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Abstract

We present data-driven techniques to augment Bag of
Words (BoW) models, which allow for more robust mod-
eling and recognition of complex long-term activities, espe-
cially when the structure and topology of the activities are
not known a priori. Our approach specifically addresses the
limitations of standard BoW approaches, which fail to rep-
resent the underlying temporal and causal information that
is inherent in activity streams. In addition, we also propose
the use of randomly sampled regular expressions to discover
and encode patterns in activities. We demonstrate the effec-
tiveness of our approach in experimental evaluations where
we successfully recognize activities and detect anomalies in
four complex datasets.

1. Introduction
Activity recognition in large, complex datasets has be-

come an increasingly important problem. Extracting ac-

tivity information from time-varying data has applications

in domains such as video understanding, activity monitor-

ing for healthcare and surveillance. Traditionally, sequen-

tial models like Hidden Markov Models (HMMs) and Dy-

namic Bayesian Networks have been used to address activ-

ity recognition as a time-series analysis problem. However,

the assumption of Markovian dynamics restricts the appli-

cation of such sequential models to relatively simple prob-

lems with known spatial and temporal structure of the data

to be analyzed [22]. Similarly, syntactic methods like Parse

Trees and Stochastic Context Free Grammars [18, 11] are

not well suited for recognizing weakly structured activities

and are not robust to erroneous or uncertain data.

As a promising alternative, research in activity recogni-

tion from videos and other time-series data has moved to-

wards bag-of-words (BoW) approaches and away from the

traditional sequential and syntactic models. However, while

BoW approaches are good at building powerful and sparser

representations of the data, they completely ignore the or-

dering and structural information of the particular words re-

garding their absolute and relative positions. Furthermore,

standard BoW approaches do not account for the fact that

different types of activities have different temporal signa-

tures. Each event in a long-term activity has a temporal

duration, and the time that passes between each pair of con-

secutive events, is different for different activities

We introduce novel BoW techniques and extensions that

explicitly encode the temporal and structural information

gathered from the data. Recent activity recognition ap-

proaches such as [19] have extended the BoW approach

with topic models [23] using probabilistic Latent Semantic

Analysis [10] and Latent Dirichlet Allocation [1], leading

to more complex classification methods built on top of stan-

dard BoW representations. In contrast, we increase the rich-

ness of the features in the BoW representation and with the

use of standard classification backends (like k-NN, HMM

and SVM), we demonstrate that our augmented BoW tech-

niques lead to better recognition of complex activities.

Contributions: We describe a method to represent tem-

poral information by quantizing time and defining new tem-

poral events in a data-driven manner. We propose three en-

coding schemes that use n-grams to augment BoW with the

discovered temporal events in a way that preserves the local

structural information (relative word positions) in the ac-

tivity. This narrows the conceptual gap between BoW and

sequential models. In addition, to discover the global pat-

terns in the data, we augment our BoW models with ran-

domly sampled Regular Expressions. This sampling strat-

egy is motivated by the random subspace method as it is

commonly used for decision tree construction [2] and re-

lated approaches which have shown success in a wide vari-

ety of classification and visual recognition problems [14].

We evaluate our approach in comparison to standard

BoW representations on four diverse classification tasks: i)
Vehicle activity recognition from surveillance videos (Sec-

tion 4.1); ii) Surgical skill assessment from surgery videos
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(Section 4.2); iii) Unsupervised learning of player roles in

soccer videos (Section 4.3) and iv) Recognition of human

behavior and anomaly detection in massive wide-area air-

borne surveillance (simulation) data (Section 4.4). Recog-

nition using our augmented BoW outperforms the standard

BoW approaches in all four datasets. We provide evidence

that this superior performance generalizes to any classifi-

cation framework by demonstrating how sequential models

(HMMs), instance based learning (k-NNs), and discrimina-

tive recognition techniques (SVMs) benefit from the new

representation and outperform respective models trained on

standard BoW. Finally, we show how augmented BoW-

based techniques successfully unveil further details of the

analyzed datasets, such as behavior anomalies.

