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Abstract

It has been shown that a surface deforming isometrically
can be reconstructed from a single image and a template
3D shape. Methods from the literature solve this problem
efficiently. However, they all assume that the camera model
is calibrated, which drastically limits their applicability.

We propose (i) a general variational framework that ap-
plies to (calibrated and uncalibrated) general camera mod-
els and (ii) self-calibrating 3D reconstruction algorithms
for the weak-perspective and full-perspective camera mod-
els. In the former case, our algorithm returns the normal
field and camera’s scale factor. In the latter case, our al-
gorithm returns the normal field, depth and camera’s focal
length. Our algorithms are the first to achieve deformable
3D reconstruction including camera self-calibration. They
apply to much more general setups than existing methods.

Experimental results on simulated and real data show
that our algorithms give results with the same level of accu-
racy as existing methods (which use the true focal length)
on perspective images, and correctly find the normal field
on affine images for which the existing methods fail.

1. Introduction
The problem of 3D reconstruction of a deformable sur-

face from monocular video data has been well studied over

the past decade. In the template-based setup in particular,

where a reference 3D view of the surface is known, 3D re-

construction is carried out from 3D to 2D correspondences

established between the template and an input image of the

surface being deformed. Effective algorithms now exist for

the two key steps of image matching [11, 12] and 3D shape

inference [1, 2, 3, 5, 7, 8, 10, 14, 15, 16, 17]. Because the

reprojection constraints are not sufficient to achieve a sin-

gle solution, most work use deformation constraints such as

isometry [1, 2, 3, 5, 10, 14, 15, 16] and conformity [1, 7],

and various other priors such as a learnt shape space [17],

multiple local surface patches [15] and other visual cues

such a shading [8].

A common requirement of all methods from state of

the art is that the camera’s intrinsic parameters be known.

While this has initially been a reasonable assumption, being

able to self-calibrate the camera would grant 3D reconstruc-

tion much more flexibility. In rigid Structure-from-Motion,

camera self-calibration is well-understood. The most inter-

esting scenario, both in terms of stability and applicability,

is where all the intrinsics are known but the focal length

which is also allowed to vary in time [13]. This lets the user

to zoom in and out while filming.

This paper proposes a comprehensive framework for

3D reconstruction from a single uncalibrated image un-

der isometric surface deformation. In this context, most

existing methods use a fully calibrated perspective camera

model [1, 2, 3, 7, 8, 10, 14, 15, 16, 17] and are defeated

by affine imaging conditions. The reason is that they do

not fully exploit the differential surface constraints, and use

the so-called maximum depth heuristic [10], consisting in

maximizing the surface’s depth while bounding surface ex-

tension [2, 3, 10, 14, 15, 16]. Two exceptions are [1, 5]

which use a variational framework with a perspective and

an orthographic projection model respectively. In contrast,

our general variational framework applies to a general cam-

era model, whether calibrated or uncalibrated. It relates the

template to input image warp to the unknown surface em-

bedding. It leads to a general PDE for isometric 3D recon-

struction with the camera’s intrinsics as free parameters. We

establish that in the affine case, only the surface normal can

be computed but not the absolute depth, while in the per-

spective case, both the surface normal, absolute depth and

focal length can be estimated. We give two algorithms. Our

first algorithm is dedicated to the weak-perspective camera.

It computes the surface normal and the camera’s scale fac-

tor (the ratio between the camera’s focal length and the sur-

face’s average depth). Our second algorithm is dedicated to

the full-perspective camera. It computes the surface normal

and depth, and the camera’s focal length. Both proposed

algoritms are extremely fast.

Experimental results support the fact that focal length

self-calibration is feasible. A relative error of a few per-

cents can be reached in most camera/surface configurations,

leading to satisfying 3D reconstructions.
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Paper organization. §2 reviews state of the art. §3 gives

our notation, the problem setup and its modeling. §4 de-

rives our general variational framework for isometric 3D re-

construction. §§5 and 6 specialize this framework to weak-

perspective and full-perspective projection respectively, and

give solution algorithms for 3D reconstruction including

camera self-calibration. §7 reports experimental results and

§8 gives conclusions.

