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Abstract

We address the problem of matching images with dis-
parate appearance arising from factors like dramatic illu-
mination (day vs. night), age (historic vs. new) and render-
ing style differences. The lack of local intensity or gradi-
ent patterns in these images makes the application of pixel-
level descriptors like SIFT infeasible. We propose a novel
formulation for detecting and matching persistent features
between such images by analyzing the eigen-spectrum of the
joint image graph constructed from all the pixels in the two
images. We show experimental results of our approach on a
public dataset of challenging image pairs and demonstrate
significant performance improvements over state-of-the-art.

1. Introduction
In this paper, we focus on matching images with dis-

parate appearance. Such images might be taken during day

and night or in different times in history, and they differ

at the local pixel level in the sense that neither intensity

nor gradient distributions are locally comparable. Thus, we

cannot rely on pixel-level feature descriptors like SIFT. In-

stead, we propose to use the joint image graph spectrum to

detect and match persistent features which robustly encode

the appearance similarity we perceive when we look at such

images.

Consider the images in Fig. 1 where we have the same

scene captured at different times of day1. Visual compar-

ison reveals the large amount of appearance change that

occurs in the scene due to the illumination variation. Nu-

merous SIFT features are detected in these images and they

show good repeatability (blue bars in the plot) as well.

However, the average precision (AP) of the SIFT descrip-

tors computed directly from these images significantly de-

∗The authors are grateful for support through the following grants:

ARL MAST-CTA W911NF-08-2-0004, and ARL RCTA W911NF-10-2-

0016, NSF-DGE-0966142.
1Frames extracted from the time-lapse sequence at: http://www.

youtube.com/watch?v=0OK4CdQ-haU

Figure 1. Day to night persistence matching. The spectrum of the

joint image graphs is computed. The first row shows a day-time

query-image (blue box) which is matched pair-wise against the

pre-dusk, dusk and night images respectively from left to right.

The second and third rows show the second eigen-vectors J
(2)
1

and J
(2)
2 for each pair of images (pre-dusk : day), (dusk : day),

(night : day). The eigen-vectors corresponding to the query have a

blue box to ease visualization. The plot compares the repeatability

(bars) and average-precision (AP)(polyline) of the SIFT detector

(blue) with the spectral method (red).

grades as the illumination difference between the matched

image pairs is increased as is visible from the blue polyline

in the plot. In contrast, the spectral features we propose in

this paper are comparable in their repeatability (red bars)

and they behave significantly better in the Average Preci-

sion (red polyline) even for the most challenging pair: night

vs. day.

Spectral methods on the image graph laplacian have

been used extensively in the literature for applications like

clustering, segmentation [1, 11] etc. The extracted eigen-

functions are either discretized to obtain the desired num-

ber of clusters or segments in the image or they are used

directly as the spectral space coordinates of the pixels in an

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.361

2800

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.361

2800

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.361

2802



embedded space representation. These coordinates are then

further clustered using K-means to obtain discrete cluster-

ing solutions. In contrast, in this paper we propose to use

the individual eigen-functions themselves as a feature repre-

sentation of the image pair from which interesting and use-

ful feature correspondence can be derived. We show how

such a representation captures persistent regions in the im-

age pair even when the appearance difference between them

is substantial (day-night, historic-new etc.). Moreover, we

propose a new definition of the joint image graph: all pix-

els of both images are nodes and the corresponding edge

weights depend only on the difference of the local image

structures and not on the proximity between the pixels. Al-

though a partitioning of such a graph might cluster together

distant regions, these regions even though disconnected in

the image space are persistent across images.

Our most significant contributions in this paper are: (1)

a new representation between two images: the joint im-

age graph defined only based on the affinity between im-

age structures in the dense set of pixels from both images

without considering the proximity between two image posi-

tions; (2) a new definition of persistent regions as the stable

regions of the eigen-functions of that graph considered in

their “soft” form without any discretization. We show that

such persistent features are both repeatable across images

and similar in terms of SIFT descriptors computed in the

eigen space itself, in a variety of cross domain setups.

