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Abstract

Current pedestrian tracking approaches ignore impor-
tant aspects of human behavior. Humans are not moving
independently, but they closely interact with their environ-
ment, which includes not only other persons, but also dif-
ferent scene objects. Typical everyday scenarios include
people moving in groups, pushing child strollers, or pulling
luggage. In this paper, we propose a probabilistic approach
for classifying such person-object interactions, associating
objects to persons, and predicting how the interaction will
most likely continue. Our approach relies on stereo depth
information in order to track all scene objects in 3D, while
simultaneously building up their 3D shape models. These
models and their relative spatial arrangement are then fed
into a probabilistic graphical model which jointly infers
pairwise interactions and object classes. The inferred inter-
actions can then be used to support tracking by recovering
lost object tracks. We evaluate our approach on a novel
dataset containing more than 15,000 frames of person-
object interactions in 325 video sequences and demonstrate
good performance in challenging real-world scenarios.

1. Introduction

Considerable progress has been made in the development

of dynamic scene understanding approaches over the last

few years [1, 2, 3, 6, 10, 12, 19]. Still, most current ap-

proaches are so far limited to recognizing and tracking a

small number of known object categories, such as pedes-

trians or cars. Recently, tracking approaches have been

extended by social walking models [15] and by modeling

of group behavior [4, 11, 16, 20]. However, another ma-

jor factor that influences peoples’ behavior and dynamics—

their interactions with scene objects—has so far been un-

derrepresented. Such interactions are harder to incorporate,

since their analysis requires recognizing the presence of ob-

jects whose shape and appearance may as yet be unknown.

Consequently, person-object interactions have so far mostly

been considered in surveillance settings with fixed cameras

∗Both authors contributed equally to this work.
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Figure 1: Our proposed approach models pairwise interactions

between persons and objects in a probabilistic graphical model,

taking into account object shape, relative arrangement, and tempo-

ral consistency. Thus, it can infer which objects belong to which

persons and predict how the interactions will continue. Recog-

nized interactions are visualized by colored lines linking the foot

points of interacting objects (Legend: pull side right, pull side
left, pull right, pull left, push, group).

(e.g., [5, 17]), where background modeling can be used to

segment and track unknown objects.

With this paper we present a mobile scene understanding

approach for inner-city shopping areas, airports, or train sta-

tions. In such scenarios, people often handle luggage items,

child strollers, trolleys, etc. Current tracking-by-detection
approaches cannot track such objects, since (a) there are no

generic detectors available for all dynamic objects, and (b)

tracking-by-detection does not scale to a large number of

detector classes. Our approach can track persons and other

scene objects from a mobile platform and jointly infer both

the object class and the interaction type from observed ap-

pearances and dynamics. The core component of our ap-

proach is a probabilistic graphical model that relates object

appearance and spatial arrangement consistently over time.

This model can determine which persons and objects belong

together and in what way they interact. Based on the recog-

nized interaction, it can then predict how the interaction will

most likely continue and how one object’s trajectory will be

affected by another object’s observed motion.

Realizing such an approach for a mobile platform can-

not be done in a standard tracking-by-detection framework
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I Interaction Type ∈ {push,

group, none , . . .}.

Co Object Type ∈ {person,

stroller, 2-wheel bag, . . .}.

Cp Person ∈ {Y/N}.

xrel Relative position.

vrel Relative velocity.

A Autonomous ∈ {Y/N}.

Yo Object appearance.

Yp Person appearance.

Figure 2: (left) Bayesian Network for object person interaction,

dashed lines indicate inference from preceding and to subsequent

frames. (right) table of variables in Bayesian Network.

based on pre-trained object detectors [1, 2, 3, 6, 12, 19],

since object class inference will only become possible after

an object configuration has already been tracked for several

frames. We therefore formulate our approach in a tracking-
before-detection framework based on low-level stereo re-

gion segmentation and multi-hypothesis data association.

The benefit of this approach is that it enables us to track

a large variability of objects with potentially unknown ap-

pearance, while achieving increased robustness to classifi-

cation failures. For an example, consider the scene shown

in Fig. 1. Our approach fails to recognize the child in the

bottom left corner of the figure as a person (visualized by a

cylinder). In a tracking-by-detection approach, this would

cause a tracking failure. Instead, our approach treats the

child as an unknown moving object (visualized by a box)

and it can still recognize that this object forms a group with

the child’s mother (shown by the green connecting line),

thus affecting the mother’s trajectory.

