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Abstract

From a set of images in a particular domain, labeled with
part locations and class, we present a method to automati-
cally learn a large and diverse set of highly discriminative
intermediate features that we call Part-based One-vs-One
Features (POOFs). Each of these features specializes in
discrimination between two particular classes based on the
appearance at a particular part. We demonstrate the partic-
ular usefulness of these features for fine-grained visual cat-
egorization with new state-of-the-art results on bird species
identification using the Caltech UCSD Birds (CUB) dataset
and parity with the best existing results in face verification
on the Labeled Faces in the Wild (LFW) dataset. Finally,
we demonstrate the particular advantage of POOFs when
training data is scarce.

1. Introduction

Fine-grained visual categorization has become a popu-
lar area over the past several years. In contrast to basic-
level recognition, in which we need to distinguish basic-
level categories such as chair and car from each other, the
fine-grained categorization problem asks us to distinguish
subordinate-level categories such as office chair and kitchen
chair from each other. One relatively well-studied exam-
ple of fine-grained visual categorization is species or breed
recognition.

Many of the most accurate approaches to fine-grained
visual categorization are based on detecting and extracting
features from particular parts of the objects. For example, in
dog breed classification one may extract features from the
nose and base of the ears [ 16, 23]. Face recognition is an ex-
treme case of fine-grained visual categorization in which the
“subcategories” are individual instances, and the best face
recognition methods extract features from locations deter-
mined by finding facial landmarks such as the corners of the
eyes [3, 31, 36]. Intuitively, we expect fine-grained visual
categorization to require part-based approaches because the
differences between subcategories are small and not notice-
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able from global, image-level features. Fine-grained vi-
sual categorization also conveniently enables part-based ap-
proaches, because objects within the same basic-level cat-
egory will often have the “same” parts [25], allowing for
easier comparison. For example since all dogs have noses,
it is natural in dog breed recognition to attempt to detect and
extract features from the nose. In basic-level categorization
this approach is more difficult, as there is no natural cor-
responding part among instances of dogs, motorboats, and
staplers.

Computer vision has produced a wide array of stan-
dard features, including SIFT [17], SURF [1], HOG [7],
LBP [20], etc. A straightforward approach to part-based
recognition is to extract some of these features at the part
locations and build a classifier. In general, however, these
standard features are unlikely to be optimal for any partic-
ular problem; what is best will likely vary both by domain
(the best features for dogs are different from the best fea-
tures for birds) and by task (the best features for face recog-
nition are different from the best features for gender classi-
fication).

In this work, we build a framework for learning a large
set of discriminative intermediate-level features, which we
call Part-based One-vs-One Features (POOFs), specialized
for a particular domain and set of parts. The process of
learning these features is illustrated in Figure 1. We start
with a dataset of images in the domain, labeled by class
and with part locations. For any pair of classes, for any
pair of parts, we extract some low-level features in a grid
of cells that covers the two parts, and train a linear clas-
sifier to distinguish the two classes from each other. (In
our experiments we use histograms of gradient direction
or color as the low-level features.) The weights assigned
by this classifier to different cells of the grid indicate the
most discriminative region around these parts for this pair
of classes. We fix the support region for our feature based
on these weights, and then retrain the classifier to find a dis-
criminative projection. The combination of the two parts,
the low-level feature, the learned support region, and the
final projection form a POOF, which can produce a scalar



Figure 1. Learning a Part-based One-vs-One Feature (POOF) for bird species identification. Given (a) a reference dataset of images labeled
with class (species) and part locations, a POOF is defined by specifying two classes, one part for feature extraction, another part for
alignment, and a low-level “base feature.” (b) Samples of the two chosen classes are taken from the dataset and (c) aligned to put the two
chosen parts in fixed locations. (d) The aligned images are divided into cells at multiple scales, from which the base feature is extracted.
A linear classifier is trained to distinguish the two classes, giving (e) a weight to each cell. We threshold the weights and find the maximal
connected component contiguous to the chosen feature part, setting this as (f) the support region for the POOF. Finally, a classifier is trained

on the base feature values from just the support region. The output of this classifier is our one-vs-one feature.

score (the decision value from the classifier) for any test
image with locations for the two parts. This score is our
intermediate-level feature. If our dataset does not have part
locations, the straightforward simplification of taking the
grid over the whole image or the object’s bounding box pro-
duces OOFs rather than POOFs, but we do not analyzed
their performance here.

