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Abstract

In this paper we propose a novel alpha matting method
with local and nonlocal smooth priors. We observe that the
manifold preserving editing propagation [4] essentially in-
troduced a nonlocal smooth prior on the alpha matte. This
nonlocal smooth prior and the well known local smooth
prior from matting Laplacian complement each other. So we
combine them with a simple data term from color sampling
in a graph model for nature image matting. Our method has
a closed-form solution and can be solved efficiently. Com-
pared with the state-of-the-art methods, our method pro-
duces more accurate results according to the evaluation on
standard benchmark datasets.

1. Introduction
Image matting seeks to decompose an image I into the

foreground F and the background B. Mathematically, the

image I is a linear combination of F and B as the following:

C = Fα+B(1− α). (1)

Here, the alpha matte α defines the opacity of each pixel and

its value lies in [0, 1]. Accurate matting plays an important

role in various image and video editing applications. How-

ever, this problem is highly ill-posed, because the number

of unknowns is much larger than that of equations in Equa-

tion (1). It is a typical practice to include a trimap or some

user scribbles to simplify the problem. At the same time,

strong priors on the alpha matte can significantly improve

the results.

In the closed-form matting [11], a matting Laplacian ma-
trix is derived based on the color line model [14] to con-

strain the alpha matte within local windows. This local

smooth prior can be combined with data terms derived from

color sampling [23, 15]. This smooth prior is further im-

proved in [20] for image regions with constant foreground

∗corresponding author(email: zoudq@vrlab.buaa.edu.cn)

or background colors. He et al. [9] improve the color sam-

pling with generalized Patchmatch [2]. Such a combination

of data term and local smooth term generates high quality

results according to recent surveys [22, 18]. However, as

discussed in [10], it is nontrivial to set an appropriate lo-

cal window size when computing the Laplacian matrix. A

small window might not be sufficient to capture the struc-

ture details. On the other hand, a large window breaks the

color line model and also leads to poor results.

Recently, Chen et al. [4] proposed a manifold preserving

editing propagation method, and applied it to alpha matting.

We observe that this method is essentially a novel nonlocal

smooth prior on the alpha matte. It helps to correlate al-

pha values at faraway pixels, which is complementary to

the matting Laplacian. When this nonlocal smooth prior is

applied alone, it might not capture local structures of semi-

transparent objects. So we propose to combine this nonlocal

smooth term with the local Laplacian smooth term, and fur-

ther include a trivial data term. This simple combination

generates surprisingly good results as demonstrated by its

performance on the benchmark database.

Our main contributions are: 1) new insights in the mani-

fold preserving based matting propagation; 2) a novel mat-

ting algorithm that achieves superior performance on stan-

dard benchmark database.

2. Related Work
Existing methods can be roughly categorized into

sampling-based methods, affinity-based methods and com-

bination of the two methods. We only discuss some of the

most relevant works here. A more comprehensive survey

can be found in [22].

Sampling-Based Matting estimates the alpha matte,

foreground and background color of a pixel simultaneously.

Many methods [16, 5, 15, 6, 3] applied different paramet-

ric or non-parametric models to collect nearby pixel sam-

ples from the known foreground and background. Ruzon

and Tomasi [16] assumed the unknown pixels are in a nar-

row band region around the foreground boundary. Later
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Figure 1. (a) the input image. (b) the corresponding feature space.

The pixel A can be generated by linearly combining the color at

B and C.

this method was extended by Chuang et al. [5] with the

Bayesian estimation framework. These methods work well

when the unknown pixels are near the foreground bound-

ary, and the number of unknown pixels is relatively small.

Rhemann et al. [15] proposed an improved color model to

collect samples according to the geodesic distance. Shared

matting [6] collected those samples along rays of different

directions. In general, these methods work well when the

color is locally smooth.

Affinity-Based Matting solves the alpha matte indepen-

dent of the foreground and background colors. Poisson mat-

ting [21] assumed that the matte gradient is proportional to

the image gradient. Random walk matting [8] employed

the random walks algorithm [7] to solve the alpha value ac-

cording to the neighboring colors affinities. Closed-form

matting [11] assumed color line model in local windows and

solved the alpha matte by minimizing a cost function. Spec-

tral matting [12] extended [11] into an unsupervised fashion

by exploiting its relationship with spectral clustering. The

matting Laplacian has been combined with various ‘data

constraints’ [23, 15], priors [17] or learning based method

[24] for image matting. However, the local smooth assump-

tion is insufficient to deal with complex images. Thus we

further combine it with a nonlocal smooth prior to improve

the results.