We show experimental results of our approach on the

challenging dataset from [3] which contains image pairs ex-

hibiting dramatic illumination, age and rendering style dif-

ferences. Our results clearly indicate the substantial match-

ing improvement possible by looking at features derived

from a joint image spectrum rather than relying on features

detected individually in the two images to match in their de-

scriptors. Unlike standard local-features approaches which

detect features on each image independently, our method

relies on computing features using both images simultane-

ously. However, we believe that the global information en-

coded in the joint image graph and its eigen-functions is the

new cue that enables a better performance than approaches

relying only on local neighborhoods.

2. Related Work
Not many approaches exist that can handle the discrep-

ancy between two images at the level that we address

in this paper. Shechtman and Irani [7] proposed an ap-

proach for matching disparate images using patterns of lo-

cal self-similarity encoded into a shape-context like descrip-

tor. However, for the kind of disparate images we con-

sider, the local self-similarity pattern itself can be signifi-

cantly different between corresponding points in the image

pair. Shrivastava et al. [8] recently proposed an approach

for cross-domain image matching using data-driven learn-

ing techniques. Using a linear classifier, they learn the rel-

ative importance of different features (specifically, compo-

nents of the global image HoG descriptor in the paper) for

a given query image and then use the weight vector to de-

fine a matching score. In contrast, our focus is on extracting

local features that are persistent between a pair of images

instead of deriving a global image descriptor that can be

used for retrieval. Recently, Hauagge and Snavely [3] have

focused on the task of matching such images by defining

“local-symmetry” features which capture various symme-

tries like bilateral, rotational etc. at the local level. This

approach addresses matching rather than retrieval and the

discrepancy level is similar to the level our approach han-

dles, hence, we decided to use the dataset [3] as our main

test set.

Our methodology is most related to the works of [11]

and [9]. The spectral analysis of the joint matrix between

two images appeared first in [11] where the affinity matri-

ces of object model patches and the input image are com-

bined with a non-diagonal matrix associating object patches

and image pixels. Toshev et al. [9] proposed an approach

to determine co-salient regions between two images using

a spectral technique on the joint image graph constructed

from the images. Their joint image graph was constructed

with all the pixels in the two images by defining separate

affinity functions for intra and inter image terms. The in-

tra image affinity was defined using the intervening contour

cue while the inter image term was based entirely on the

initial set of feature correspondences between the images.

In this paper, we also use a joint image graph but we differ

in (i) using no proximity information in the affinity matrix,

(ii) using SIFT descriptor information instead of intensity

differences, and (iii) defining both the intra and inter im-

age terms densely using all the image pixels with a uniform

affinity function that successfully captures the persistent re-

gions shared between the images. The density of the inter-

image term allows us to apply spectral decomposition di-

rectly instead of requiring us to use the subspace technique

in [9]. Thereafter, we show how we can use the extracted

eigen-functions to construct features that are invariant to the

large appearance changes between the input images.

Glasner et al. [2] proposed a shape-based approach to

jointly segment multiple closely-related images by combin-

ing contour and region information. They show examples

of image pairs with illumination differences where their

joint segmentation approach achieves better co-clustering

than what is possible by using intra-image constraints alone.

They start from a super-pixel segmentation of the images

and then use contour-based constraints to drive their intra-

image affinities. The inter-image constraints are derived

from a comparison of HoG-like features only on contour

segments. Our approach also uses gradient-based descrip-

tors to enforce inter-image constraints – however, we do so
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Figure 2. First column shows an image-pair from the dataset in [3]. Second through fifth columns show eigen-function pairs

(J
(2)
1 , J

(2)
2 ), . . . , (J

(5)
1 , J

(5)
2 ) along with the detected MSER feature-ellipses. The green and magenta colors denote whether the features

correspond to maxima or minima.

Figure 3. For the image pair in the first column, the successive

columns show the second-through-fifth eigen-function pairs ob-

tained using a pixel-color based joint image graph. In this case,

the eigen-functions do not suggest any significant correlation with

the region correspondence in the original images.