2. Related Work

The Bag of Words (BoW) model was first introduced

for Information Retrieval (IR) with text [21]. Since then,

it has been used extensively for text analysis, indexing and

retrieval [16]. Building on the success of BoW approaches

for IR with text and images, research in activity recogni-

tion has focused on working with BoW built using local

spatio-temporal features [25] and more recently with robust

descriptors, which exploit continuous object motion and in-

tegrate it with distinctive appearance features [4], features

based on dense trajectories [24] and features learnt in an

unsupervised manner directly from video data [13].

While the focus has mostly been on recognizing hu-

man activities in controlled settings, recent BoW based ap-

proaches have focused on recognizing human activities in

more realistic and diverse settings [12], and with the use

of higher level semantic concepts (attributes) that allow for

more descriptive models of human activities [15]. However,

when activities are represented as bags of words, the under-

lying sequential information provided by the ordering of the

words is typically lost. To address this problem, n-grams

have been used to retain some of the ordering by forming

sub-sequences of n items [16] (Figure 2). More recently,

variants of the n-gram approach have been used to repre-

sent activities in terms of their local event sub-sequences

[9]. While this preserves local sequential information and

causal ordering, adding absolute and relative temporal in-

formation results in more powerful representations as we

demonstrate in this paper.

Our augmentation method is independent of the under-

lying BoW representation, i.e., the modality of the data to

be processed. The input to our algorithm is a sequence of

atomic events, i.e., words. On video data these can be either

derived from state-of-the-art short-duration event detectors

(e.g., the Actom Sequence Model [7], automatic action an-

notation [5]), or any other suitable feature detectors.

3. Activity Recognition with Augmented BoW

We define an activity as a finite sequence of events over

a finite period of time where each event in the activity is

an occurrence. For example, if “start”, “turn”, “straight”

and “stop” are four individual events, then a vehicle driv-

ing activity will be a finite sequence of those events over

some finite time (e.g. “start → straight→ turn→ stop→
start→ straight→ stop”). We call these events, that can be

described by an observer and have a semantic interpretation,

as observable events.
Recent methods for activity recognition try to detect such

observable events and build BoW upon it. However, the

temporal structure underlying the activities that shall be rec-

ognized is typically neglected. The time taken by each ob-

servable event and the time elapsed between two subsequent

events are two important properties that contribute to the

temporal signature of an activity that is being performed.

For example, a car at a traffic light will have a shorter time

gap between the “stop” and “start” events than a delivery

vehicle that has to stop for a much longer time (until its

contents are loaded/unloaded) before it can start again.

3.1. Discovering Temporal Information

We represent activities as sequences of discrete, observ-

able events. Let ω = {a1, a2, a3, . . . , ap} denote a set of p
activities, and let φ = {e1, e2, e3, . . . , eq} denote the set of
q types of observable events. Each activity ai is a sequence
of elements from φ. Each event type can occur multiple

times at different positions in ai.

We now introduce temporal events. Let τj,k be the tem-

poral event defined as the time elapsed between the end of

observable event ej and the start of observable event ek,
where k > j. Since it measures time, τj,k is non-negative.

Also, let πj,k be the temporal event defined as the time

elapsed between the start of observable event ej and the end
of observable event ek, where k ≥ j. Thus, τj,k measures

the time elapsed between any two events whereas πj,k mea-

sure the time elapsed between any two events including the

time taken by those two events. Thus, τj,k and πj,k are re-

lated by the equation πj,k = πj,j + τj,k + πk,k. We posit

that these two types of temporal events, τj,k and πj,k, can
model all the temporal properties of an activity. The four

possible scenarios are listed here:

1. τj,j+1: Time elapsed between any two consecutive

events ej and ej+1

2. τj,k: Time elapsed between any two events ej and ek,
where k > j

3. πj,j : Time taken by a single event ej

4. πj,k: Time taken by set of events ej to ek, where k ≥ j
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Figure 1. Histogram of event durations for Ocean City dataset

(left) and data-driven creation of temporal bins (right; N = 5).