2. State of the Art

Reconstructing a deforming surface in the template-

based setting has two main steps: input image to template

registration and 3D shape inference. The registration step

has been effectively solved using feature-based [11, 12] and

pixel-based approaches [12]. This paper specifically fo-

cuses on the 3D shape inference step under isometric sur-

face deformation [1, 2, 3, 5, 10, 14, 15, 16]. Most of these

methods use a convex relaxation of the original problem.

The most successful relaxation [2, 14] has been the max-

imum depth heuristic [10] that consists in maximizing the

surface’s depth under inextensibility constraints [2, 14] us-

ing Second-Order Cone Programming (SOCP). The fastest

results were however obtained by solving a variational for-

mulation exploiting the differential structure of local isom-

etry in the perspective [1] and orthographic [5] projection

cases.

All the previously cited methods make a fundamental as-

sumptions: the camera model is perspective projection and

its intrinsics are known (except [5] which uses orthographic

projection). These methods are defeated by affine imaging

conditions since they do not directly exploit the problem’s

full differential structure. In other words, they only com-

pute depth, which is not recoverable in affine imaging con-

ditions.

We generalize the previous variational formulations [1,

5] to an arbitrary projection function. We specifically

instanciate our formulation for weak-perpective and full-

perspective projection. In the former case, our algorithm

computes the scale factor and the surface normal. In the lat-

ter case, our algorithm computes the camera’s focal length,

the surface normal and depth. Our method is the first to

solve 3D deformable shape reconstruction while perform-

ing camera self-calibration.

3. Notation and Modeling

Our notation and modeling are illustrated in figure 1.

The template domain is written Ω ⊂ R
2. The unknown

3D surface is parameterized by an isometric embedding of

the template, represented by the surface embedding func-
tion ϕ : Ω→ R

3. The camera projection function is written

Π : R3 → R
2. The known template-to-image warp func-

tion is written η : Ω → R
2. Finally, the unknown surface

unit normal function is written ξ : Ω→ S
3. We use the no-

tation Jf
def
= ∂f

∂p for the Jacobian-matrix function of function

f : Rd → R
d′

with Jf : Rd → R
d′×d.

unknown 
projection 
function Π 

2D parameterization 

3D deformed 
surface 

2D image known warp � known warp �

ow
ct

non Π

wnw
onti

Figure 1. Modeling monocular template-based surface recon-
struction. The warp η is estimated at the image registration step.

Existing reconstruction methods compute the surface embedding

function ϕ assuming that the camera projection function Π is

known. In our framework, we estimate both ϕ and Π. This implies

estimating the weak-perspective camera’s scale or self-calibrating

the full-perspective camera’s focal length.

We have three basic constraints. First, composing the

surface embedding and camera projection gives the warp;

this is the reprojection constraint:

η = Π ◦ ϕ. (1)

Second, the surface embedding’s Jacobian matrix function

Jϕ : Ω→ R
3×2 must be scaled orthonormal for the surface

deformation to be isometric; this is the deformation con-
straint:

1

λ
Jϕ ∈ Õ, (2)

where λ : Ω → R, λ > 0 is the known local scaling func-

tion1 and Õ is the set of (3× 2) column-orthonormal matri-

ces. Third, the first order partial derivatives of the reprojec-

tion constraint must agree; this is the differential constraint,
generalizing the Sub-Stiefel matrix constraint [4]:

Jη = (JΠ ◦ ϕ) Jϕ, (3)

where Jη : Ω → R
2×2 and JΠ : R3 → R

2×3 are the warp

and camera projection’s Jacobian-matrix functions respec-

tively.

4. General Isometric 3D Reconstruction
We start from the differential constraint (3), and append

the scaled unit surface normal λξ as the rightmost column

of this matrix equality:(
Jη λ(JΠ ◦ ϕ)ξ

)
= (JΠ ◦ ϕ)

(
Jϕ λξ

)
.

1For a developable surface λ = 1 while otherwise λ may be the local

scaling due to the 2D parameterization Ω obtained by flattening of a 3D

template [1].
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We multiply each side of this equation to the right by its

transpose. Because the deformation constraint (2) implies(
Jϕ ξ

) (
Jϕ ξ

)�
= λ2I, with I the identity matrix (here

of size (3 × 3)), the equation is simplified, and gives the

general equation of isometric 3D reconstruction:

JηJ
�
η +λ2(JΠ◦ϕ)ξξ�(JΠ◦ϕ)� = λ2(JΠ◦ϕ)(JΠ◦ϕ)�.