Figure 4. For the image pair in the first column, the successive

columns show the second-through-fifth eigen-functions obtained

using dense-SIFT-based image graphs. The eigen analysis is per-

formed on each image graph independently. In this case, the

eigen-functions show correlations but the correlated regions are

distributed across several different eigen-functions.

densely between every pair of pixels in the input images.

Thus, we do not need any prior segmentation and we are

not prone to errors due to misdetection of contours, particu-

larly since contour detection would be very challenging for

the kind of disparate images we focus on. Contours of the

soft version of the eigenvectors of a single image affinity

matrix computed following the Normalized Cuts criterion

have also been used in [1] to include global relationships

into the probabilistic boundary feature vector.

3. Technical Approach

Consider the image pair in the first column of Fig. 2 de-

picting the same monument under significantly different il-

lumination conditions. Each local facet of the monument

is illuminated differently leading to dissimilar contrast and

color characteristics. It is evident that finding features that

are repetitive between the two pictures is a daunting task; in

fact, the problem of finding descriptors that can account for

the appearance differences at geometrically matching loca-

tions is itself quite challenging. On the other hand, we hu-

mans find it quite easy to ascertain by visual inspection that

these two images correspond to the same monument. The

kind of features we use to make such a judgment are the

more inherent “persistent” features in the scene like the con-

tours, salient regions, the local shapes, patterns of contrast

etc. One can argue, then, that shape-based image matching

techniques should be applicable for matching these images.

However, the contrast variations make it very difficult to

detect the image contours robustly. Most of the dominant

contours in the scene are very low energy and the intensity

at which corresponding contours would get detected varies

between different regions in the two images. Therefore,

we propose a spectral approach that detects these persistent

image features using the eigen-spectrum of the joint image

graph computed from appropriate local gradients in the two

images.

Before going into the details of the way the graph is

constructed, let us focus on the images in the second to

fifth columns of Fig. 2. In each column, the top and bot-

tom images correspond to one of the eigen-functions of the

joint graph reshaped back to the size of the images. The

red and blue shades represent the maxima and minima re-

spectively, of the eigen-function. It is clear that, for each

eigen-function pair (i.e. images in a single column) the dis-

tribution and shapes of these eigen extrema correspond well

between the two images and the image regions where this

correspondence is strong is in agreement with the actually

corresponding image regions. Thus, by computing features

that encode these extrema (both in their shape and the eigen-

energy profile), we can more robustly match these images

without relying on descriptors computed directly from the

images.

The technical approach is organized as follows. First,
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we will review basic fundamentals of the image graph con-

struction and its spectrum, followed by a look at the actual

features we use to build the joint image graph. Then, we

will characterize the eigen-function extrema as persistent

regions and discuss algorithms to detect and match these

extrema.

3.1. Image Graph

The spectral analysis of the content of an image is car-

ried out on a weighted image graph G(V,E,W ) which con-

tains all the image-pixels as vertices in the vertex-set V of

cardinality n. The edge-set E contains all pair-wise rela-

tionships between every pair of vertices (pixels) in the set

V thus making G a complete graph. The weight wij ≥ 0
associated with an edge (vi, vj) ∈ E encodes the affin-

ity between the pixels represented by vertices vi and vj .

We can collect these weights into an n × n affinity matrix

W = (wij)i,j=1,...,n. The degree matrix D of this graph is

defined as a diagonal matrix D with D(i, i) =
∑n

j=1 wij .

Using W and D, we can now compute the normalized graph

laplacian L̄ as L̄ = I −D−1/2WD−1/2. We are interested

in the eigen-spectra U of this laplacian matrix which can

be computed by eigen-value decomposition L̄Ū = λŪ and

setting U = D−1/2Ū . The eigen-vectors u1, . . . , uK cor-

responding to the K smallest eigen-values are related to the

structure of the graph [10] and are extensively used in the

literature to obtain a K−partition of an image based on ap-

propriately defined weight values. However, in this paper,

we will study the individual eigen-vectors directly to ascer-

tain useful persistent regions in the image.