Combined Sampling and Affinity Matting makes a

good trade-off between the two approaches. Robust matting

[23] first collected samples with high confidence, and then

used the Random Walk [7] to minimize the matting energy.

Global sampling matting [9] searched the global optimum

samples with a random search algorithm derived from the

PatchMatch algorithm [2].

3. Nonlocal Constraint on Alpha Matte

Chen et al. [4] proposed a manifold preserving method

for edit propagation and applied it to propagate the alpha

matte from the definite foreground and background to the

unknown regions. Specifically, they first apply the locally

linear embedding (LLE) [19] to represent each pixel as a

linear combination of a few of its nearest neighbors in the

RGBXY feature space, which is the RGB value concate-

nated with the image coordinate. The propagation algo-

rithm keeps the alpha of known pixels unchanged, and re-

quires every pixel to be the same linear combination of its

neighbors in the feature space. For example, in the Figure 1,

the pixel A can be generated by linearly combining the color

at B and C according to the weight A = w1B+(1−w1)C.

In the alpha matte, the manifold preserving propagation

requires the same equation hold for the alpha matte, i.e.

αA = w1αB +(1−w1)αC . Here, the three scalars αA, αB

and αC are the alpha values at the three pixels A,B and

C. When B and C are known foreground and background

pixels (i.e. αB = 1 and αC = 0), the manifold preserving

condition simply requires αA = w1. In fact, w1 is an esti-

mation of αA from the color sampling [23]. So this method

includes color sampling in the RGBXY space to solve the

alpha. Furthermore, B and C can also be unknown pixels,

so preserving the local manifold structure brings more con-

straints than color sampling. Note A could be faraway from

B and C, since the neighbors are found in the feature space.

So the manifold preserving constraint is essentially a nonlo-

cal smooth constraint that relates the alpha values at faraway

pixels. It propagates information across the whole image,

while the local smooth constraint from matting Laplacian

can only propagate information within local windows.

This nonlocal smooth prior is complementary to the mat-

ting Laplacian. As discussed in [10], it is sometimes diffi-

cult to choose an appropriate window size to compute the

Laplacian matrix. As shown in the first row of Figure 2,

a large window (41 × 41) is required to capture the alpha

matte structure by the method [11]. However, for the exam-

ple in the second row of Figure 2, a small window (3 × 3)

is required to ensure the color line model to be valid over

complicated background. He et al. [10] designed an adap-

tive method to choose different window sizes for different

image regions. In comparison, when combined with the

nonlocal smooth prior, matting Laplacian with a small win-

dow (3× 3) generates consistently good results on both ex-

amples. Furthermore, a small window makes the matting

Laplacian more sparse and more efficient to solve.

The nonlocal smooth prior alone is also insufficient to

compute accurate alpha matte. As shown in the first row

of Figure 3, when most of the alpha values are close to 0

or 1, the nonlocal smooth prior alone generates satisfactory

results. However, as shown in the second row, the nonlocal

smooth prior alone cannot handle images with large semi-

transparent region. This is because for pixels with alpha

values close to 0.5, their feature space neighbors are all un-

known pixels. As a result, their alpha values are less con-

strained by the manifold preserving constraint. In contrast,

when the local smooth constraint from matting Laplacian is

applied, good results can be obtained on both examples.
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Figure 2. It is not easy to set the local window size when computing the matting Laplacian. In the first row, a large window (41 × 41)

is required to capture the complex alpha matte by the method [11]. In the second row, a small window (3 × 3) is required to ensure the

color line model on complex background. In comparison, when combined with nonlocal manifold prior, a small window (3× 3) generates

consistently good results on both examples.

Figure 3. The nonlocal prior alone [4] is also insufficient to com-

pute the accurate matte. It works for alpha matte with mostly bi-

nary alpha values. As shown in the second row, large semitrans-

parent region causes artifacts.

4. Graph Model for Matting
We propose a new matting method by combining the

local smooth term, nonlocal smooth term and a data term

based on color sampling in a graph model. The result opti-

mization can be solved efficiently from linear equations.