This paper makes the following contributions:

e We present a fully automatic method for constructing
a library of Part-based One-vs-One Features (POOFs)
— discriminatively trained intermediate-level features —
from a set of images with class and part location labels
We demonstrate that POOFs significantly advance the
state of the art on the Caltech-UCSD Birds dataset, ob-
taining a classification accuracy of 73.30% on the lo-
calized species categorization benchmark, quadrupling
the accuracy reported in [27].

We demonstrate that POOFs reduce the need for large
training sets, showing that in the face domain they can
be used as extremely effective intermediate features for
tasks such as attribute labeling.

While each POOF is only known to be discriminative
for the two classes used in its definition, we find that col-
lections of POOFs are useful not only for classification into
the classes in the reference dataset, but for other tasks in
the same domain. We show examples in two domains, bird
species and faces.
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2. Related Work

Fine-grained visual categorization has seen a lot of work
recently. Instance-level recognition can be seen as the
“finest-grained” categorization, and is most commonly seen
as face recognition or image search. Face recognition often
takes a part-based approach, either by explicitly extracting
features at landmark points (e.g. [0, 30, 34]) or by perform-
ing an alignment step based on parts, then extracting fea-
tures from fixed locations (e.g. [3, 14, 31]). [3] in partic-
ular takes an approach similar to ours in using binary one-
vs-one classifiers trained on a reference set as discrimina-
tive features for the domain. In all of these cases, however,
the locations and shapes of the regions from which the fea-
tures are extracted are designed and tuned by hand. In our
work, the selection of regions for feature extraction is fully
automatic, allowing the method to be applied easily to any
domain.

Moving up a step from instance-level recognition, subor-
dinate category recognition has been explored mostly in the
context of species or breed recognition. Many authors have
reported bird species identification results on the Caltech-
UCSD Birds Dataset [27], using the idea of parts in one way
or another. [8, 32, 33, 35] in different ways attempt to find
parts of the image that are discriminative without explicit
part labels, but cannot achieve the accuracy of a supervised
part-based approach. [4, 26] propose interactive approaches
which include the system requesting the location of the most
discriminative parts from the user. [9] defines a set of just



two coarse parts (the head and body) used to align the im-
ages, but do not use fine-scale part locations to define their
features. Additional fine-grained recognition work has been
demonstrated on trees [13], flowers [19], butterflies [28, &],
and dogs [16, 21, 23].

Although much recognition work continues to use fixed
features such as SIFT, HOG, and LBP, there is also work
which, like ours, attempts to some degree to learn the fea-
ture from a dataset. One branch of this is the work on at-
tributes. [14] and [15] train attribute classifiers based on
a set of classes with labeled attributes, then apply the at-
tribute classifiers to novel classes, in the domains of faces
and animal species respectively. In both cases, unlike our
POOQFs, the attributes are chosen by hand. [8] comes closer
to our work, automatically finding discriminative attributes,
and their support regions, based on a hierarchical overseg-
mentation of the images. However, by deriving the regions
from segmentation, they seem to only find attributes that
correspond to single-color regions of the images.

Outside the realm of fine-grained categorization, there
is some work in learning discriminative features. [11] ap-
plies linear discriminant analysis to remove correlation be-
tween HOG features, improving their accuracy. Brown et
al. [5] describe a formal optimization method for learning a
parametrized descriptor based on a set of matching patches,
and a convex formulation of this method is presented in
[24]. These methods restrict the shape of the feature support
region to one of several symmetric configurations, while our
method allows any shape of descriptor, up to the resolution
of our base feature grid.