To work with these temporal events, we will have to quan-

tize them into a finite number of N bins. This quantization

is crucial in allowing us to incorporate a notion of time into

BoW models. However, uniformly dividing the time-line

intoN bins is not ideal. As illustrated by the temporal event

duration histograms of τj,j+1 for the Ocean-City dataset

(see Section 4.1) in Figure 1, short and medium duration

temporal events occur much more frequently than longer

duration temporal events. Similar temporal distributions are

observed in the other datasets we have analyzed.

To ensure that we capture the most useful temporal infor-

mation, we pursue a data-driven approach for binning. Bins

are selected based on the distribution of temporal events.

If there are S temporal events, then we divide the tempo-

ral space into N bins such that each of the N bins contains

an equal proportion S/N of the temporal events (illustrated

in Figure 1 for N = 5). Note that, if the time-line had

been naively divided into 5 equally sized bins, then most

of the temporal events would have been placed in the first

bin while the other 4 bins would have been almost empty.

The choice of N depends on the problem we are address-

ing. Lower values of N result in increased loss of temporal

information.

Example 1: Say, temporal event τj,k is of 4 second dura-
tion and temporal event τl,m is of 20 second duration, then

from Figure 1, we see that τj,k will be assigned to binD and

τl,m will be assigned to bin E. Let ψ denote the function

that maps the temporal events to their respective temporal

bins. Then, we can say that ψ(τj,k) = D and ψ(τl,m) = E.

There are many possible ways by which we can encode

these new temporal events along with the observable events

to build augmented BoW representations. The simplest way

would be to just add the quantized temporal events to the

BoW, i.e., if the BoW contained x observable events and

we extracted y new quantized temporal events, then the aug-

mented BoW will now contain x + y number of elements.

Although this naive representation already gives better re-

sults than just the BoW (see Section 4), as shown in the

next section, more sophisticated alternatives are possible.

3.2. Encoding Local Structure

In the following we describe three encoding schemes we

have developed that merge the temporal events with the ob-

servable events in a way that captures local structure.

Figure 2. Building n-grams and their histogram (here n = 3) [9]

3.2.1 Interspersed Encoding

In interspersed encoding, the main focus is on the time

elapsed between every pair of consecutive events. Let

τj,j+1 be a temporal event defined as the time elapsed be-

tween any two consecutive observable events ej and ej+1 in

activity ai. Once the quantized temporal events ψ(τj,j+1)
are computed for all event pairs ej , ej+1 ∈ ai, they are then
inserted into ai at their appropriate positions between events
ej and ej+1. Let this new sequence of interspersed events

for activity ai be denoted by Ti. In general, if activity ai has
d events, then after the inclusion of the quantized temporal

events, Ti will have 2d−1 events (the original d observable
events plus the new d− 1 temporal events).

Example 2: For the activity a1 = (e1, e2, e3), we have

T1 = (e1, ψ(τ1,2), e2, ψ(τ2,3), e3). If temporal event τ1,2
is of 4 second duration and τ2,3 is of 20 second duration,

then the quantized temporal events will be ψ(τ1,2) = D
and ψ(τ2,3) = E. So, the interspersed sequence of events

for activity a1, will be T1=(e1, D, e2, E, e3).
One of the main drawbacks of classical BoW representa-

tions is the loss of original word orderings (i.e. local struc-

tural information). This is particularly adverse in the con-

text of activity recognition because activities correspond to

causal chains of observable and temporal events. Losing the

ordering will result in a loss of all causality and contextual

information. We employ n-grams in order to retain ordering

of events [6]. An n-gram is a sub-sequence of n terms from

a given sequence. Deriving n-grams and their histograms

from a given sequence is illustrated in Figure 2.