(4)

This is a nonlinear PDE in the camera projection Π, the sur-

face embedding ϕ and its normal ξ. It is clear that ξ may be

derived from ϕ; however, relaxing this dependency leads to

a local and computationally fast solution [1]. Due to sym-

metry, there are only three distinct equations out of the four

equations of this matrix equality. This PDE must be solved

jointly with the reprojection constraint (1). Because of its

global and parametric nature, camera projection will turn

into a set of free unknown parameters when specializing

this PDE to a particular camera model.

5. Weak-Perspective Solution
We show how the general reconstruction equation (4) is

specialized and solved for weak-perspective projection.

5.1. Specializing the General Equation

The general affine camera’s projection function is

ΠA(Q) = KASAQ. In this equation SA = (I 0) ∈ R
2×3

is a constant matrix and KA ∈ R
2×2 is an upper triangu-

lar matrix containing the camera’s three intrinsics. We thus

obtain JΠA
= KASA, that we substitute in the general re-

construction equation (4) to get:

JηJ
�
η + λ2KASAξξ

�S�AK
�
A = λ2KASAS

�
AK

�
A.

Function ϕ disappears since the affine camera’s Jacobian is

constant. Defining ξ̄ : Ω→ R
2, the function giving the first

two elements of the unit normal, as ξ̄ = SAξ, we get the

affine equation of isometric 3D reconstruction:

JηJ
�
η + λ2KAξ̄ξ̄

�K�A = λ2KAK
�
A.

For a weak-perspective camera, KA = αI where the un-

known scale α
def
= f

d > 0 is the ratio between the cam-

era’s focal length f and the surface’s average depth d. This

leads to the weak-perspective equation of isometric 3D re-
construction:

JηJ
�
η + λ2α2ξ̄ξ̄� = λ2α2I. (5)

This is a polynomial first-order PDE with α ∈ R+ as free

parameter.

5.2. Solving

Equation (5) involves function ξ̄ and parameter α. The

latter is a free parameter involved globally over the domain

Ω by the PDE. Attempting to solve for ξ̄ and α simultane-

ously leads to a large and untractable polynomial optimiza-

tion problem. We propose a solution that first computes α
globally and then ξ̄ locally.

Solving for α. We rearrange equation (5) as λ2α2ξ̄ξ̄� =
λ2α2I − JηJ

�
η . Because the left-hand side of the equation

is a rank-1 matrix, we can write that the right-hand side’s

determinant vanishes, giving, with μ
def
= α2:

det
(
λ2μI− JηJ

�
η

)
= 0. (6)

This shows that two solutions for μ could be easily found

from the eigenvalues of JηJ
�
η . However, we do not want to

solve for μ locally but globally, taking measurements into

account over the whole domain Ω, for stability purposes.

Expanding equation (6), we get the following degree-two

polynomial in μ:

λ4μ2 − λ2tμ+ g = 0, (7)

with t
def
= tr

(
JηJ

�
η

)
and g

def
= det

(
JηJ

�
η

)
. We define the

optimization problem to get an estimate of μ from all mea-

surements as:

min
μ∈R

∫
Ω

(
λ4μ2 − λ2tμ+ g

)2
dp. (8)

Nullifying the cost’s μ-derivative yields the following

degree-three polynomial:

2μ3

∫
Ω

λ8 dp− 3μ2

∫
Ω

λ6t dp

+μ

∫
Ω

λ4
(
2g + t2

)
dp−

∫
Ω

λ2tg dp = 0.

(9)

We finally solve for μ by keeping the real positive root min-

imizing the cost function2 and set α =
√
μ.