The formulation above can be easily extended from

a single image to a pair of images as follows. Let

G1(V1, E1,W1) and G2(V2, E2,W2) be the image graphs

for images I1 and I2. Then the joint image graph

G(V,E,W ) is defined such that V = V1 ∪ V2, E =
E1∪E2∪V1×V2 where V1×V2 is the set of edges connect-

ing every pair of vertices in (V1, V2). The affinity matrix W
is given by:

W =

(
W1 C
Ct W2

)
(n1+n2)×(n1+n2)

(1)

where |V1| = n1, |V2| = n2 and C is the n1 × n2 ma-

trix encoding the affinities of edges in V1 × V2. The eigen-

spectra for the joint graph can be computed exactly as be-

fore by defining the normalized laplacian L̄ and carrying

out its eigen-value decomposition.

3.2. Image Features and the Joint Spectrum

Consider first an experiment where we perform spectral

analysis of the joint image graph G(V,E,W ) with the ma-

trix W defined directly in terms of the pixel color values

in the two images, i.e. both the intra-image weights W1,

W2 as well as the inter-image weights C are defined by a

function of the perceptually uniform Lab-space color differ-

ence between the pixel pair. Now, we compute the eigen-

spectra of this graph’s laplacian to see if the correspond-

ing eigen-functions show any patterns of correspondence.

Fig. 3 shows the second through fifth eigen-function pairs

(reshaped back into a matrix) for the same image pair as in

Fig. 2 obtained using the above Lab-based graph. It is clear

that we do not see much correspondence between the eigen-

functions in this case – this motivates the need for features

stronger than just the individual pixel colors. Features that

encode local image gradients are good candidates as they

provide a soft metric on the salient regions without needing

a hard-thresholding step needed by edge and contour detec-

tors. In this paper, we propose to use SIFT [4] descriptors

computed densely on the image at a fixed spatial sampling

σ (we use σ = 5 pixels for experiments in this paper).

To capture local image gradients at multiple scales, at

each location we compute the SIFT descriptors at two dif-

ferent scales (size of the SIFT spatial bin) s1 and s2. The

resulting feature vectors are concatenated to result in a

256−D feature vector fi(x) at each location x in image

Ii. Taking into account the spatial sampling of the features

σ, let n1 and n2 be the number of feature vectors obtained

from images I1 and I2 respectively. Then the affinity ma-

trices W1, W2 and C are defined as follows:

(Wi)x,y = exp

(
−‖fi(x)− fi(y)‖2

σ2
f

)
(2)

(C)x,y = exp

(
−‖fi(x)− fj(y)‖2

σ2
f

)
(3)

where fi(x) and fi(y) are features at locations x and y in

image Ii. We use the cosine-distance as the feature dis-

tance function ‖.‖ with tuning parameter σf set to 1.0 in

all our experiments. The scales s1 and s2 were set to 10
and 6 respectively for all the experiments. Note that unlike

most image-domain spectral approaches in the literature, we

do not use a spatial affinity term to reduce the influence of

spatially separated pixels. In fact, supporting long range

interactions is a key component of our approach as this al-

lows us to obtain more distinctive profiles in the computed

eigen-functions. With a spatial proximity term in the affin-

ity matrix, we run the risk of artificially limiting the spatial

extent of an eigen-function extrema and thus rendering the

derived features less distinctive.

Given the joint graph affinity matrix W from eqns-(1),

(2) and (3), it is straightforward to compute the eigen-

spectra. But before we do that, let us see if we can de-

termine any correspondence information between image re-

gions by extracting the spectra from each image graph sepa-

rately. Fig. 4 shows the eigen-functions obtained by spectral

analysis of the image graphs of the top and bottom row im-
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ages independently. Even though the eigen-functions cor-

rectly represent the grouping of gradient information as is

expected from our gradient features, one cannot infer useful

correspondence information between image regions from

the corresponding pair of eigen-functions directly.