Using this approach, for every activity ai, the event

sequence Ti is transformed into an n-gram sequence T I
i

(where the superscript I stands for interspersed). This T I
i

feature vector representing activity ai is the final result of

interspersed encoding. From Example 2, with n = 3, the
event sequence T1=(e1, D, e2, E, e3) will be transformed

into the n-gram sequence T I
1 = (e1De2, De2E, e2Ee3)

or in its histogram form T I
1 = {e1De2 ⇒ 1, De2E ⇒

1, e2Ee3 ⇒ 1} (denoted as key-value pairs where the key

is the n-gram and the value is its frequency).

3.2.2 Cumulative Encoding

In cumulative encoding, the main focus is on the cumula-

tive time taken by a subsequence of observable events. Let

ψ(πj,j+n−1) be a quantized temporal event defined as the

total time taken by n consecutive events ej to ej+n−1 in ac-
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tivity ai. Once the quantized temporal event ψ(πj,j+n−1) is
computed for the consecutive sequence of observable events

ej . . . ej+n−1 ∈ ai, it is appended to the set of the observ-

able events. Let this new sequence of “cumulative” observ-

able and temporal events for activity ai be denoted by TC
i

(where the superscript C stands for “cumulative”).

Example 3: If activity a2 = (e1, . . . , e5), n = 3, then

TC
2 = (e1e2e3ψ(π1,3), e2e3e4ψ(π2,4), e3e4e5ψ(π3,5)).

Say, π1,3 is of 4 second duration, π2,4 is of 20 sec-

ond duration and π3,5 is of 1 second duration and that

ψ(π1,3) = D, ψ(π2,4) = E and ψ(π3,5) = A. So,

the new sequence of events for activity a2, will be T
C
2 =

(e1e2e3D, e2e3e4E, e3e4e5A) or in histogram form TC
2 =

{e1e2e3D ⇒ 1, e2e3e4E ⇒ 1, e3e4e5A⇒ 1}.
Interspersed encoding focuses on the time elapsed be-

tween events whereas cumulative encoding focuses on the

time taken by the events.

3.2.3 Pyramid Encoding

Given the choice of encoding scheme —either interspersed

or cumulative— in pyramid encoding all l-grams of length

l, ∀l ∈ [1, n] are generated. Then we build a pyramid of

these l-grams allowing for processing of event sequences at

multiple scales of resolution. We denote BoW representa-

tions for activity ai generated through pyramid encoding by

TP
i .

The output of each of these encoding schemes, i.e., T I
i ,

TC
i and TP

i is the augmented BoW model containing the

observable and temporal events, encoded in a way that cap-

tures the local structure.

3.3. Capturing Global Structure

While n-grams are good at capturing local information,

their capability to capture longer range relationships are

rather limited. This is where regular expressions come into

play. Obviously, it is computationally intractable to enu-

merate all possible regular expressions for a given vocabu-

lary of observable and temporal events. Thus, given the set

of observable events φ and the set of discovered temporal

events N , we construct a vocabulary of all events φ ∪ N
denoted by Γ where |Γ| = |φ|+ |N |, and create a sub-space
of regular expressions by restricting their form to:

∧ . ∗ (α) (β1 | . . . | βr)ϕ (γ) . ∗ $ (1)

where the symbols α, βi, γ ∈ Γ with i ∈ [1, r] and r =
rand (1, |Γ|). The symbol ϕ is randomly set to one of the

three quantifier characters: {∗,+, ?}. The special charac-

ters have the following meaning: “ ∧ ” matches the start

of the sequence, “.” matches any element in the sequence,

“ ∗ ” matches the preceding element zero or more times,

“ + ” matches the preceding element one or more times,

“?” matches the preceding element zero or one time and

“$” matches the end of the sequence. The “|” operator

matches either of its arguments. For example, e1(e2|e3)e4
will match either e1e2e4 or e1e3e4.