In detail, our paper makes the following contributions:

(1) We propose a probabilistic graphical model for recog-

nizing pairwise person-object interactions taking into ac-

count object shape, relative arrangement, and temporal con-

sistency. This model can jointly infer object classes and in-

teraction patterns more robustly than could be done from

individual observations. In particular, it can resolve which

object belongs to which person, arriving at improved scene

understanding. (2) This scene interpretation allows our ap-

proach to make improved predictions for the continuation of

each tracked object’s trajectory with increased robustness to

occlusions and detection failures. (3) In order to make this

approach feasible on noisy stereo depth data, we propose

several detailed contributions spanning the entire tracking

pipeline. This includes novel methods for improved region

candidate extraction, data association, and multi-hypothesis

discrimination. (4) We introduce a novel benchmark dataset

for person-object interaction consisting of 325 video se-

quences with a total of almost 15,000 frames and use it to

quantitatively evaluate our approach’s performance.

The paper is structured as follows. The following section

discusses related work. After that, Sec. 2 presents the pro-

push none group

pull side left pull right pull side right

Figure 3: Learned conditional distributions for relative positions

in a log-polar grid.

posed graphical model for object and interaction classifica-

tion. Sec. 3 discusses how model parameters are learned,

and Sec. 4 shows how the model is used for inference

and prediction. Sec. 5 integrates the model into a track-

ing pipeline for robust scene interpretation. Finally, Sec. 6

presents experimental results.

Related Work. Tracking dynamic objects reliably is an

important part of scene understanding. In recent years, a

number of tracking-by-detection approaches have been pro-

posed for this task [2, 3, 6, 10, 12, 19], achieving good per-

formance. However, most such approaches are restricted to

pre-trained classifiers that yield the detections and ignore

the impact on individual pedestrian motion by other nearby

scene objects.

Incorporating social walking models into modeling the

dynamics of individual pedestrians [15, 20] and groups

[4, 11, 16] has been shown to yield significant improve-

ment for tracking in crowded scenes. Similarly, [4] have

shown that tracking results can be improved by simulta-

neously tracking multiple people and estimating their col-

lective activities. However, those approaches consider only

other pedestrians as possible scene objects and ignore the

impact of a large variety of other objects such as bicycles,

child strollers, shopping carts, or wheelchairs often present

in street scenes. A main reason for this is the lack of reliable

classifiers spanning the large variety of scene object classes.

There are several approaches that model person-object

interactions in static surveillance camera footage using

background modeling. For example, [17] propose to de-

tect abandoned luggage items by analyzing the size and

velocity of tracked foreground blobs. [5] propose a more

elaborate approach for carried item detection that compares

the segmented object area to learned temporal templates of

pedestrian shapes. Such approaches are limited by the re-

quirement of background modeling, which makes them not

applicable for our scenarios with a moving camera.

Recently, [13] has proposed a tracking-before-detection

approach that can track both known and unknown object
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Figure 4: (left) Learned GCT histogram classifiers for person,

2/4-wheel bag and stroller. (right) Performance of classifier.

categories from a mobile platform based on stereo data.

Their method relies on stereo region-of-interest (ROI) ex-

traction to extract possible object candidates [2, 3, 9, 13]

and to track them over time. We take inspiration from this

approach in order to develop our model, but significantly

extend it with improved methods for candidate object seg-

mentation, data association, and object interaction handling.

2. Modeling Person-Object Interactions
We model all person-object interactions in the scene in

a pairwise manner. This has two important implications:

On the one hand, we assume each observable interaction

to have exactly two actors. On the other hand, our model

becomes easy to handle and learn, and inference can be per-

formed in an efficient way. We try to robustly explain what

is happening in the scene under the basic assumption that

persons’ actions will be the dominant cause of observable

object motion, meaning that an object can only move be-

cause of a person’s impact. Having analyzed a scene and

interpreted all interactions, our model can then use this in-

formation in a generative way in order to predict future mo-

tion and support tracking.