Solving for ξ. We rewrite equation (5) as λ2ξ̄ξ̄� = M

where M
def
= λ2I − 1

μJηJ
�
η . We simply use a rank-one

decomposition ζζ� of M, where ζ ∈ R
2, that we com-

pute from a Singular Value Decomposition M = UΣU�

as ζ = 1√
σ
u, where u is the column of U associated to

the largest singular value σ. We therefore get two solutions

ξ̄ = ± ζ
λ . We finally use the constraint ‖ξ‖2 = 1, leading to

ξZ = −
√
1− 1

λ2σ to get two solutions:

ξ1 =

(
ζ

−
√
1− 1

λ2σ

)
and ξ2 = −

(
ζ√

1− 1
λ2σ

)
,

(10)

2At least one root of equation (9) is real positive. The quadratic (7)

opens upwards (because λ4 > 0) and its two roots are real positive (be-

cause t > 0 and g ≥ 0). Therefore, the integrand (8) is a positive quartic

that has two pairs of repeated real positive roots and is strictly decreasing

for μ < 0. The integral cost (8) has thus at least one real positive root.
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where, because ξZ < 0, both possible normal are directed

towards the camera. Criteria such as surface integrability

or smoothness [3] can be used (through normal integration)

to recover a C1 shape up to scale while disambiguating the

normal field. This may however leave some convex/concave

ambiguities unresolved.

6. Full-Perspective Solution

We here show how the general reconstruction equa-

tion (4) is specialized and solved for full-perspective pro-

jection.

6.1. Specializing the General Equation

The general perspective camera’s projection function is

ΠP (Q) = 1
QZ

KPQ. In this equation KP ∈ R
2×3 con-

tains the five camera’s intrinsics. We partition it as KP =(
K̄P q0

)
where K̄P ∈ R

2×2 is an upper triangular ma-

trix containing the focal length f , the skew τ and the as-

pect ratio ρ, and q0 ∈ R
2 is the principal point. We thus

obtain JΠP
= K̄PSP with SP

def
= 1

QZ

(
I − 1

QZ
Q̄
)

and

Q̄� def
= (QX QY ). Substituting ΠP into the reprojection

constraint (1) we get:

η =
1

ϕZ
KPϕ =

1

ϕZ
K̄P ϕ̄+ q0

with ϕ̄� def
= (ϕX ϕY ). This leads to ϕ̄ = ϕZK̄

−1
P (η −

q0). Substituting this expression in JΠP
◦ ϕ gives:

JΠP
◦ ϕ =

1

ϕZ

(
K̄P η − q0

)
.

Finally, substituting this expression in the general recon-

struction equation (4) we obtain the full-perspective equa-
tion of isometric 3D reconstruction:

JηJ
�
η +

λ2

ϕ2
Z

(
K̄P ξ̄ξ̄

�K̄�P + ξ2Z η̃η̃
�) = λ2

ϕ2
Z

(
K̄P K̄

�
P + η̃η̃�

)
,

with η̃ = η − q0. We further specialize this equation under

the assumption that only the focal length f is unknown and

the effect of the other intrinsics were undone. This leads to

K̄P = fI and q0 = 0. Setting γ = ϕ2
Z , we get:

γJηJ
�
η + λ2f2ξ̄ξ̄� + λ2ξ2Zηη

� = λ2f2I + λ2ηη�.

Using ξ2Z = 1− ‖ξ̄‖22, we finally obtain:

γ

λ2
JηJ

�
η + f2ξ̄ξ̄� − ‖ξ̄‖22ηη� = f2I +

(
1− 1

λ2

)
ηη�.

(11)

This is a nonlinear PDE with f ∈ R as free parameter.

6.2. Solving: Finding an Initialization

Equation (11) involves functions ξ̄ and γ, and parameter

f . The latter is involved globally. The relationship between

ξ̄ and γ is quite complex and we thus cannot directly ex-

ploit it to solve the variational equation efficiently. Indeed,

γ gives the depth and with the reprojection constraint, de-

termines function ϕ, whose first partial derivatives lead to

the normal function ξ.

We propose the following estimation procedure: (i) sam-

ple f over a range of admissible values, (ii) for each candi-

date f value, solve the equation of isometric 3D reconstruc-

tion (11) and (iii) keep the value of f which best satisfies

the global isometric constraint. This procedure makes the

solution of step (ii) pointwise, easily parallelizable on the

GPU and thus extremely fast. We sample 100 f values on

a log-scale from 102 pixels to 5× 103 pixels. Note that the

template camera’s focal length is generally unrelated to the

runtime camera’s (for instance with printed paper we use

the digital texture image as a template).