The first symbol that will be matched (α) and last sym-

bol that will be matched (γ) are chosen randomly from Γ
using probability-proportional-to-size sampling (PPS) and

the r intermediate symbols βi are chosen randomly from Γ
using simple random sampling (SRS). PPS concentrates on

frequently occurring events and picks the first and last sym-

bols in the regular expression to be the ones that have the

greatest impact on the population estimates whereas SRS

chooses each of the intermediate symbols with equal prob-

ability, thus giving a fair chance for all events to equally

participate in the matching process. The results of our ex-

perimental evaluation suggest that this combination of PPS-

SRS sampling of the regular expression subspace strikes the

right balance between discovering global patterns across ac-

tivities and discovering the anomalous activities.

Regular expressions of the above form are randomly

generated and those that do not match at least one of the

activities/event-sequences are rejected. Accepted regular

expressions are treated as new words and added to our

augmented BoW representation. This final representation

now contains automatically discovered temporal informa-

tion and both local and global structural information of the

activities. Our experiments show that increasing the num-

ber of words in BoW through randomly generated regular

expressions by just 20% boosts the activity recognition and

anomaly detection results significantly (Section 4).

3.4. Activity Recognition

Activity recognition using augmented BoW is pursued

in a straightforward manner by feeding the time-series data

in their novel representation into statistical modeling back-

ends. Note that there is in principle no limitation on the kind

of classification framework to be employed. In Section 4 we

present results for instance based learning (k-NN), sequen-
tial modeling (HMM), and discriminative modeling (SVM).

Given videos or time-series data of activities, temporal

information is discovered using the histogram method de-

scribed in Section 3.1. Using n-grams, the temporal infor-

mation is then merged with the extracted BoW thereby pre-

serving local ordering of the words. The new BoWmodel is

then further augmented by adding new words created using

randomly sampled regular expressions (to capture global

patterns in the data), and then processed by the statistical

modeling backend for actual activity recognition.

4. Experimental Evaluation
The methods presented in this paper were developed in

order to improve BoW-based activity recognition, thereby

aiming for generalization across application domains. For

practical validation, we have thus evaluated our approaches
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Figure 3. Sample frame from Ocean City data showing the various

objects being tracked.

in a range of experiments that cover three diverse classes of

learning problems (binary classification, multi-class classi-

fication, and unsupervised learning) across four challenging

datasets from different domains.

Optimization of the estimation procedure for augmented

BoW representations involves the two main parameters in

our system: N , the number of temporal bins used for quan-

tization and n, the size of the n-gram used for encoding.

Low values of N and n result in the loss of temporal and

structural information whereas high values can lead to large

BoW with very high dimensionality. The optimal values for

N and n are determined by standard grid search [3]. Within

a user supplied interval, all grid points of (N ,n) are tested to
find the combination that gives the highest accuracy. 50%
of the particular datasets is held-out for parameter optimiza-

tion, and the remaining 50% is used for model estimation

using cross-validation. This provides an unbiased estimate

of the generalization error and prevents over-fitting.

The main evaluation criterion for all activity recogni-

tion experiments is classification accuracy, which we report

as absolute percentages and, for more detailed analysis, in

confusion matrices. For the first set of experiments (Sec-

tion 4.1) we compare three different classification backends

(k-NNs with cosine-similarity distance metric, HMMs, and

SVMs) and explore their capabilities in systematic evalu-

ations of their parameter spaces. Due to space constraints

the presentation of results for the remaining set of experi-

ments is limited to those achieved with the k-NN classifica-

tion backend. These results are, however, representative for

all three types of classifiers evaluated.

k-NNs with cosine-similarity distance metric, i.e. Vec-

tor Space Models (VSM), treat the derived BoW vectors

of activities as document vectors and allow for automatic

analysis in terms of querying, classifying, and clustering

the activities [16]. Prior to classification, each term in our

augmented BoW is assigned a weight based on its term-

frequency and document-frequency in order to obtain a sta-

tistical measure of its importance. Classification is done

using leave-one-out cross-validation (LOOCV).