Looking at a scene of various given objects, their past

trajectories and current positions, we derive a number of

individual and pairwise features to infer the type of interac-

tion. Firstly, we model the appearance of objects and per-

sons and try to assign them to one of the classes: stroller, 2-
wheel bag, 4-wheel bag, walking aid, person, autonomous
(e.g., electric wheelchairs), and noise. For each person-

object and person-person pair, we can determine their rel-

ative positions in the scene, as well as their relative veloci-

ties derived from their trajectories. Together with the object

appearances, we use those as features in order to infer the

interaction type. In this paper, we consider 6 different inter-

action classes, as shown in Fig. 1(top), plus the additional

class none, indicating independence. In our setting of pair-

for frame i = 1:n

Depth based
ROI extraction

Segmentation

Generation of
observations

Extension of 
existing tracks

MDL - Selection
of Hypothesis

Tracking GCT

Update GCT

Generate Initial
GCT

Bayesian Belief Network
Interaction Classification

for # inliers

Generation of 
new Hypothesis

a.

b.

c.

d.

e.

f.

g.

Figure 5: (1) Overview of observation generation for the proposed

Bayesian Network. (2) GCT shape representation, which accumu-

lates observed 3D points of the object in distance histograms [13].

wise interaction, the action group is defined as true if and

only if two persons belong to the same group of people. An

intuitive notion of group transitivity will then allow us to

robustly identify all persons belonging to the same group.

In a scene with 3 entities we consider a total of 6 pos-

sible interactions, i.e., each pair of entities twice, with ei-

ther entity as the dominant actor, denoted by ”actor”. Since

we do not know the entity class a priori, we determine for

each interaction a probability for the actor to be a person.

If this probability is very low, we can tell immediately that

we have an instance of the action ”none”. We also model

whether an object acts in an autonomous way (as another

pedestrian, or electric wheelchair would do).

Fig. 2 illustrates our proposed model and an overview of

the used random variables. Using this model, the likelihood

of an observed interaction can be decomposed as:

p(I, Co, Cp, vrel, xrel, A, Yo, Yp) =

p(I) · p(Co|I) · p(Cp|I) · p(xrel|I, Co, Cp)·
p(vrel|I, Co, Cp) · p(Yo|Co) · p(Yp|Cp) · p(A|Co)

Except for p(Y∗|C∗) all of these factors are multinomial dis-

tributions learned from frequencies in the training data, as

described in Sec. 6. The two conditionals p(Y∗|C∗) will be

computed using a new classifier, described in Sec. 3.

At runtime we will then observe the appearances of our

actors Yo and Yp, as well as their relative positions and ve-

locities, xrel and vrel, respectively (c.f . shaded nodes in

Fig. 2). To infer an interaction between these two, as well as

the object type and person classification, we perform exact

Belief Propagation using the junction tree algorithm [14].

The object-type classifier assumes a correct tracking and

the input of a 3D point cloud that only contains points be-

longing to the person to be classified. Later in Sec. 5, we

show how to construct these stable inputs from noisy data.

3. Learning
Relative Position and Velocity. We define all relative

measures in a log-polar coordinate system. Fig. 3 shows

the learned relative positions in our model for 10 bins for

each angle and log distances. The intuition for these grids
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Figure 6: Visualization of the proposed segmentation procedure:

(1) image cutout, woman with a stroller, (2) visualization of height

layers, (3) ground projection using approach [2], (4) ground pro-

jection using our approach.

is that a person is located in the center of the spider web
facing downwards. An object on her left will hence be rep-

resented by the bin to the right of the middle point. Un-

surprisingly, these probability distributions correctly reflect

spatial arrangements. For example, one would always ex-

pect a stroller that is pushed by a person to be located in

front of her (c.f . Fig. 3(top left)).

Object Classifiers. We use and evaluate two different meth-

ods for object classification. The first is based on a simple

object height measure. From our training data we learn

a multinomial height distribution for the different object

classes and use this to predict the class given the observed

height. Since we always assume noisy 3D data, the height

is smoothed over subsequent frames before classification.

For the second classifier, we use a more complex object

shape model based on the volumetric GCT representation

from [13]. We determine a volume distribution for each

learned object, as described in Sec. 5, and classify by com-

puting per-class posteriors based on the observed volumes.

Fig. 4 shows the learned models for person, stroller, 2- and

4-wheel bag.