3. Part-Based One-vs-One Features

Our method requires as input a reference dataset of im-
ages belonging to the domain under study, annotated with
class labels and part locations. It is not necessary that all
parts be labeled in all images. The output of our method
is a set of discriminative features we call Part-based One-
vs-One Features, suitable for many tasks in this domain. If
the task at hand is supervised classification, the reference
dataset may simply be the training set, but it need not be. It
can also be a separate dataset labeled with classes different
from those in the classification task. We show examples of
this in Sections 4.2 and 4.3.

Given the reference set, the process of POOF learning is
fully automatic. The method is illustrated in Figure 1, and
is motivated overall by the goal of building a discriminative
and diverse set of features. Let the reference set consist of
images in N classes {1, ..., N}, each image labeled with P
parts. Each POOF we will learn is defined by

e the selection of two distinct reference classes,
i,j €{1,..., N} withi # j,
e one part for feature extraction, f € {1,...P},
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e one other part for alignment, a € {1,..., P}, with
a # f,and

e a low-level base feature, b, which can be extracted
from windows in the image. In the current implemen-
tation we use two base features: gradient direction his-
tograms and color histograms.

We write T}fl , for the POOF built based on these param-
eters; it is a function that extracts a single, scalar score from

any image in the domain, and in combination the T’Zci b

form a powerful feature space. We learn how to extract
Ty, 4, by the following procedure.

1. The POOF will be learned based on the reference im-
ages of classes ¢ and j. We first take all these images,
exclude those in which either part f or part a is miss-
ing, and perform a similarity transform to bring points
f and a to fixed positions. The transformed image is
then cropped to a rectangular region enclosing points f
and a. Depending on whether points f and a are close
to or far from each other on images in this domain,
Ty, ,, will learn a fine-scale or coarse-scale feature.
We tile the cropped images with a grid of feature cells,
and extract the base feature from each cell. We do mul-
tiple tilings, each using grid cells of a different size,
and so extracting features at a different scale.

For the tiling at each scale, we train a linear support
vector machine to distinguish class ¢ from class j,
based on the concatenation of the base feature values
over the grid.

The trained SVM weight vector gives weights to every
dimension of the base feature in every grid cell. We
assign to each grid cell in each tiling the maximum ab-
solute SVM weight over the dimensions in the feature
vector that correspond to that cell. By thresholding
these weights, we obtain a mask on the aligned images
that defines the grid cells that are most discriminative
between class ¢ and j.

. Starting with the grid cell containing part f as a seed,
we find the maximum connected component of grid
cells above the threshold in each tiling. This will act
as a mask on the aligned image, defining at each scale
a discriminative region around part f. By restricting
the region to a connected component of f, we force
POOFs with different feature parts to use different re-
gions, encouraging diversity across the set of POOFs.
The low-level feature associated with 77, , is the con-
catenation of the base feature at the masked cells in all
the tilings. Using this feature and all aligned images
of classes 7 and j, we train another linear SVM. This
SVM learns a projection of the masked, multiscale, lo-
cal feature to a single dimension. This projection is
Thab
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Figure 2. Bird species classification accuracy on the full 200-
species CUBS benchmark.

To extract feature T}fl , from a new image with part lo-
cations, we proceed through the steps above again. The new
image is aligned by similarity to put parts f and a in stan-
dard locations, then the base-level feature is extracted from
just the masked cells of the tilings at each scale. The result-
ing vector is evaluated by the SVM to get a scalar projection
value, which is the POOF score.

Note that switching ¢ and j simply reverses the sign of
the feature (7 is taken as the “positive” class when training
the SVMs). To avoid redundancy, we restrict ourselves to
¢ < j. In contrast, parts f and a play different roles in
constructing the POOF, so it may be useful to have both
Ty, and Ty,

3.1. Implementation details

In our current implementation, we use the following set-
tings.

e In the alignment, the two parts are placed in a hori-
zontal line with 64 pixels between them. The crop is
centered at the midpoint of the two parts, and is 64
pixels tall and 128 pixels wide.

