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Abstract

We present an algorithm that carries out alternate
Hough transform and inverted Hough transform to estab-
lish feature correspondences, and enhances the quality of
matching in both precision and recall. Inspired by the fact
that nearby features on the same object share coherent ho-
mographies in matching, we cast the task of feature match-
ing as a density estimation problem in the Hough space
spanned by the hypotheses of homographies. Specifically,
we project all the correspondences into the Hough space,
and determine the correctness of the correspondences by
their respective densities. In this way, mutual verification
of relevant correspondences is activated, and the preci-
sion of matching is boosted. On the other hand, we in-
fer the concerted homographies propagated from the lo-
cally grouped features, and enrich the correspondence can-
didates for each feature. The recall is hence increased.
The two processes are tightly coupled. Through iterative
optimization, plausible enrichments are gradually revealed
while more correct correspondences are detected. Promis-
ing experimental results on three benchmark datasets man-
ifest the effectiveness of the proposed approach.

1. Introduction

Establishing correspondences among two or more im-

ages has attracted great attention in the field of computer

vision. Being a key component for image analysis and

understanding, it is essential for a wide range of applica-

tions, such as object recognition [5], image retrieval [30],

3D reconstruction [25], image enhancement [16] and edit-

ing [2, 22]. Despite the great applicability, at least two diffi-

culties hinder the advance in establishing correspondences

of high quality. First, the predominant paradigm has been

starting from local features to yield the candidates of corre-

spondences. Although the design of local descriptors has

gained significant progress, methods of this category of-

ten suffer from corrupted matches caused by large defor-

mations, illumination changes, or clutter backgrounds. It

leads to low precision in feature matching. Second, many

refined methods, such as [1, 19, 27, 34], tackle this prob-
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Figure 1. (Top) We project correspondences into the transforma-

tion space, and distinguish correct (red) and wrong (black) corre-

spondences by their densities. (Bottom) Potential (green) corre-

spondences are incrementally inferred by exploring density distri-

butions of transformations grouped by BPLRs [17].

lem by ensuring the geometric consistency. These methods

typically do not scale very well due to high-order geometric

checking. They often work on a pre-selected, small subset

of correspondence candidates, and result in low recall.
We aim to address the two aforementioned problems si-

multaneously. Our approach is developed upon the insight

that nearby features on the same object typically share sim-

ilar homographies if they are matched correctly. It follows

that their homographies tend to gather together in the trans-
formation space. Besides, each wrong matching is usu-

ally wrong in its own way. It implies that the density of

each correspondence in the transformation space can ver-

ify its correctness. We leverage this property and cast the

task of feature matching into a density estimation problem.

Specifically, we identify correct correspondences by com-

paring the densities among mutually exclusive correspon-

dences, i.e., those violating one-to-one constraints. On the

other hand, it is allowed to dynamically recommend poten-

tial correspondences by exploring the density distributions

of locally grouped features. See Figure 1 for an illustration.

The proposed approach carries out Hough transform
and inverted Hough transform alternately to establish ro-

bust feature correspondences. It can distinguish itself with

the following three main contributions. First, every cor-

respondence candidate is projected into the Hough space

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.356

2760

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.356

2760

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.356

2762



spanned by the transformations. In addition, we grow

BPLRs (Boundary Preserving Dense Local Regions) [17]

for each feature. Only the correspondences associated to

features within the same BPLR are considered in Hough
voting. In this way, mutual verification with relevant corre-

spondences boosts the precision of matching. Furthermore,

it makes the complexity of geometric checking independent

to the number of correspondences, and leads to one order

speed-up in matching. Second, an inverted variant of Hough

transform is developed. The inverted Hough transform rec-

ommends each feature additional transformations by inves-

tigating density distributions of nearby features covered by

the same BPLR. These transformations enable the dynam-

ical construction of potential correspondences. It allows

relevant features to propagate their transformations to each

other until consistency is reached. It considerably increases

the recall of feature matching. Third, our approach is com-

prehensively evaluated and compared to the state-of-the-art

systems on several benchmark datasets. The superior per-

formance demonstrates its effectiveness.

2. Related Work
The literature of feature correspondence is quite exten-

sive. Our review focuses on those that are relevant to the

development of the proposed approach.

Matching via feature descriptor. Point-to-point match-

ing with local feature descriptors is a principal way for cor-

respondence problems. Some of notable researches, e.g.,

[3, 4, 6, 21], have brought about significant progress in this

area. Although these local descriptors are distinctive and

powerful, the general conclusion is still that no descriptor

is sufficient for handling variation caused by complex com-

binations of nonrigid deformations, illumination and pose

changes, in nowadays vision applications.