Given the volume histogram x for a GCT (e.g. Fig. 7),

we evaluate the class posterior p(Cj |x) for class Cj . We

assume uniform priors p(Ck). Also, we make a naive Bayes

assumption and regard the volume distribution in the differ-

ent height bins as independent, which leaves us with:

p(Cj |x) = p(x|Cj) · p(Cj)∑
k p(x|Ck) · p(Ck)

=

∏
i p(xi|Cj)∑

k

∏
i p(xi|Ck)

4. Inference and Prediction
Inference. In a scene with n entities (persons/dynamic

or static objects) there are n · (n − 1) pairwise interac-

tions. Despite the complex nature of predicting all inter-

actions in a scene, exact inference is feasible for our model

due to its constraining setup. For crowded scenes, we en-

sure quadratic scalability, whereas a fully connected model

would grow exponentially. Using a simply pairwise model

does not guarantee scene consistency though. This means

that an object o might for example be detected to inter-

act with two persons p1/2 in a scene, being interpreted as

a stroller in the first case and as a suitcase in the second.

Figure 7: Visualization of the accumulated GCTs for a stroller

(left) and a human (right) and the corresponding volumetric fea-

tures. The color of GCT points corresponds to the significance of

the ray represented by the number of accumulated distances.

In reality, it cannot be both at the same time. We incor-

porate evidence from other interactions in the same scene

by marginalizing object types over all pairwise assignments

and thus interconnecting all Co and Cp that belong to the

same entity. This is done by iterating over the same frame

for a fixed number of times. Each entity e interacts with

every other of the n entities in two ways, once as object and

once as person. After one iteration we hence computed n−1
many Ce

o and Ce
p that belong to e, respectively. A weighted

combination, depending on the certainty of the correspond-

ing action, is used as a prior on Ce
o and Ce

p in subsequent

iterations.

Another clue we use for prediction is evidence from past

frames. The rationale is that an object that has been detected

as a person in one frame is likely (but not certain, due to

tracking uncertainties) to be a person again in the next one.

Again, we set priors on the corresponding distributions from

one frame to another (c.f . dashed lines in Fig. 2).

Prediction. Having acquired a certain level of semantic

scene understanding, we can now use our Bayesian network

to also support other tasks. For example, tracking can be

facilitated in a setting where objects are occluded or lost.

Knowing that a person pushed a stroller s in the past frames

raises the suspicion he will do so again in the current frame.

Suppose we lost track of this stroller. We can plug this in-

formation into our model and infer a probability distribution

of the expected location of the lost object. Furthermore,

we can infer the relative position of s to all other entities

j ∈ J for the set of all entities J that it interacted with in

the past frame. The more interactions were observed before,

the more certain we can be when inferring the new posi-

tion xs: p(xs|J) ∼
∏

j∈J L
[
xj ; p(xrel(s,j)|Isj , Cj

p, C
s
o)
]
,

whereL [x;p] is the probability distribution of positions ac-

cording to p (i.e., a log polar grid as in Fig. 3) around the

center point x.
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Figure 8: Visualization of the proposed overlap measure: (1) im-

age cutout, two people walking closely together, (2) visualization

of corresponding GCTs, (3) standard approach for overlap com-

putation assuming a fixed-size footprint, (4) ground projections of

GCT rays and the intersection between GCTs foot prints.

5. Robust 3D Data Association and Tracking

Overview. Fig. 5 shows an overview of our tracking sys-

tem that we use for generating observations (the positions,

velocities and 3D object shapes) for the proposed graphical

model. Given a stereo pair of images and depth maps, we

first generate regions-of-interest (ROIs) by projecting the

3D points onto a ground plane (a). The ROIs are then seg-

mented into individual object areas (b). The center of mass

projected onto the plane of the individual object and the 3D

points embedded by the segmented area form the input for

our multi-hypothesis tracker. In each frame, the newly ex-

tracted objects are linked to trajectory hypotheses on the

ground plane by starting new trajectories backwards in time

(e) and extending already existing tracks with new observa-

tions (c). In order to capture the approximate shape of 3D

objects, we use a recently proposed 3D-shape representa-

tion called General Christmas Tree (GCT) [13]. As shown

in Fig. 5, the model consists of a center axis (which is ini-

tially placed at the center position of each segmented object)