We use two scales of grid for the base feature extrac-
tion, with 8 x 8 and 16 x 16-pixel cells.

We use two base features. The first is a gradient direc-
tion histogram. This feature comes in two variants. For
the “gradhist” variant, we extract an 8-bin gradient di-
rection histogram from each grid cell, then concatenate
the histograms over all cells (or in the final T;fl s OVer
just the masked cells). For the “HOG” variant, we use
Dalal and Triggs’ histogram of oriented gradients [7]
feature, as modified by Felzenszwalb et al. [10] to in-
clude a dimensionality reduction step and the concate-
nation of histograms of signed and unsigned gradient.
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Figure 3. Bird species classification accuracy on the “birdlets” sub-
set of 14 woodpeckers and vireos defined in [9].

This gives us a nine-bin unsigned gradient direction
histogram, an 18-bin signed gradient orientation his-
togram, and 4 normalization constants, for, in total, a
31-dimensional feature for each grid cell. These are
concatenated as in the gradhist variant.

The second base feature is a color histogram. We use
the same grids as for the gradient direction histograms,
assigning each pixel to one of 32 color centers to form
a histogram of length 32. The color histograms are
then concatenated as with the gradient orientation his-
tograms. The color centers are obtained by running
k-means in RGB space on the pixels in the aligned and
cropped region for all the images in the reference set,
so the color centers are a function of f and a.

For the SVM weight threshold we use the median ab-
solute weight. This has the effect of masking out half
of the region in Step 4 (which is further reduced when
we restrict the region to a connected component con-
tiguous with part f).

4. Experiments

To demonstrate the value and applicability of POOFs, we
apply them to three problems. In Section 4.1, we consider
bird species identification, building a set of POOFs from
the training set, and applying them to recognition. In Sec-
tion 4.2 we apply our method to face verification on unseen
face pairs, building POOFs on a set of faces of different
people than the test faces, demonstrating that our features
learn to discriminate over the domain of images in general
and not just over the particular classes from which they are
built. In Section 4.3, we apply the POOFs built in Sec-
tion 4.2 to attribute classification, and find that they are use-
ful even when the classification task is on a different type



of classes (attributes) than the classes on which they were
learned (subject identities).

4.1. Bird Species Identification

The Caltech-UCSD Birds 200-2011 dataset [27] con-
tains 11,788 photographs of birds spanning 200 species.
Each image is labeled with its species, a bounding box for
the bird, and the image coordinates of fifteen parts: the
back, beak, belly, breast, crown, forehead, left eye, left leg,
left wing, nape, right eye, right leg, right wing, tail, and
throat. The images are split into training and test sets, with
about 30 images per species in the training set, and the re-
mainder in the test set. The authors propose several bench-
marks for species recognition and part detection. Here, we
evaluate on the “localized species categorization” bench-
mark, in which the part locations for all images are pro-
vided to the algorithm, and the task is, given the species
labels on the training images, to determine the species of
the test images. We also include results using an automatic
parts detector in place of the ground truth positions.

There are very few images in the dataset with all fifteen
parts visible. In particular, most birds have only one eye and
one wing visible. When a part is not visible, it is labeled as
such, with no position given. To better be able to make
correspondences between parts, we preprocess the images,
performing a left-right reflection on any image in which the
right eye is visible but the left is not. This gives us a dataset
in which almost all of the images have the left eye labeled (a
few images have neither eye visible). We then disregard the
(usually missing) right eye, right wing, and right leg parts.

To apply POOFs to this problem, we take the training set
as our reference set. There are 200 classes, twelve parts, and
two base features, yielding (230) -12-11-2 = 5,253,600
possibilities if we exhaustively learn features for all
(4,7, f,a,b). Instead, we randomly choose 5000 sets of pa-
rameters and learn just those features. We then extract the
POOF scores from the training and test images, obtaining
a feature vector of length 5000 for each image. Using this
feature, we train a set of 200 one-vs-all linear SVMs to clas-
sify species. For each image, we rank the 200 species from
highest to lowest classifier response. Taking the top ranked
species for each image, we achieve a classification accuracy
of 68.73% using the gradhist variant of the gradient feature,
or 73.30% using the HOG variant.