Matching via graph partition. One way to address

matching ambiguity with additional geometric checking is

to cast feature correspondence as a graph matching prob-

lem. By defining an objective function based on both photo-

metric similarity and pairwise geometric compatibility be-

tween correspondences, promising results via graph match-

ing have been demonstrated [11, 12, 18, 33]. However,

these methods typically work well on one common object

with simple backgrounds, and do not deal with the cases

that multiple sets of common features appear. As men-

tioned in [20], graph matching is sensitive to corrupt cor-

respondences and outliers. In addition, high computational

cost may restrict its applicability, especially when solving a

generalized eigenvalue problem is required.

Matching via clustering. Research efforts on clustering-

based mechanisms have been made to handle unconstrained

matching cases. Bottom-up clustering can integrate lo-

cally adaptive constraints to aggregates coherent bundles

of matches. Cho et al. [8] carry out object-based image

matching via hierarchical agglomerative clustering. Ya-

cov et al. [16] adopt a coarse-to-fine scheme and the co-

herence property of images to achieve dense matching. On

the other side, Hai et al. [20] propose a top-down cluster-

ing approach to detect dense neighborhoods on an affinity

graph, and find common visual patterns among images. De-

spite the effectiveness, one major weakness of these meth-

ods lies in their time-complexity. Moreover, the optimal

cluster numbers, criteria of cluster merging, and similarity

thresholds typically vary from image to image.

Matching via voting. RANSAC [14], a geometric verifi-

cation model, can be incorporated with local descriptors to

enhance the performance. Yuan et al. [32] treat each corre-

spondence as a voter, and maintain an affinity matrix to en-

code how these correspondences vote each other according

to their compatibilities. Like RANSAC, their method only

supports single object matching. Tolias and Avrithis [26]

offer a variant of Hough transform for multi-object match-

ing. They rank the correspondences by adopting the mech-

anism of pyramid match [15]. Their method evenly quan-

tizes the transformation space for fast matching. However,

the transformations of correct correspondences often dis-

tribute irregularly. It may result in accuracy degradation.

Our approach is a voting-based system, and can be distin-

guished by the advantage that the complexity of Hough vot-

ing for each feature is independent to the number of cor-

respondences. Furthermore, it dynamically enriches corre-

spondences, and overcomes the low recall problem caused

by working on a pre-selected, small subset of initial corre-

spondences.

Correspondence enrichment. Most feature correspon-

dence methods work with a small subset of pre-selected cor-

respondences. Correspondence enrichment hence becomes

an important task. Match-growing methods, e.g., [11, 13],

propagate individual matches to nearby regions based on

local appearance, but their performances heavily depend on

the quality of initial matching. On the other hand, Cech et
al. [7] develop a region-growing algorithm to distinguish

correct and incorrect correspondences. Cho et al. [10] in-

stead describe a progressive graph matching framework to

enrich initial matching. However, the yielded correspon-

dences by their approach are biased to the density of fea-

tures, and may be noisy due to diverse feature distribu-

tions in the two matched images. In contrast, our method

works on feature bundles guided by BPLRs, so the con-

certed transformations with high probability are transferred

through mutually relevant features. It turns out that the in-

formation can be propagated more efficiently and the result-

ing candidates of correspondences are much more targeted.
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3. Problem Definition

Given two images IP and IQ, two sets of feature points,

V P = {vPi }N
P

i=1 and V Q = {vQi }N
Q

i=1, are respectively ex-

tracted. The region and the center of feature vi ∈ V P ∪V Q

are denoted by Si and xi, respectively. The appearance

of vi is described by feature vector ui, and its orientation

θi is estimated by a dominant orientation in the gradient

histogram [23]. The product space C = V P × V Q repre-

sents all the possible correspondences. Our goal is to find

as many as possible correct correspondences in C.

3.1. Transformation space

The local shape and the position of feature vi can be de-

scribed by a 3 × 3 matrix T (vi), which specifies an affine

transform of vi with regards to the normalized patch [23]:

T (vi) =

[
A(vi) xi

0� 1

]
, (1)

where A(vi) is a 2× 2 non-singular matrix.

Given a feature pair vPi ∈ V P and vQi′ ∈ V Q, the relative
transformation Hii′ from vPi to vQi′ can be derived as

Hii′ = T (vQi′ ) ∗ T (vPi )−1. (2)

In this work, we represent a feature correspondence as a

triplet mii′ = (vPi , v
Q
i′ , Hii′), i.e., two features in the oppo-

site images and their relative transformation. As Hii′ is a

6-dof affine homography, mii′ can be considered as a point

in the 6-dimensional transformation space.

3.2. Distance metric in the transformation space

Given two correspondences mii′ = (vPi , v
Q
i′ , Hii′) and

mjj′ = (vPj , v
Q
j′ , Hjj′), the projection error of mjj′ with

respect to mii′ can be defined as

djj′|ii′ = ||xQ
j′ − ρ(Hii′

[
xP
j

1

]
)||, (3)

where ρ(
[
a b c

]�
) =

[
a/c b/c

]�
. (4)

It checks if Hii′ projects xP
j around xQ

j′ .