Now, we can go back and look at the eigen-function

pairs in Fig. 2. These were obtained as the eigen-vectors

u1, . . . , u5 corresponding to the smallest K = 5 eigen-

values of the eigen-value decomposition L̄U = λU . From

each n1 + n2 dimensional eigen-vector uk, we compute an

eigen-function pair (J
(k)
1 , J

(k)
2 ) as follows. The first n1 en-

tries of uk are reshaped to the dimensions of I1 by assigning

its component values to the sampling locations where the

features were extracted from and then interpolating the val-

ues in between. Similarly, the next n2 entries of uk are re-

shaped to the dimensions of I2 leading to the eigen-function

J
(k)
2 .

3.3. Characterization of persistent regions

As discussed before, the extrema of the eigen-function

pairs (J
(2)
1 , J

(2)
2 ), . . . , (J

(5)
1 , J

(5)
2 ) represent persistent fea-

tures that can serve well as means of finding correspon-

dences across these difficult pairs of images. We want to

characterize these extrema in terms of their location, their

region of support as well as the variation of the eigen-energy

in the vicinity of each extrema. Since the extrema can

commonly exhibit elongated ridge-like shapes, an isotropic

blob-detector would not work well. The continuous nature

of the eigen-functions suggests that a water-shed like algo-

rithm would serve as a good detector that might find both

the location as well as the support region for these extrema.

Therefore, we found the well known feature detection al-

gorithm – the Maximally Stable Extremal Region (MSER)

detector [5] – to be suitable for this purpose.

The intensity-based MSER detector is typically used to

find affine-covariant regions in an image by looking for

water-shed areas that remain stable as an image intensity

threshold is varied. Each detected region is a set of con-

nected pixels to which an ellipse is typically fit to represent

the support region. To apply the MSER detector, we first

normalize each eigen-function J
(k)
1 (and J

(k)
2 ) to a range

of [0, 255] by scale and offset correction. Then, we run

intensity-based MSER along with ellipse fitting to detect

stable affine regions. All the eigen-function figures in this

paper depict these regions as green or magenta ellipses cor-

responding to maxima and minima respectively.

To represent the eigen-energy variation around each de-

tected MSER region, a number of different descriptors can

be used. Through empirical evaluation, we have found the

SIFT [4] descriptor to work well. Each detected MSER el-

lipse is affine corrected to a circular region and a SIFT de-

scriptor is computed for a region five times the ellipse size

by computing gradients on the eigen-function. The large

Algorithm 1 JSPEC Algorithm

1. Compute features f1(x) and f2(x) at a spatial sampling σ for I1 and I2.
2. Compute affinity matrix W using eqns-(1), (2) and (3).
3. Compute the K smallest eigen-vectors u1, . . . , uK for W .

4. Extract eigen-function pairs (J
(k)
1 ,J

(k)
2 ) from each uk .

5. Detect MSER features and compute SIFT descriptors for each (J
(k)
1 ,J

(k)
2 ).

6. Match features from each (J
(k)
1 ,J

(k)
2 ) by bi-directional SIFT matching.

7. Collect matches from all K eigen-functions to get the final match set.

spatial extent of the SIFT window allows us to capture the

eigen-energy profile more distinctly while still finding cor-

responding features between the eigen-function pairs. We

will use the term JSPEC to refer to this feature which com-

bines MSER ellipse keypoint with the eigen-space SIFT de-

scriptor.

3.4. Eigen-function feature matching

The centroids of the MSER ellipses along with their

associated SIFT descriptors can be treated as image fea-

tures in a traditional sense. Therefore, we adopt a simple

approach to matching these features by using the nearest-

neighbor criterion coupled with the ratio-test [4]. However,

we match the descriptors from each pair of eigen-functions

(J
(k)
1 ,J

(k)
2 ) independently i.e. for each descriptor in J

(k)
1 ,

the nearest and second-nearest descriptors are searched only
in J

(k)
2 and the association to the nearest descriptor is ac-

cepted only if its euclidean descriptor distance is less than τ
times the distance to the second-nearest descriptor. To en-

force a stronger match criterion, we perform matching from

J
(k)
1 to J

(k)
2 and from J

(k)
2 to J

(k)
1 and keep the matches

which are mutually consistent. This gives us a set of corre-

spondences Ck from the eigen-function pair (J
(k)
1 ,J

(k)
2 ). It

should be noted that unlike traditional SIFT feature match-

ing, our constraint on being able to match between individ-

ual eigen-function pairs results in a much stronger match

criterion.