While the localized species categorization protocol de-
fined in [27] uses the ground truth part locations, this does
not give automatic classification performance. To evaluate
automatic classification, we rerun the experiment using au-
tomatically detected part locations on the test data in place
of the ground truth locations. We use part locations from
the part detector of [2] on images cropped to the bounding
boxes of the birds, allowing us to compare with previous
work that uses the bounding boxes but not the part labels.
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Figure 4. Face parts from the detector of [2].

Using these detected part locations, we obtain a classifica-
tion accuracy of 54.42% with the gradhist variant or 56.78%
with HOG. The rate at which the correct species is in the top
k ranked species is shown in Figure 2. For comparison with
existing work, we also show our results when restricted to
the 14-species “birdlets” subset of the dataset defined in [9]
in Figure 3. Our rank-1 classification accuracy on this sub-
set using the gradhist variant is 80.15% using the ground
truth parts and 65.08% using the detected parts, or 85.68%
and 70.10% using HOG.

To show the benefit of the POOFs, we contrast our one-
vs-all species classifiers with classifiers trained in a similar
way, but without the POOFs. The POOFs are built using
histograms of gradient direction and color over spatial grids
covering the parts as the base features. For comparison, we
build species classifiers that operate directly on the concate-
nation of these base features over all twelve parts. As with
the POOF-based species classifiers, these classifiers are lin-
ear SVMs. These classifiers achieve a rank-1 accuracy of
39.99%.

Baseline accuracy on the localized species categoriza-
tion benchmark reported in [27] is 17.31%, barely a quarter
of our accuracy. To our knowledge, ours is the first subse-
quent work strictly following this protocol. However there
are several pieces of work on this dataset reporting results
of different experiments with which we can make compar-
isons.

Our result of 56.78% based on automatically detected
parts uses only the ground truth bounding boxes, as does all
the previous work cited here, and is far higher than any ex-
isting results on the full 200-species dataset, although there
are differences in the experiments that make some of the
comparisons imperfect. [4] and [33] report rank-1 accura-
cies, of 19% and 19.2% using multiple kernel learning and
random forests respectively. However they use an earlier
version of the dataset [29] with less training data. [32] re-
ports 44.73% mean average precision on the birdlets sub-
set using the earlier version of the dataset (our mAP with
HOG on the birdlets subset is 85.57% using ground truth
parts or 70.16% using detected parts). Only [8] and [35]



report on the later version of the dataset. The former does
not include results on the full 200-species set or the known
birdlets subset, however the highest accuracy they report is
55%, on a five-species subset, very close to our automatic
result on the much more difficult 200-species set. The latter
is the most directly comparable to our work, reporting mean
average precision of 28.18% on the 200-species benchmark
and 57.44% on the birdlets subset. Our comparable mean
average precisions with HOG are 56.89% and 70.16% re-
spectively.

4.2. Face Verification

In face verification, we are given two face images, of
people not encountered at any training stage, and must de-
termine whether they are two images of the same person or
images of two different people. Because we must deal with
previously unseen faces, there is no training set of images
belonging to the classes we will be faced with at test time,
as there was in the previous example, where we could learn
our features based on the training set. Here, we learn the
features from a set of face images entirely separate from the
evaluation dataset, in the belief that the features we discover
are generally applicable to the face domain.

The Labeled Faces in the Wild (LFW) [12] is the stan-
dard face verification dataset and benchmark, containing
6,000 face pairs and a ten-fold cross-validation protocol
for algorithm evaluation. The best existing result on the
“image-restricted” benchmark is 93.30% [3], using a sep-
arate reference dataset of images labeled with identity to
train a set of “Tom-vs-Pete” classifiers, which are then used
as feature extractors feeding a higher level classifier. We use
this same reference dataset to learn POOFs, and also trans-
form the images with the “identity-preserving alignment”
from that work as a preprocessing step, based on part detec-
tions from the detector of [2].

