PTAM was compiled under

Linux, ACTS is available for the Windows platform only.

To maintain a fair comparison, we have spent a consider-

able amount of time for finding stable parameter configu-

rations individually for all three methods applied to each

example in the dataset. For the sake of reproducibility, a

documentation of these configurations will be included in

the supplemental material (together with an exhaustive pre-

sentation of experimental results). Figs. 8 (b)-(d) depict

some of the reconstructed point clouds and trajectories tra-

versed by the origin of the camera coordinate system as well

as its orientation – to keep the presentation clear – only

at selected locations. The lighting effects these plots con-

tain were added deliberately to attenuate the recovered 3-D

structures. Transparent overlays foreshadow ground truth

where it is available.

The precision of the BRIEF descriptor used in the exper-

iments was 256 bit. The threshold θ was set to 96 through-

out. Fig. 3 demonstrates the visual effect of motion feed-

back on the series of image patches supporting the compu-

tation of the covariant descriptor. Obviously, the success

of stabilization depends fundamentally on the type of input

motion. In the displayed case, undoing the impact of in-

plane rotation and forward motion of the camera on the oc-

clusion detection mechanism eventually prevents the track

from premature deletion (Fig. 4).

For the synthetic examples, we can quantify accuracy in-

dependent of gauge by the orientation error in axis-angle

representation w.r.t. a common world coordinate system.

Fig. 5 illustrates how this error develops over time for two

chosen examples, in the first of which the camera moves

around two objects mutually occluding each other (and

themselves) at two instances in time, and in the second of

which, the scene remains fronto-parallel for the duration of

the video, also see the bottom rows in Fig. 8(a). Example 65

is a situation in which PTAM excels. Since in example 64,

there are no other disturbances present, we can conclude

that PTAM is particularly prone to failure when being ex-

posed to occlusions. Fig. 7(b) further supports this claim.

Figure 6. Accuracy on the synthetic part of the dataset (view in

color): As it is to be expected, offline SFM by ACTS, serving as

baseline for our comparison, outperforms our method and PTAM,

which are generally on par with each other. Better outlier manage-

ment, however, furnishes our method with robustness advantages,

see Fig. 7(b).

Fig. 6 presents a time aggregate of the error. It is not sur-

prising that, in terms of accuracy, ACTS exhibits by far the

best performance: First, offline operation allows for adop-

ting a global view of each track and scrutinizing its utility

for reconstruction. Second, correspondences arising from

SIFT matching are expected to be significantly more reli-

able. Third, the underlying consensus-based optimization

method has an up-to-now unchallenged break-down point.

It is remarkable that ACTS fails on sequences that one

would deem particularly simple, see row five of Fig. 8(d).

Looking at Fig. 8(b), our method generates results that are

just as visually pleasing, however, at a fraction of computa-

tion time, see Fig. 7(a). In comparison, where PTAM works

stably, the maps it delivers are slightly more cluttered, see

the second and fifth row of Fig. 8(c).

The root-mean-square error (RMSE) is somewhat mis-

leading in the sense that normalization by time conceals the

completeness of reconstruction. On this account, we manu-

ally recorded the time at which tracking failure occurs rel-

ative to total video length. The result is shown in Fig. 7(b)

and reflects the robustness of each of the compared me-

thods. Our method completed 85.5 % of all experiments

successfully, i.e., with a score of 1.0, PTAM 36.2 %, and

ACTS 88.4 %.

The highest frame rates are achieved by PTAM, however,

as Fig. 7(b) suggests, at the expense of robustness. A major

advantage of the parallel tracking and mapping paradigm

is the separability into two independent threads. The nature

of (3) clearly prohibits a similar computational architecture.

Our implementation achieves a certain degree of parallelism

at the level of matrix multiplication but other than that, it is

not as tuned towards performance as the latest very well-

developed PTAM version is (e.g., by exploiting graphics

hardware and/or specialized processor instruction sets for

parallelization). What matters in this context is the fact that

both algorithms possess the same computational complex-

ity.
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(a) Efficiency: Average number of frames per second.

(b) Completeness: Time of tracking failure over total length of the image sequence.

Figure 7. Overview of the performance achieved on the entire dataset by the three investigated methods in comparison (view in color).

4. Conclusion

We have presented a computationally efficient numeri-

cal scheme to perform simultaneous reconstruction (map-

building) and localization. The key to achieving fast and

robust performance lies in the outlier management process

during correspondence. Rather than resorting to combinato-

rial matching or random sampling techniques, we employ a

simpler M-estimator, and design a simple topological vali-

dation test to reject points that slide on the surface of the

object (e.g., at occluding boundaries), and a photometric

test based on a coarse contrast-invariant descriptor. Such

descriptors are associated to each point in the map, and

could support detection, localization and recognition of ob-

jects, which is our long-term goal. Indeed, one could in-

terpret the localization and (implicit) inlier selection of our

approach as a method for object detection and localization

in a straightforward manner. However, in this manuscript

we have not addressed the use of our maps for classification

purposes, which is well beyond our scope here. Instead,

we have shown that our approach fills an important vacant

niche in the state of the art by providing a method to recon-

struct models of small scale objects despite significant self-

occlusions and a small effective field of view. Our method

achieves a satisfactory compromise between computational

complexity, simplicity, and robustness, as demonstrated ex-

perimentally.

Acknowledgements

The authors gratefully acknowledge D. Davis, J. Dong,

and J. Hernandez for their help in collecting data and

running large-scale experiments. This research was sup-

ported by DARPA’s program MSEE FA8650-11-1-7156 and

AFOSR FA9550-12-1-0364.

References
[1] P. Besl and H. McKay. A method for registration of 3-D shapes. IEEE T. Pattern

Anal., 14(2):239–256, 1992. 3
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