and several height layers from which rays are cast in a fixed

number of directions up to the height of the object. With

each ray, the distance distribution of observed 3D surface

points within a certain cylindrical cross-section is captured

over time. Thus, for each newly generated hypothesis from

the tracker, we produce a GCT starting from the first inliers

and updating it by propagating the GCT sequentially over

all inliers of the hypothesis (f, g). In case of extending an

existing trajectory(f), the GCT is updated by registering it

to the point cloud of the new observation using ICP and ac-

cumulating the new distance information. With the process

so far we obtain an over-complete set of trajectory hypothe-

ses which we prune to a final set mostly consistent with the

scene by applying model selection in every frame as pro-

posed by [12]. Finally, positions, velocities and GCTs are

passed to the graphical model for classifying person-object

interaction.

ROI Extraction and Segmentation. The initial step of

tracking is to generate ROIs for potential objects, given the

depth information. A common approach for this task is to

project the 3D points onto the ground plane to form a 2D

histogram accumulating the density of points in each bin,

train test
Action # Seq. # Fra. # Seq. # Fra.

none - 7200 - 9974

push 68 3496 47 1456

group 48 2485 62 2394

pull right 9 408 27 1535

pull side right 10 563 6 297

pull left 11 516 27 1329

pull side left 7 417 3 119

sum (w/o none) 153 7885 172 7130

Table 1: Statistics on number of actions on training and test sets.

Fig. 6(3). The bins are then thresholded and the remain-

ing bins are grouped into connected components. However,

such a simple approach ignores the fact that the target ob-

jects we are interested in for tracking need to be connected

to the ground plane. As shown in Fig. 6(1), only the torso of

the woman pushing the stroller is visible, which means that

only these points will contribute to the histogram bins re-

sulting in a very low bin value, as shown in Fig. 6(3), which

will be rejected in the thresholding process. Instead, we

propose a new procedure that splits the projection process

over different height levels, as shown in Fig. 6(2). Starting

with the highest level, we project all points above onto this

level. In the next steps the points between two layers are

projected to the lower layer and for each bin that is empty

but was occupied in the layer above, we propagate the value

from the layer above. With this process we obtain two dis-

tinctive modes for both objects, as shown in Fig. 6(4) and

hence compensate for frontal occlusions.

For segmenting the ROIs into individual objects, we use

the Quick Shift algorithm [18], which finds modes of a den-

sity by shifting from the initial position to a position with

a highest density within a certain neighborhood. Each seg-

mented ROI area, representing a potential target object, is

passed to the tracker together with its associated 3D points.

3D Shape Representation (GCT). In order to capture the

shape of the tracked 3D objects, we use the recently intro-

duced GCT representation [13]. The GCTs are generated

for each tracker hypothesis by placing the center of the GCT

on the initial inlier (segmented region with the 3D points)

of the hypothesis and casting radial rays over a number of

discrete height levels. From the 3D points that fall inside

a cylinder along the ray, only the distance from the closest

point on the ray to the center axis is stored. In each step,

when a new inlier is associated to a trajectory, the GCT is

updated by new distances. With this we obtain accurate vol-

umetric information for tracked objects, as shown in Fig. 7.

From the GCTs we generate for each trajectory hypo-

thesis a volumetric feature (Fig. 7) which we use in the

proposed model in order to classify the objects into differ-

ent classes. Thus, for each valid trajectory we compute a

volumetric histogram over height bins as follows: |Vi| =∑
rj∈Vi:support(rj)>θ med(rj), where Vi is the bin, med(rj)
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Figure 9: Result images showing tracked persons and their associated objects with correct action inference. Interactions are visualized by

linking the footpoints of the interacting objects by a colored line. Green-group, red-push, blue-pull right, magenta-pull left.
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Figure 10: Interaction classification, full pairwise evaluation. (left) using manual point cloud segmentation annotations, (middle) using

tracked point cloud data. (right) on dynamic scenes acquired in an inner city.

is the median distance of the ray rj and support(rj) > θ
means that we consider only rays that have accumulated at

least θ distances already, where θ is interlinked to the life-

time of the GCT. By using the support function we reject

rays that originated from noisy outliers.