The reference dataset, from [3], consists of 20,639 face
images, downloaded from the internet, spanning 120 sub-
ject identities. The images are annotated with the location
of 95 parts, a fairly dense representation that is useful for
alignment, but unnecessary for learning the our features; we
use only the sixteen-part subset shown in Figure 4. We learn
a random selection of 10,000 POOFs from this dataset, fol-
lowing the steps in Section 3 without modification.

To apply POOFs to the verification problem, we follow
the method of [3]. For each verification pair (I, J), we get
10,000-dimensional POOF score vectors f(I), f(J). We
then represent the pair by the concatenation of | f(I)— f(J)|
and f(I)-f(J) (where the subtraction and multiplication are
performed elementwise) to get a 20,000-dimensional pair
feature vector. This image pair feature is extracted from
the training folds to train a same-vs-different classifier that
makes the verification decision.

We obtain an accuracy of 93.13%, with a standard devi-
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ation of 0.40%across the ten folds using the gradhist vari-
ant, or 92.80%+0.47% using HOG. Our method shares a
great deal with the state-of-the-art method of [3], and ob-
tains very similar results. The most important difference
is that our method is general, where they carefully choose
the support regions for the Tom-vs-Pete classifiers based on
knowledge of face recognition. Our method is also more
efficient at test time, using a linear rather than an RBF ker-
nel. Our ROC curve is shown in Figure 5, with the four best
published results on this benchmark. Figure 6 compares the
result from the POOFs with a result using the base features
alone, showing, as in Figure 2 for bird species recognition,
a substantial boost due to the POOFs.



. Number of training samples Kumar
Attribute Method 6 20 200 600  etal
Gender low-level feat. 50.7 61.0 669 81.4 87.8 90.5

POOFs 86.2 899 89.7 913 91.7 :
. low-level feat. 53.9 539 684 782 83.2
Asian POOFs 752 758 843 87.6 898 509
. low-level feat. 57.0 57.4 683 76.7 77.7
White OFs 663 749 8.6 817 80.5 855
low-level feat. 60.9 68.3 76.7 84.1 87.3
Black POOFs 740 842 874 889 904 >4
Youth low-level feat. 53.6 56.0 59.8 62.5 66.2 66.1
POOFs 71.0 62.0 67.6 67.7 70.8 :
Middle low-level feat. 49.5 51.0 49.6 532 56.0 542
Aged POOFs 47.1 509 514 57.5 59.6 :

. low-level feat. 54.6 60.6 63.7 72.1 74.3
Senior POOFs 707 759 73.6 800 795 099
Black low-level feat. 50.3 53.6 623 679 68.9 66.0
Hair POOFs 54.6 593 629 67.9 66.7 .

. low-level feat. 53.7 60.7 69.0 723 74.6
Blond Hair “"poops™ 705 68.8 72.6 714 752 070
low-level feat. 54.4 57.3 654 68.7 70.9
Bald POOFs 554 622 649 663 669 18
No low-level feat. 51.2 56.6 58.8 75.6 79.5 83.9
Eyewear POOFs 659 769 759 85.6 87.0 :
low-level feat. 51.7 539 61.5 714 794
Eyeglasses  “"poops 745 793 772 856 895 S04
Mustache low-level feat. 53.3 61.1 69.0 752 81.9 83.1
: POOFs 70.0 82.0 73.7 81.7 85.8 :
Receding  low-level feat. 55.0 56.3 67.0 70.0 73.6 757
Hairline POOFs 63.7 664 693 70.5 71.8 :
Bushy low-level feat. 49.9 558 63.5 674 72.1 717
Eyebrows POOFs 60.0 61.8 66.0 67.7 735 ’
Arched low-level feat. 53.2 51.1 54.6 63.3 659 66.4
Eyebrows POOFs 645 669 63.5 69.1 70.9 :
Big low-level feat. 52.5 52.5 59.0 63.3 66.6 65.4
Nose POOFs 55.2 63.6 61.5 649 68.3 .
No low-level feat. 57.1 51.2 628 71.2 759 80.6
Beard POOFs 71.1 68.0 68.8 68.7 76.7 .
Round low-level feat. 50.8 49.5 50.0 53.2 55.7 50.5
Jaw POOFs 51.5 53.7 544 55.6 54.8 .
Average improvement 123 134 80 43 27 2.8