Algorithm. We present our method in a reproducible

algorithmic form in Alg. 1.

4. Experiments
We evaluate our approach on the dataset of challeng-

ing image pairs from [3]. This dataset contains 46 pairs of

images exhibiting dramatic illumination, age and rendering

style differences. Some image pairs are pre-registered with

a homography to focus on appearance differences, while

others exhibit both geometric and photometric variation.

For each image pair, a manually extracted ground-truth ho-

mography H12 is included with the dataset.

Hauagge and Snavely [3] evaluated their local symmetry

features first, in terms of the detector repeatability and sec-

ond, in terms of descriptor mean-average-precision perfor-

mance. In our evaluation, we follow their methodology and

evaluation metrics closely and provide a thorough compar-

ison of our JSPEC features with their SYM-I and SYM-G
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Scale Score

100 200 100 200

MSER 0.087 0.103 - -

SIFT (DoG) 0.144 0.153 0.050 0.078

SYM-I 0.135 0.184 0.173 0.206

SYM-G 0.173 0.228 0.227 0.281

JSPEC 0.287 0.292 - -
Table 1. Detector repeatability compared with [3].

GRID SIFT SYM-I SYM-G JSPEC

Self-Sim. 0.29 0.14 0.12 0.16

SIFT 0.49 0.21 0.28 0.25 0.61
SYMD 0.41 0.22 0.20 0.25

SIFT-SYMD 0.58 0.28 0.35 0.36

Table 2. Descriptor mean average precision (mAP) evaluation and

comparison with [3].

features.

4.1. Detector repeatability

To evaluate the repeatability of the eigen-space MSER

features for a given image pair, we consider all the detec-

tions before the SIFT matching step. We collect all the

features from across all eigen-functions into two sets of

keypoints K1 and K2 for images I1 and I2 respectively.

Each keypoint has a centroid and an ellipse associated with

it. Therefore, we can directly apply the repeatability met-

ric from [6] which we briefly review next. Each keypoint

k1 ∈ K1 is warped into I2’s coordinate frame using the

ground-truth homography H12 and its (warped) support re-

gion is compared with the support region of each keypoint

k2 ∈ K2 to obtain an overlap score. If the overlap score

is more than 0.6 (i.e. less than 40% overlap error), then

we count the associated keypoint-pair as a correct detec-

tion. The ratio of the correct detections to the smaller of the

number of keypoints in either image is used as the measure

of detector “repeatability”. To be invariant to absolute key-

point scales, the keypoints in I1 are rescaled by a factor s to

a fixed area A before applying the homography. The same

scale s is applied to the keypoints in I2 before determining

the overlap score.

Hauagge and Snavely [3] computed the repeatability

scores of their features by considering subsets of top-100

and top-200 detections ordered by either feature scale or

score. This was done to avoid a bias when comparing to

detectors that produce a large number of keypoints. Our

MSER detector does not output a detection score and so

we only present repeatability numbers based on ordering

by scale. These are shown in Table-1 where we have also

reproduced numbers from [3] for ease of comparison. We

observe that our JSPEC features achieve slightly better re-

peatability than what SYM-G achieved using the top scor-

ing 200 detections.

Figure 5. Painting to image matching. The painting images (top-

row) have been taken from the dataset in [8].

4.2. Descriptor Evaluation

We evaluate the discriminative power of our eigen-space

SIFT descriptors in a manner similar to [3]. Here again,

we consider the descriptors associated with all the features

(i.e. before the matching step) collected together from all

the eigen-functions. Then, we match these descriptors using

the standard ratio test [4] on the top two nearest neighbor

distances. For a given choice of the ratio threshold, we get a

set of candidate correspondences which are evaluated with

the ellipse overlap criterion of [6] using the ground-truth

homography H12 to compute a point on the precision-recall

curve. By varying the ratio-test threshold, we can trace the

full precision-recall curve.