HMM-based experiments employ semi-continuous mod-

eling with Gaussian mixture models (GMM) as feature

space representations [6]. GMMs are derived by means of

an unsupervised density learning procedure. All HMMs are

Figure 4. Classification results for Ocean City dataset. Our encod-

ing schemes outperform the BoW baseline on three classification

backends: VSM, sequential models (HMMs) and SVMs.

based on linear left-right topologies with automatically de-

rived model lengths (based on training data statistics), and

are trained using classical Baum-Welch training. Classifica-

tion is pursued using Viterbi-decoding. Parameter estima-

tion and model evaluation employs 10-fold cross-validation.

Experiments on SVMs are carried out in 10-fold cross-

validation using LIBSVM with an RBF kernel. Parameter

optimization utilizes a grid-search procedure as it is stan-

dard for finding optimal values for C and γ [3].

4.1. Ocean City Surveillance Data

The first dataset consists of 7 days of uncontrolled videos
recorded at Ocean City, USA [20]. The input video was sta-

bilized and geo-registered and 2, 140 vehicle tracks were

extracted using background subtraction and multi-object

tracking [20] (Figure 3). An event detector analyzed the

tracks, detected changes in structure over time and repre-

sented each track by a sequence of observable events. The

types of events detected in each track were “start”, “stop”,

“turn” and “u-turn”.

Out of the 2, 140 vehicle tracks, 448 vehicles are ei-

ther entering or exiting parking areas on either side of the

road (Figure 3). The recognition objective is to determine

whether or not vehicles are involved in parking activities.

With the empirically determined optimal values of N =
2 and n = 2, we perform binary classification. The results

are shown in Figure 4. For k-NN based experiments, ROC

curves were generated by varying the acceptance thresh-

old. Augmenting BoW with temporal information (bag-of-

words + time) improves the results over the BoW baseline.

The performance is further improved with our proposed

Interspersed, Cumulative and Pyramid encoding schemes.

However, the best results are obtained when we augment

our BoW with randomly generated regular expressions.

Figure 4 also shows the performance of HMM and

SVM based recognition backends using augmented BoW
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Figure 5. Long-range (left) and close-up (right) stills of video

footage from training sessions for surgical skill assessment. Partic-

ipants practice suturing using regular instruments and suture pads.

representations. Both techniques produce fixed decisions

based on maximizing models’ posterior probabilities, i.e.,

no threshold-based post-processing is applied for the actual

recognition. Consequently, ROC curves are not applicable,

and the particular results are shown as points in the figure.

Analyzing the evaluation results, it becomes evident that:

i) our proposed encoding schemes outperform the BoW

baseline; and ii) superior classification accuracy general-

izes across recognition approaches (k-NN, HMM, SVM),

with largest gain for Vector Space Models.

4.2. Surgical Skill Assessment

The second set of experiments is related to evaluating

surgical skills as it is standard routine in practical training

of medical students. As part of a larger case-study, 16 med-

ical students were recruited to perform typical suturing ac-

tivities (stitching, knot tying, etc.) using regular instruments

and tissue suture pads. Both long-range and close-up videos

of these “suturing” procedures were captured at 50 fps at a
resolution of 720p (sample still images in Figure 5). As

part of the training procedure, participants completed 2 ses-
sions with 2 attempts in each session, resulting in a total of

64 videos. Ground truth annotation was done by an expert

surgeon who assessed the skills of the participants using a

standardized assessment scheme (OSATS [17]) based on 7
different metrics (Table 1) on a three-point scale (low com-

petence, medium, and high skill).

Harris3D detectors and histogram of optical-flow (HOF)

descriptors [25] are used to extract visual-words from the

surgery videos. BoW are built with vocabularies con-

structed using k-means clustering (with k = 50), and then

augmented using our techniques. Table 1 summarizes our

experiments (using k-NN classification backend) and gives

comparisons with the BoW baseline. It can be seen that aug-

mented BoW based approaches outperform the BoW base-

line in all 7 skill metrics with an overall accuracy of 72.56%.