Solving for γ and ξ̄ given f . We propose a simpler so-

lution to equation (11) than the existing closed-form [1].

Relaxing the constraint relating γ to ξ̄, equation (11) can be

viewed as a system of three polynomials of degree two in

three variables at each point p ∈ Ω. Because of its special

structure, this system has at most 4 solutions. Without loss

of generality, we here assume λ = 1 (the surface is devel-

opable), but the method applies to an arbitrary local scale

function λ. We define the following aliases:

(
a1 a3
a3 a2

)
def
= JηJ

�
η and

(
b1 b3
b3 b2

)
def
= ηη�.

Equation (11) can thus be rewritten as:

⎧⎨
⎩

γa1 + f2ξ2X − (ξ2X + ξ2Y )b1 = f2

γa2 + f2ξ2Y − (ξ2X + ξ2Y )b2 = f2

γa3 + f2ξXξY − (ξ2X + ξ2Y )b3 = 0.
(12)

According to Bézout’s theorem, this polynomial system has

at most 22 = 4 solutions. More specifically, there are 4 so-

lutions for the normal ξ̄ and 2 for the depth γ. However,

it has been shown that with this relaxation only one solu-

tion satisfies γ > 0 [1]. Our solution method introduces

ζ1 = ξ2X , ζ2 = ξ2Y and ζ3 = ξXξY to rewrite the poly-

nomial as a linear system with 3 equations in 4 unknowns.

Finding the 1-dimensional affine subspace of solutions, we

select the 4 solutions for ξ̄ and the 2 solutions for γ from

the quadratic constraint ζ1ζ2 − ζ23 = 0. We finally keep the

only solution such that γ > 0. We do not keep the two am-

biguous solutions for the normal field but rather recompute

it a posteriori from function γ.
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Selecting the best f sample. The best f sample is se-

lected using global isometry as a criterion. The latter is

measured using the so-called Euclidean approximation to

geodesics. Let (p,p′) ∈ H ⊂ Ω2 be a pair of neighboring

template points. For this point pair we measure the amount

of surface extension or shrinking with respect to the tem-

plate as:

|δ(p,p′)− δ(ϕ(p), ϕ(p′))|,
where δ : Rd×R

d → R is the Euclidean distance function.

We then robustify the criterion by keeping the median value

overH:

F [ϕ]
def
= median

(p,p′)∈H
|δ(p,p′)− δ(ϕ(p), ϕ(p′))|. (13)

In practice we use K = 5 nearest neighbors to construct H
from the input point correspondences.

6.3. Solving: Direct Nonlinear Refinement

We finally propose a variational formulation of the prob-

lem and to solve it numerically:

min
ϕ,f

∫
Ω

‖η −ΠP ◦ ϕ‖22 dp+ ν

∫
Ω

∥∥J�ϕ Jϕ − λ2I
∥∥2
F dp,

with ν ∈ R+ a weight on the isometry constraint, that we

here choose empirically. The surface embedding function

ϕ is represented as a linear interpolant of control points po-

sitionned on a regular grid. The problem is finally solved

using Gauss-Newton. We implemented two versions of the

direct nonlinear refinement. The first one uses the static

calibration value for f (and is equivalent to the nonlinear

method of [2]) while the second one estimates f numeri-

cally. The initial solution is provided by our focal length

sampling algorithm.

7. Experimental Results
7.1. Compared Methods and Measured Errors

We compared 8 methods: 5 use ground-truth static cali-

bration and 3 perform self-calibration. We measured three

types of error: the f -error (the relative absolute difference

between the true and the estimated focal lengths, in %);

the depth-error (the average depth discrepancy between the

true and the estimated surfaces, in pixels) and the normal-
error (the average angle between the true and the estimated

normal, in degrees – for the weak-perspective solution we

use the normal giving the smallest error). Note that for

the weak-perspective solution only the normal error is com-

putable. We implemented the registration step as follows,

unless stated otherwise. We first used SIFT [6] to obtain

putative keypoint correspondences from which we then es-

timate a Thin-Plate Spline warp η using a robust method

based on spatial consistency [12]. We always use the pixel

grid in the template to discretize the PDEs.