4.1. Color Sampling

We take a simple color sampling method [23] as the data

term. Here we only briefly describe the basic idea, for more

details please refer to [23]. Given a selected foreground and

background samples pair (Fi, Bj), the alpha value of pixel

C can be estimated as,

α̃ =
(C −Bj) (Fi −Bj)

‖Fi −Bj‖2
, (2)

The distance d(Fi, Bj) between the C and α̃Fi +
(1− α̃)Bj provides a confidence measure for the alpha

value. The confidence is further modulated by the spatial

distance between the samples and C. For the sampling, we

simply take some spatial nearest pixels to form a candidate

Figure 4. Color sampling. For the unknown pixel (the red point),

we simply select the spatial nearest pixels as the candidate samples

(orange points and purple points) by using FLANN [13].

set, and choose the pair of samples with highest confidence

for each unknown pixel as shown in Figure 4. We find the K

nearest samples for each unknown pixel by using FLANN

[13]. Though better sampling methods [23, 9] can be used,

we find this simple method produces good results with the

help of local and nonlocal smooth terms

4.2. Graph Model

As shown in Figure 5, in our graph model, the white

nodes represent the unknown pixels on the image lattice, the

orange nodes and the purple nodes are known pixels marked

by a trimap or user scribbles. Two virtual nodes ΩF and ΩB

representing the foreground and background are connected

with each pixel. Each pixel is connected with its neighbor-

ing pixels in a 3 × 3 window, and also connected with its

neighbors in the RGBXY feature space. The connections

between each pixel and its feature space neighbors are indi-

cated by red lines.

Data Term. The data weights, W(i,F ) and W(i,B) which

represent the probability of a pixel belonging to foreground

and background, are defined between each pixel and a vir-
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Figure 5. The graph model of our method. Two virtual notes rep-

resenting the foreground and background are connected with each

pixel. Each pixel is further connected with its spatial neighbors

and feature space neighbors. Data term and smooth terms are de-

fined on these edges.

tual node to enforce the data constraint. The initial alpha

value α̃ of each pixel reflects the tendency towards fore-

ground or background, thus it is reasonable to define the

data weight of each node in the image lattice according to

its initial alpha value. Specifically, for each unknown pixel

i, two data weights W(i,F ) and W(i,B) are defined as:

W(i,F ) = γα̃ W(i,B) = γ(1− α̃).

The parameter γ balances the data term and the smooth

term. We set γ to 0.1 in all our experiments. We use

WF and WB to represent {W(i,F )|i = 1, ..., N} and

{W(i,B)|i = 1, ..., N}, respectively.

Local Smooth Term. The local matting Laplacian en-

hances the local smoothness of the result alpha matte. For

the pixels i and j in a 3 × 3 window wk, the neighbor term

W lap
ij is defined as:

W lap
ij = δ

(i,j)∈wk∑
k

1 + (Ci − μk)
(∑

k + ε
9I

)−1
(Cj − μk)

9
.

(3)

Here, the parameter δ controls the strength of the local

smoothness. μk and
∑

k represent the color mean and vari-

ance in each window. ε is a regularization coefficient which

is set to 10−5. Our window size is fixed as 3 × 3 for all

examples.

Nonlocal Smooth Term. To enforce the nonlocal smooth

constraint, for each pixel Xi, we connect it to its K nearest

neighbors Xi1, ...,Xik with weights W lle
im . Specifically, the

W lle
im can be computed by minimizing

N∑
i=1

∥∥∥∥∥Xi −
K∑

m=1

W lle
imXim

∥∥∥∥∥
2

, (4)

subject to the constraint
∑K

m=1 W
lle
im = 1[19]. For our mat-

ting problem, the Xi represents the (ri, gi, bi, xi, yi) for the

pixel i. (ri, gi, bi) is its RGB color and (xi, yi) is its im-

age coordinate. The result matrix Wlle (the ij-th element

of Wlle is W lle
ij ) encodes the nonlocal manifold constraint.

4.3. Closed-form Solution

We first collect a subset of pixels S, which includes pix-

els of known alpha value from the trimap or user scribbles.

S also includes pixels whose initial alpha α̃ estimation is of

high confidence (confidence larger than 0.85 in all our ex-

periments). The energy function for solving alpha value is

defined as:

E = λ
∑
i∈S

(αi − gi)
2
+

N∑
i=1

⎛
⎝∑

j∈Ni

Wij (αi − αj)

⎞
⎠

2

,

(5)

where N is the number of all nodes in the graph model,

including all nodes in the image lattice plus two virtual

nodes ΩF and ΩB . Wij represents three kinds of weights ,

containing local smooth term W lap
ij , nonlocal smooth term

W lle
ij and data term W(i,F ) and W(i,B). The set Ni is the set

of neighbors of the pixel i, including neighboring pixels in

3×3 window and those K nearest neighbors in the RGBXY

space, and the two virtual nodes. Function 5 can be further

written in a matrix form as

E = (α−G)
T
Λ (α−G) + αTLTLα, (6)

in which

Lij =

⎧⎨
⎩

Wii : if i = j,
−Wij : if i and j are neighbors,
0 : otherwise,

(7)

Here, the weight Wii =
∑

j∈Ni
Wij . Λ is a diagonal ma-

trix, and G is a vector. Λii is 1000 if i ∈ S and 0 otherwise.