Since our augmented BoW representations capture time

and co-occurrence of words, we hypothesized that an au-

tomated analysis procedure using augmented BoW should

perform particularly well in assessing the “time and mo-

tion” and “knowledge of procedure” skills. Recognition re-

sults reported in Table 1 indicate that this is indeed the case.

The classification accuracies are 74.60% and 80.95% (an

Figure 6. Sample stills from soccer videos dataset. Left: The 24
objects being tracked: 22 players from both teams, referee and

the ball. Right: The 4 zones used by our event detector: Zone-A

(Red), Zone-B (Yellow), Zone-C (Green) and Zone-D (Blue).

RI ARI NMI

BOW baseline 0.7984 0.2922 0.6147

BOW + Time 0.8300 0.3920 0.6974

Our Encoding 0.8261 0.5244 0.7462

Table 2. Cluster quality on soccer videos dataset. The 3 metrics

used are Rand Index (RI), Adjusted Rand Index (ARI) and Nor-

malized Mutual Information (NMI). Our encoding (Interspersed

encoding with 3-grams, 3 time bins and 20 random regular ex-

pressions) gives better cluster quality than the BoW baseline.

increase of 23.81% and 20.63% respectively, over the BoW

baseline), thus validating our hypothesis.

4.3. Learning Player Activities from Soccer Videos

Automatic detection, tracking and labeling of the play-

ers in soccer videos is critical for analyzing team tac-

tics and player activities. Previous work in this area

has mostly focussed on detecting and tracking the play-

ers, recognizing the team of the players using appear-

ance models and detecting short-duration player actions.

In our experiments, we consider the problem of unsuper-

vised learning of long-range activities and roles the vari-

ous players take on the field. Given their tracks, we clus-

ter them into 7 clusters: “Team-A-Goalkeeper”, “Team-

A-Striker”, “Team-A-Defense”, “Team-B-Goalkeeper”,

“Team-B-Striker”, “Team-B-Defense” and “Referee”.

We analyzed full length match videos (720p at 59.94 fps)
from the Disney Research soccer games dataset and tracked

the 24 objects (players, referee, and ball) on the field us-

ing a multi-agent particle filter based framework [8] (Fig-

ure 6). The tracks were given to an event detector that

divided the field into 4 zones (Figure 6) and detected 10
types of events: “Enter-Zone-A”, “Leave-Zone-A”, “Enter-

Zone-B”, “Leave-Zone-B”, “Enter-Zone-C”, “Leave-Zone-

C”, “Enter-Zone-D”, “Leave-Zone-D”, “Receive-Ball” and

“Send-Ball”. With this vocabulary of 10 events, we built

augmented BoW and clustered them using k-means cluster-

ing where k = 7. Clustering results are given in Table 2.

It can be seen that augmented BoW outperform the BoW

baseline on all 3 cluster quality metrics. In a supervised set-

ting, we achieve an accuracy of 82.61%, which is a 17.39%
improvement over the BoW baseline (which is 65.22%).
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Respect

for tissue

Time and

motion

Instrument

handling

Suture

handling

Flow of

operation

Knowledge

of procedure

Overall

performance

Average

accuracy

M1: BOW baseline 66.67% 50.79% 50.79% 69.84% 49.21% 60.32% 52.38% 57.14%

M2: BOW + Time 69.84% 66.67% 65.08% 69.84% 63.49% 74.60% 68.25% 68.25%

M3: Our encoding 73.02% 74.60% 68.25% 73.02% 66.67% 80.95% 71.43% 72.56%
Table 1. Surgical skill assessment using OSATS assessment scheme [17]. Ground truth annotation provided by an expert surgeon who

assessed the training sessions using 7 different metrics (columns) and a three-point scale (low competence, medium, and high skill).