Measuring Overlap. In addition, we exploit GCTs in

the model selection procedure, where we model the inter-

action between trajectories by considering the intersection

between the footprints of individual tracks. A common as-

sumption, used in tracking-by-detection approaches (e.g.,

[6]), is that two objects cannot occupy the same spot in

3D space at the same time. Modeling object footprints by

a fixed rectangular (or circular) shape leads to high inter-

action costs for close-by objects due to high overlap, as

shown in Fig. 8(3), which can cause the rejection of one

of the trajectory hypotheses. Instead, we propose an adap-

tive approach to compute the intersection of two objects

based on their GCTs. For that, the reconstructed points

of GCTs of both objects are projected onto the ground

plane forming a 2D histogram, Fig. 8(4). The projected ray

points are weighted by the number of distances of the cor-

responding ray and thus represent the significance of a ray

and the ground projection bin. As shown in Fig. 8(4), the

bin intersection between the objects is significantly smaller

than in the fixed-footprint case, and using the weighting

results in a low intersection value. The final intersection

score is obtained by computing the Bhattacharyya distance

between the two normalized histograms. This extension

makes tracking more robust in our scenarios, since our ob-

jects of interest are usually situated close to a person.

Tracker. As our tracking core, we employ an extended

version of the robust multi-hypothesis tracking framework

presented in [12]. As input, the tracker requires the camera

location from Structure from Motion (SfM), a ground plane

and the segmented ROIs. From the 3D points of the seg-

mented regions, we generate the footpoint positions of the

objects by simply tracking the center of mass of the point

cloud and projecting it onto the ground plane. Furthermore,

the 3D points are back-projected to the image in order to

obtain a color histogram for each object, which is required

for the trajectory hypothesis generation process in order to

associate the detections. The footpoint positions of the ob-

jects are linked to trajectories using a Kalman Filter with

a constant-velocity motion model. In each frame, we run

two trajectory generation processes: one looking backwards

in time in order to generate new trajectories and one look-

ing forward and extending the existing tracks. Using the

Kalman Filter allows us to bridge gaps in detection caused

by failures of the segmentation procedure. Since the new

segmented areas are used for both processes, extension and

generation of new hypotheses, each observation is assigned

to two hypotheses. For resolving the ambiguity and select-

ing the hypotheses that are most consistent with the scene,

we use model selection [12].

6. Experimental Results
Datasets. In order to train and test the proposed graphi-

cal model, we captured a dataset with a Bumblebee2 stereo

camera containing 325 sequences with over 15,000 frames.

For training, we manually segmented the ROI areas of indi-
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Figure 11: Pedestrian tracking performance on (left) BAHNHOF

and (right) SUNNY DAY.

vidual objects and generated tracks (including the GCTs)

using the proposed tracker. For each tracked object, we

annotated an action and a reference object it is interacting

with. The training dataset was captured in a controlled envi-

ronment from a static setup in order to simplify the annota-

tion process. For the test dataset, we acquired the images in

crowded and challenging shopping streets from a moving

platform with different object appearances and dynamics.

In Tab. 1 we present detailed statistics of the action types in

both sets. In total, we have annotated 153 sequences (7885

frames) as training and 172 sequences (7130 frames) as test

set in order to asses the performance of our model. For the

stereo estimation we used the robust approach from [8].

Tracking Performance. The person-object interaction

classification strongly depends on the output of the tracker,

since it requires positions, velocities and GCTs of the in-

dividual objects. For that reason, we first verify that our

tracking approach is sufficiently robust for tracking in com-

plex mobile scenarios. To this end, we experimentally eval-

uated our approach on two popular sequences, BAHNHOF

and SUNNY DAY, courtesy of [6]. The sequences were ac-

quired from a similar capturing platform in busy pedestrian

scenes. We apply the evaluation criteria from [6] where the

tracked bounding boxes are compared to manually anno-

tated bounding boxes in each frame. Since our approach

tracks all objects in the scene, but in this dataset only the

pedestrians are annotated, we classify each segmented ROI

using the pedestrian classifier from [7] before passing it

to the tracker. Fig. 11 presents the performance curves in

terms of recall vs. false positives per image. As can be

seen, our approach surpasses state-of-the-art performance.