Gi is set to 1 if i belongs to foreground and 0 otherwise.

Equation 6 is a quadratic function about α, which can

be minimized by solving the linear equation in closed-form

solution (
Λ + LTL

)
α = ΛG. (8)

5. Experiments
We evaluate the performance of our method and compare

it with several recent representative methods. More results

can be found in our supplement files.

5.1. Evaluation on Benchmark Database

We use the benchmark database [18] to evaluate the per-

formance of our method1. Table 1 shows the ranking of

1Our results was uploaded to the evaluation web [1] at about 14:00

GMT November 15, 2012.
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SAD
Matting Overall
methods rank

1. Our 4.2
2. SVR 5.8

3. Weighted C&T 6.2

4. Shared 6.8

5. Global Sampling 8.2

6. Segmentation-based 8.5

7. Fast Automatic 8.5

8. Improved color 9.1

9. LSR 9.8

10. Global Sampling (F) 10

MSE
Matting Overall
methods rank

1. Our 3.5
2. SVR 5.6

3. Weighted C&T 6.9

4. Global Sampling 7

5. Shared 7.6

6. KNN 8.5

7. Segmentation-based 8.8

8. Improved color 8.9

9. Fast Automatic 9.8

10. LSR 10.7

Gradient error
Matting Overall
methods rank

1. Our 4.5
2. SVR 5.5

3. Shared 6.2

4. Segmentation-based 6.3

5. Global Sampling 6.4

6. Improved color 6.6

7. Weighted C&T 9.5

8. Global Sampling (F) 9.8

9. Fast Automatic 11

10. LMSPIR 11.3

Connectivity error
Matting Overall
methods rank

1. Random Walk 3.2

2. Closed-Form 5.4

3. Our 5.8
4. Large Kernel 7.9

5. SVR 8.5

6. Improved color 8.8

7. LSR 9.6

8. Cell-based 9.9

9. Learning Based 10.1

10. Segmentation-based 11

Table 1. Ranks of different matting methods with respect to the

four measurements on benchmark dataset as evaluated by [1]. We

only show the top ten methods for each measurement.

Figure 6. Quantitative evaluation of our method and the methods

of Robust Matting [23], Shared Matting [6], Closed-Form Matting

[11], Global Sampling Matting [9] and Editing Propagation [4].

different methods based on four measurements, i.e. abso-

lute differences (SAD), mean squared error (MSE), gradi-

ent error and connectivity error. These results are generated

from the website [1]. We only show the top ten methods for

each measurement. Our method ranks first according to the

measurements of SAD, MSE and gradient error, and ranks

third according to the connectivity error. Although Random

Walk Matting [8] and Closed-Form Matting [11] generate

less connectivity error, they rank much lower according to

the other three metrics..

We compare the quantitative error of our work with some

recent methods (including Robust Matting [23], Shared

Matting [6], Closed-Form Matting [11], Global Sampling

Matting [9] and Editing Propagation [4]) in Figure 6. Our

method generates smallest errors. The Global Sampling

Matting has comparable accuracy by introducing a strong

data term which optimizes color sampling from all pixel

pairs. In comparison, our method works well with a much

simpler data term. In fact, these two methods could be eas-

ily integrated for better performance, since they exploit dif-

ferent information. Several of these methods include the

local smoothness term from matting Laplacian. However,

as we discussed earlier, it is not easy to set a common win-

dow size for all test data. In comparison, with the help of

nonlocal smoothness constraint, our method generates con-

sistently good results with a small fixed window size.

5.2. Visual Comparison

We visually compare our method with Robust Matting

[23], Shared Matting [6], Closed-Form Matting (CF) [11],

Global Sampling Matting (GS) [9] and Editing Propagation

(EP) [4] on difficult images. We selected three represen-

tative images. The foreground and background in the Ele-
phant example have similar color distribution. The Plas-
ticbag has large semi-transparent region, and the Net con-

sists of many small holes. Figure 7 shows the results pro-

duced by our method and the other five methods. Visually,

we obtain similar or better results. Our method also works

with a scribble user interface. Some example results with

sparse user scribbles and more results are included in our

supplement files.

6. Conclusion
We observe that the manifold preserving alpha matte

propagation is an effectively nonlocal smooth constraint

on the alpha matte. We combine it with the local smooth

constraint from the matting Laplacian and a simple data

term from color sampling for nature image matting. Our

graph model based method has closed-form solution and

can be solved efficiently. Comparison on standard bench-

mark database shows our work outperforms state-of-the-art

methods.
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