Methods using static calibration. It should be noted that

these compared methods assume the focal length to be

known. In the case of simulated data this is the groundtruth

focal length; it the case of real data it is obtained from static

calibration. STAT-PE is an iterative method using the max-

imum depth heuristic [10]. STAT-SA is a convex solution

using the maximum depth heuristic [14]. STAT-BR is a con-

vex SOCP solution using the maximum depth heuristic [2].

STAT-BA is an analytical solution using variational calcu-

lus [1]. STAT-RE is a nonlinear refinement method [2].

Methods performing self-calibration. We compared

three proposed methods. SELF-WP is the proposed weak-

perspective method of §5. SELF-FP is the proposed full-

perspective method of §6.2. SELF-RE is the proposed non-

linear refinement method of §6.3.

7.2. Simulated Data

We used a paper model [9] to simulate isometrically de-

forming surfaces. We randomly drew m points on the sim-

ulated surfaces and projected them with a perspective cam-

era. For each tested configuration, we averaged the results

over 50 trials. We varied the simulated focal length (de-

fault: 400 pixels), the number of keypoint correspondences

(default: 200) and the standard deviation of the gaussian-

distributed correspondence noise (default: 1.5 pixels). Our

results are displayed in figure 2.

The top row shows the f -error. We observe that SELF-FP

degrades with increasing focal length and correspondence

noise and improves with increasing number of correspon-

dences. However, the f -error is kept below about 15% and

is of a few percents for most simulated configurations. We

observe that SELF-RE is kept to less than 1% error for all

configurations. This is comparable with an excellent static

camera calibration. This means two things: first that SELF-

RE’s cost function leads to accurate estimates and second

that SELF-FP provides SELF-RE with an initialization that

allows it to reach an accurate estimate.

The middle row shows the depth error. As with the f -

error, we observe that SELF-FP degrades with increasing

focal length and correspondence noise and improves with

increasing number of correspondences. We observe that

SELF-FP is in the range of error of methods using static cal-

ibration. SELF-FP allows SELF-RE to converge to a solution

which is almost as accurate as STAT-RE, which, because it

uses static calibration, we can consider as a lower bound on

the error achievable by self-calibration.

The bottom row shows the normal error. We make the

same observations for SELF-FP as for the depth error. The

normal error is kept between 10–40 degrees. SELF-WP has

errors between 7–13 degrees. It gives normal estimates

which are almost always more accurate than SELF-FP’s de-

spite the significant amount of perspective in short focal
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Methods using self-calibration Methods using static calibration Methods using self-calibration Methods using static calibration

Figure 2. Experimental results with simulated data.

length simulated configurations. The curves for SELF-RE

and STAT-RE are indistinguisable and lie at around a few

degrees error.

The first column shows the result when changing the

simulated focal length. When it gets large the imaging func-

tion gets closer to parallel projection. Therefore, the accu-

racy of some methods based on the maximum depth heuris-

tic (STAT-SA and STAT-PE) degrades significantly. The focal

length and depth also become ill-constrained as only their

ratio can be measured, explaining why we observe that their

estimates by SELF-FP degrades. The surface normal how-

ever is still well-constrained, as can be observed from SELF-

FP’s normal estimates. This can be seen from equation (12):

when f grows large the depth γ becomes ill-constrained but

not the normal ξ. We observe that the f -error and the depth

error for SELF-RE increase with the focal length but much

less than for SELF-FP, while the normal error is kept to its

lower bound provided by STAT-RE.

7.3. Real Data

We tested the above mentioned algorithms on several

real datasets. We show results for three selected datasets.

The 9-zoom dataset. This new dataset consists of 9 sets

of 3 still images each. Each image shows a deformation of

a paper sheet. Each set has a different but constant level

of zoom. They thus cover 9 levels of zoom, from small

to large. We use two examples from this dataset to illus-

trate the whole reconstruction pipeline with the key steps

shown in figure 3. These two examples respectively use

a short and long focal length. We now describe the short

focal length example in details. 1432 and 1462 SIFT key-
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Zoom level 9 (long focal length � ≈ 5670 pixels) 

Zoom level 1 (short focal length � ≈ 1831 pixels) 

Figure 3. Results on the 9-zoom dataset.

points [6] were extracted from the template and the input

image respectively. 798 putative correspondences were ob-

tained, and 698 were kept after spatial consistency was en-

forced [12]. A Thin-Plate Spline warp was then fitted to

the keypoint correspondences. The 3D reconstructions ob-

tained using static calibration and self-calibration are visu-

ally indistinguishable.