Fig.6 compares the performance of our JSPEC features

against each of the features studied by [3]2. Note that the

JSPEC plots across each column are exactly the same since

we do not vary the detector. We have plotted them four

times to allow comparison with the individual plots from

[3]. The first four image pairs show a substantial improve-

ment in performance over other competing methods. The

first row of plots (“Grid”) represents a synthetic detector ex-

periment in [3] where locations on a uniform grid in I1 are

chosen as K1 and these locations warped by H12 into I2 are

chosen as K2. This is meant to test how well the descrip-

tor matches appearance of perfect geometrically matching

locations. Even though we do not use the grid-detector,

a comparison of the JSPEC PR-curves with other curves

in the “Grid” row clearly indicate that SIFT features com-

puted on the eigen-functions match better across the ex-

treme day-night appearance changes. The graffiti image

pair (fifth column) shows that we perform similar to the

SYMD descriptor on SIFT features but, as expected, worse

than the SIFT detector-descriptor pair. Finally, the Taj ex-

ample (last column) shows a failure case where our method

fails because large parts of the scene have changed com-

2The precision-recall data plotted here was obtained from the authors

directly.
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Figure 6. Precision-Recall curves comparing performance of the spectral approach (JSPEC) with the features evaluated in [3]. Each column

shows plots for the image pair in the top row. For each image pair, the JSPEC curve is repeated in the four rows to show comparison with

the four different detectors in [3].

pletely. In this case, a combination with SIFT features is

likely to give better performance. Also note that we have

not applied either the bi-directional matching criterion or

the “match only within each eigen-function pair” criterion

to obtain these precision-recall curves for a fair compari-

son with other methods (which also do not apply the bi-

directional constraint). The performance is expected to be

higher with these additional criteria.

Table-2 compares our mean average precision with [3]

on the entire dataset. We achieve an overall mAP of 0.61
which is higher than the synthetic grid-detector (combined

with SIFT-SYMD descriptor) based mAP of 0.58 achieved

by [3].

4.3. Qualitative Results

In Fig. 5 and Fig. 7, we show some qualitative outputs

of our algorithm. The matches overlaid on the images are

the final matches obtained after bi-directional SIFT match-

ing on the JSPEC features at a ratio-threshold of 0.8. Fig. 5

shows two examples of paintings from the dataset shared by

Shrivastava et al. [8] in the top row. We downloaded sim-

ilar looking images from the web and tested our algorithm

on this difficult painting to image matching task. The ex-

amples show the quality of our matches. Fig. 7 shows three

more different kinds of examples with the correspondences

detected in each of the four eigen-function pairs collected

together and overlaid in the first column. In the first row, we

have a difficult day-night pair where we find valid matches

despite the poor contrast. The second row shows matching

between a historic picture and a drawing. The third row

shows the standard graffiti image pair with uncorrected per-

spective distortion that our method can easily cope with.

Note the accuracy of the feature detections on the original

images.

5. Conclusion
Image matching across different illumination conditions

and capture times has been addressed in the past by com-

paring descriptors of local neighborhoods or employing dis-

criminative learning of local patches. In this paper we intro-
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Figure 7. The first column shows an image-pair from the dataset in [3] along with the correspondences assembled from the individual eigen-

functions. Second through fifth columns show eigen-function pairs (J
(2)
1 , J

(2)
2 ), . . . , (J

(5)
1 , J

(5)
2 ) along with the MSER feature-ellipses

that have been matched using the SIFT-bidirectional matching criterion (τ = 0.8).

duced global image information into the matching process

by computing the spectrum of the graph of all pixels in both

images associated only by the similarity of their neighbor-

hoods. Significantly, the eigen-functions of this joint graph

exhibit persistent regions across disparate images which can

be captured with the MSER characteristic point detector and

represented with the SIFT descriptor in the resulting stable

regions. Such characteristic points exhibit surprisingly high

repeatability and local similarity.

In our ongoing work, we study how such persistent fea-

tures can be used for testing geometric consistency, a task

impossible when no correspondences can be established in

the raw image domain. Establishing the two view geom-

etry using these persistent features would also allow re-

photography: establishing the same view for a photo today

given a reference photo from the past.
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