Table 1. Attribute classification accuracy. For each attribute, the
first row gives the baseline accuracy obtained by training directly
on the low-level base features (color and gradient direction his-
tograms), and the second row gives accuracies using our POOFs.
The more accurate of the two is in bold. The last column gives
accuracies of the classifiers of Kumar ef al. [14] on the same test
images, in bold when better than the POOFs classifier with 600
training samples. The last row shows the average improvement of
the POOFs over the low-level features or [14]. As these are binary
attributes, chance gives 50% accuracy.

4.3. Attribute Classification

Our third experiment is attribute classification on human
faces. For their work on attributes, Kumar et al. [14] down-
loaded face images from the Internet, labeled them with at-
tributes such as gender, race, age, and hair color, and used
these labels to train attribute classifiers based on low-level
features such as raw pixel color and gradients. We use this
same dataset to train a set of attribute classifiers based on
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POOFs. Kumar et al. have made available both human la-
bels and the results of their attribute classifiers for 19 binary
attributes on the 7701 images in View 2 of LFW. Restricting
ourselves to these 19 attributes, we use these images as our
test set.

Although the classes in this task (attributes) are of a dif-
ferent type from those in the previous experiment (iden-
tities), we remain in the face domain, and so expect the
POOFs we learned there to be useful here. We use the
POOFs learned in Section 4.2 without modification. (This
means they are trained using our reference set, not the
attributes-labeled images.) To build attribute classifiers, we
simply extract our 10,000 POOF scores from the attribute
training images, and use these feature vectors to train a lin-
ear SVM for each attribute. One of the benefits of POOFs
is that by incorporating knowledge of the domain learned
from the reference set, which is not labeled with attributes,
they reduce the need for a large attribute-labeled training
set. To demonstrate this, we restrict the number of images
we use from the training set.

The results on the test set are shown in Table 1, using
the gradhist variant of the gradient orientation base feature.
As before, we also show the performance of classifiers built
directly on the low-level base features. In almost every case
our POOFs outperform the classifier operating directly on
the low-level features. The difference is especially large
when the amount of training data is small. At six training
samples, many of the direct classifiers are at chance accu-
racy (e.g. gender) or even worse; it is easy for the classifier
to attach significance to a random peculiarity of the six im-
ages it sees. Our POOFs, based on what they have learned
is discriminative in a different set of classes (identities) in
the same type of image (faces), avoid this noise. The ta-
ble also shows the results of the classifiers of [14] on this
dataset. These classifiers are trained on between 1500 and
5600 samples each. To account for biases in the dataset, the
accuracies we report are the means of the accuracies on pos-
itive and negative test images. (For example, the test set is
6% Asian, so a direct calculation of accuracy would give a
“never-Asian” classifier 94% accuracy, but our calculation
would give it 50%.)

5. Conclusions

We have described a method for building a large set of
Part-based One-vs-One Features based on a dataset of im-
ages labeled by class and with part locations, and shown
them to have excellent performance in a series of exper-
iments with different tasks on different datasets, outper-
forming existing work on the CUBS-200 2011 dataset and
equaling the best results on the extensively studied LFW
dataset. The strength of the POOFs lies in their ability to
bring knowledge from an external, labeled dataset to bear
on the problem at hand, even when the labels on the exter-



nal set are of different classes from the dataset under study,
and the discriminative power and diversity brought about by
training each POOF on a single pair of classes and a single

part.
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