The bar-plot in figure 3 shows the true and estimated fo-

cal length as the level of zoom varies. From level 1 to level

5 (1831 to 3605 pixels) the f -error is kept below 10% for

both SELF-FP and SELF-RE. From level 6 to level 9 (4015

to 5670 pixels) the f -error grows up to 28% for SELF-FP.

It however allows SELF-RE to converge to a solution were

the f -error ranges from a few percents (levels 6 to 8) to

13% (level 9). This is a reasonable accuracy given that

self-calibration is here performed from noisy keypoint cor-

respondences obtained automatically on a single image.

CVLab’s paper sequence dataset. This dataset with es-

timated groundtruth depth was kindly provided by EPFL’s

CVLab on their website. We show results for the first 90

frames of this video sequence showing a piece of paper be-

ing manually deformed. We used the SIFT correspondences

provided with the sequence. The focal length is fixed and its

groundtruth value is 528 pixels. Figure 4 shows the results

we obtained.

We observe on the left graph that SELF-FP produces a

depth error slightly larger that the other methods, but of

the same order of magnitude. On the other hand, SELF-RE

achieves a depth error comparable to methods using static

calibration. The middle graph shows that both SELF-FP and

SELF-RE overestimate the focal length by a few dozens of

pixels. The right graph shows that the f -error is kept below

12% for SELF-FP and below 8% for SELF-RE. The average

f -error is 5.8% and 3.1% for these two methods respec-

tively, which we consider as an accurate result.

The cap dataset. Results for this new dataset are in fig-

ure 5. The template here is in 3D since it is non-developable

(the cap cannot be isometrically flattened to a plane). The

input image shows the cap with a crease in the centre. The

groundtruth focal length from static calibration is 2040 pix-

els. We here followed a special reconstruction procedure in

two steps. Because the cap is a 3D object, is it never en-

tirely visible in an input image. Specifically, the textured

visible part of the cap is inside the dashed red curve in fig-

ure 5. We first reconstructed the visible part of the cap us-

ing template-based deformable 3D reconstruction. This was

based on 241 semi-automatically established keypoint cor-

respondences. We then transferred the hidden part of the

cap from the template by extrapolating the transformation

obtained for the reconstructed visible part. We observe that

the shape reconstructed by STAT-RE is visually extremely

similar to the one reconstructed by SELF-RE. The average

relative error to the groundtruth shape obtained by struc-

tured lighting is 0.60% and 0.74% for STAT-RE and STAT-

FP with standard deviation 0.51% and 0.64% respectively.

The estimated focal length was 1890 pixels for SELF-FP and

2118 pixels for SELF-RE, which means an f -error of 7.3%

and 3.8% respectively. We consider this as a very successful

result.

8. Conclusion

The main conclusion of our paper is that focal length

self-calibration in template-based isometric deformable 3D

reconstruction is feasible. This is taking the level of flexibil-

ity of this type of methods a step further. Our initialization

algorithm facilitates accurate 3D reconstruction for small

to medium focal length values while our nonlinear refine-

ment algorithm handles small to large focal length values

extremely well, being as accurate as methods using static

calibration. When the focal length grows too large it cannot

be computed. We showed how the surface normal can how-

ever still be accurately estimated with the weak-perspective

projection model. The proposed algorithms were imple-
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Template (first frame) Frame 90 (last frame) 

Figure 4. Results on the paper sequence. See figure 2 for the graphs’ legend.

3D template Input image 

Reconstruction by SELF-RE Reconstruction by STAT-RE 

Figure 5. Results on the cap dataset.

mented in pure Matlab. They process a few frames per sec-

ond on a regular PC. Because they are highly parallelizable

(except SELF-RE), it is likely that a GPU-C/C++ implemen-

tation would process hundreds of frames per second. Future

work may address the well-posedness of f computation (a

trivial degeneracy for instance is a flat and frontoparallel

surface) and the conformal deformation case.
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