Interaction Classification. We evaluate our action detec-

tion framework on our annotated training data, as well as

on real-life scenes described above. In order to asses the

difficulty of the classification task, we first evaluate sev-

eral simple baseline classifiers. These baselines follow two

easy rules. First, if two objects are close together, they

must interact in some way. Secondly, if both of these ob-

jects are persons then we just detected a group, else the

baseline〈action〉 detects action. In all other cases there is

no interaction at all.

Furthermore, we compare the final action detector with
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Figure 12: Confusion matrices of our action detection for training

(left) and testing (right).

a detector based on a classifier that only takes into account

the height of a tracked object as described in Sec. 2. Also,

we try our detector without any classifier, i.e., assuming a

uniform distribution over object classes. The results for the

crossvalidation on the training data are shown in Fig. 10

(left). At the same time, we compare the system without

inference between subsequent frames to the integrated ap-

proach (c.f . dashed vs. solid lines). We only show three

baselines (push, none and pull side right), since these domi-

nate the other baselines. Clearly, the performance of our ap-

proach is above the other presented approaches. We reach

a mean average precision (mAP) of 0.907 vs. an mAP of

0.893 for the runner-up, the full system using a height clas-

sifier. In general, the timely inference is better than per-

forming inference in each frame separately: Single-frame

mAP for our system is 0.869 (c.f . Fig. 10(left)). Just for the

system without classifier (c.f . Fig 10 (left)) we get a better

performance if we do not take into account evidence from

past frames. The reason here is that we would only prop-

agate mainly false detections and have a better chance of

detection an interaction correctly if we take no priors into

account.

Next, we perform the same experiment on our training data,

but this time with actual results from our tracking pipeline

instead of tracking results based on annotated object seg-

mentations. This is shown in Fig. 10(middle). Because of

the competitive performance of our tracking system, we do

not lose much against the results in our experiments before.

The mAP reduces from 0.907 to still 0.838 for our detector.

Finally, we evaluate the performance of our action detector

for the test set of challenging scenes with a dynamic cam-

era. We reach an mAP of 0.624 with the full combination

of our tracker, object classifier based on GCTs, interaction

model and frame inference (c.f . Fig. 10(right)).

Taking a deeper look into the failures of our action detec-

tor (c.f . Fig. 12) reveals that we perform consistently well

on the action none, which means we have just few false pos-

itives. Transitioning from training to test data, we lose most

accuracy in the actions group and push. All other action

detection accuracies stay high.

Object Classification. In Fig. 4 we show the classifica-

tion performance of our new classifier in comparison with a

simpler height-based classifier. We also compare to a third
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Figure 13: Error Bars of position prediction.

stroller

person1

person2

inferred

kalman

Figure 14: (Left) Tracked observation, lost stroller at the red

X. (Right) Prediction results for Kalman Filter and our approach.

Color-coded correspondences between left and right.

classifier based on accumulated height information from the

GCTs. The performance for all object types is also shown.

Activity Prediction. As mentioned in Sec. 4, we can use

our model to also perform a predictive task. In our evalua-

tion we compare this prediction against a linear extrapola-

tion by a Kalman filter. We measure success in this test as

the closest prediction to the actual path. When we lose track

of an object, the Kalman filter will predict future positions

based on its underlying motion model. Our inference-based

prediction observes the positions of all other entities in the

scene and uses the interaction distribution it learned so far

to infer the most likely position of the lost object. Fig. 14

illustrates a typical setup. We run these tests on our train-

ing data. Tracking is supposed to be lost after 15 frames

and all remaining frames are predicted by the Kalman filter

and our model. The results of this experiment are shown

in Fig. 13. We plot the mean prediction distance includ-

ing uncertainty vs. number of frames looked ahead. With

an increasing number of frames, the Kalman filter diverges

significantly more than our approach.

7. Conclusion

We have presented a framework that can track both

known and unknown objects and simultaneously infer

which objects belong together. Furthermore, the proposed

model can be used to infer object types and the interaction

patterns occurring between associated objects. The action

classification has two advantages. On the one side, it can

help improve predictions for the continuation of each tra-

jectory in case of detection/tracking failures. On the other

side, it can be used for adaptation of dynamic models for

certain object-person constellations. For the future, we plan

to extend the model to more object and interaction types.
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