Results given are accuracies from automatic recognition using k-NN, replicating expert assessment based on video footage of the training

sessions. Our encoding (Interspersed encoding with 3-grams, 5 time bins and with 20 random regular expressions) outperforms the BoW

baseline on all 7 metrics.

Figure 7. Results on WAAS dataset: Left: BoW baseline; Middle: BoW + Time; Right: Our encoding (5-grams, 5 time bins and with

1, 000 random regular expressions). Overall improvement of 30.04% is observed with our method (compared to standard BoW baseline).

4.4. Wide Area Airborne Surveillance (WAAS)

In order to evaluate the applicability and scalability of

our approach on massive datasets with several hundreds

of thousands of activities, we consider the Wide-Area Air-

borne Surveillance (WAAS) simulation dataset.

The WAAS dataset was developed by the U.S. Military

as part of their Activity Based Intelligence (ABI) initiative.

The goal is to capture motion imagery from an airborne

platform that provides persistent coverage of a wide area,

such as a town or a small city, and merge the automatically

captured data from the aerial station with intelligence gath-

ered by ground forces to build a surveillance database of

humans and vehicles in that area. In order to aid research

in this area, the WAAS dataset has been released, which

contains Monte Carlo simulation of the activities of 4, 623
individuals for a total duration of 46.5 hours generated in 1
minute increments. There are a total of 180 events (like “Eat
Lunch”, “Enter Vehicle”, “Exit Vehicle”, “Move”, “Wait”,

etc) with a total of 544, 777 event sequences spread across

28, 682 buildings. Ground truth labels are available on the

10 different professions of all the individuals. 23 out of the
4, 623 individuals are suspected to be part of a terror group.

Given this large database, we show that our augmented

BoW can successfully classify people’s professions and de-

tect some of the suspect individuals based on the temporal

and structural similarities in their activities. Classification

accuracies and confusion matrices are shown in Figure 7.

Note that, with our encoding, more than a third of the sus-

pect group are correctly classified which baseline methods

failed to capture. This successful identification of suspi-

cious behavior is especially remarkable since those suspects

aim for imitating "normal" behavior and thus their activities

are very similar to harmless activities.

4.5. Test for Statistical Significance

With McNemar’s chi-square test (with Yates’ continu-

ity correction), we check for the statistical significance be-

tween the results of our two multi-class classification prob-

lems (Figure 7 and Table 1). For the surgery dataset, though

all the 7 skill classifications were statistically significant,

due to space constraints, only results on “knowledge of pro-

cedure” classification is presented.

The null hypothesis is that the improvements are due to

chance. However, as shown in Table 3 for both the datasets,

the χ2 values are greater than the critical value (at 95% sig-

nificance level) of 3.84 and the p-values are less than the

significance level (α) of 0.05. Thus, the null hypothesis can
be rejected and we can conclude that the improvements ob-

tained with our methods are statistically significant.

5. Conclusion

BoW models are a promising approach to real-world

activity recognition problems where only little is known

a-priori about the underlying structure of the data to
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M1 vs M2 M1 vs M3

χ2 165.09 530.35

p-value < 0.0001 0.0026

M1 vs M2 M1 vs M3

χ2 4.76 9.33

p-value 0.0291 0.0023

Table 3. McNemar’s tests on statistical significance between the

different methods on the 2 multi-class classification problems.

Each column compares two methods. Left: Comparing the meth-

ods in Figure 7 for the WAAS dataset; Right: Comparing the

methods in Table 1 for the “knowledge of procedure” skill in the

surgery dataset (the other 6 skill classifications were also statisti-

cally significant, but are not shown due to space constraints).

be analyzed. We presented a significant extension to

BoW-based activity recognition, where we augment BoW

with temporal information and with both local and global

structural information, using temporal encoding, n-grams

and randomly sampled regular expressions, respectively.

In addition to generally improved activity recognition,

our approach also detects anomalies in the data, which

is important, for example in human behavior analysis

applications. We have demonstrated the capabilities of

our approach on both real-world vision problems and on

massive wide-area surveillance simulations.
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