For a pair of correspondences mii′ and mjj′ , they are

considered compatible if the corresponding homographies

are similar. We hence adopt the re-projection error for dis-

similarity measure, i.e.,

d(mii′ ,mjj′) =
1

4
(djj′|ii′+dii′|jj′+dj′j|i′i+di′i|j′j). (5)

Note that it is symmetric and is used to compute the dis-

tances among correspondences in the transformation space.

Correspondence
Ini�aliza�on

Correspondence Homographye Co H

Inverted Hough transform for correspondence recommendation

Hough transform for homography verification

Inv

Ho

ce

Figure 2. The procedure of the proposed approach.

4. The Proposed Approach
Features with compatible geometric configurations are

mutually dependent in matching. We investigate feature de-

pendence via BPLR detector [17], and cast feature matching

as a density estimation problem. The proposed approach

carries out this idea by alternate Hough and inverted Hough

voting. While the former discovers the consistent homogra-

phies by projecting correspondences into the transformation

space, the latter incrementally recommends potential cor-

respondences driven by the concerted homographies. The

procedure of our approach is illustrated in Figure 2. In the

following, we first describe the construction of initial corre-

spondence. Then the Hough and inverted Hough transforms

for feature matching are introduced, respectively.

4.1. Initial correspondence candidates

Our approach starts from the construction of initial cor-

respondence candidates. For each feature vPi ∈ IP , we find

its r potential matchings {vQik}rk=1 in IQ according to their

appearance similarity and with the constraint that none of

the r matchings highly overlap. This can be accomplished

by sorting the similarity scores and sequentially exclud-

ing those that have strong overlapping with the prior ones.

Specifically, we evaluate the similarity between two fea-

tures by the SIFT descriptor, i.e., ||uP
i − uQ

ik
||, while over-

lapping is measured by the area of intersection divided by

the area of union, i.e., SP
i ∩ SQ

ik
/SP

i ∪ SQ
ik

. With {vQik}rk=1,

the set of initial correspondences associated with vPi is

Mi = {miik = (vPi , v
Q
ik
, Hiik)}rk=1, (6)

where Hiik is the relative transformation from vPi to vQik .

This process is repeated for each feature in IP . Then the set

of initial correspondences is constructed by

M =
NP⋃
i=1

Mi. (7)

The initial set M is of size |M| = r × NP . It contains

many corrupted matchings since there exists at most one

correct correspondence in each Mi. In complex matching

tasks, it is usually the case that only a small subset of correct

correspondences in C is included in M. Empirically, we

set r = 5 in all the experiments, because the precision of

correspondences decreases rapidly when r is larger than 5.
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(a) Input images (b) Hough voting: 207/222 (c) Inverted Hough voting: 337/369

Figure 3. Feature matching by our approach. (a) Input images IP and IQ, together with all the feature points and some of the BPLRs

(contours) in IP . (b) Hough voting and its comparison with SIFT. 207 out of 222 correct correspondences inM are identified via Hough

voting. White lines denote the correct correspondences detected by both approaches. Red and cyan lines are the correct correspondences

by only Hough voting and the nearest SIFT searching, respectively. (c) Inverted Hough voting. It recommends 147 (= 369− 222) correct

candidates and leads to additional 130 (= 337− 207) correct correspondences (green lines) detected by the successive Hough voting.

4.2. Hough transform for homography verification

The goal at this stage is to detect the correct correspon-

dences in M, which is either the initial correspondence

set or the enriched set by the following stage. We inves-

tigate the property that the transformations of correct cor-

respondences are concerted while those of incorrect corre-

spondences are different in their own ways. Hough voting

for homography verification is employed since it can han-

dle a high percentage of incorrect correspondences and de-

tect correct correspondences via density estimation. Specif-

ically, the relative transformation of each correspondence is

treated as a point in Hough space, and it is considered as a

hypothesis about the underlying homography of interest.

Despite its robustness, Hough transform is developed

upon the assumption that the hypotheses are a sum of inde-

pendent votes, and thereby neglects the spatial dependence

among features. As pointed out in [31], choosing proper

voters is critical in Hough transform, especially when voters

are dependent. We are inspired by the fact that nearby fea-

tures on the same object are mutually dependent, and group

relevant correspondences via BPLR detector [17], which re-

spects object boundary and captures the local shape of an

object. It turns out that the performance of Hough voting is

remarkably boosted. Furthermore, only relevant, small-size

correspondences are involved in density estimation, instead

of the wholeM. It significantly speeds up the process.

To formalize, let B = {b�} be the set of the detected

BPLRs in image IP . For each feature vPi ∈ IP , we use

π(vPi ) ⊆ B to denote the set of BPLRs that cover the cen-

ter of vPi . For vPi that is not covered by any BPLR, i.e.,

π(vPi ) = ∅, we just simply assign it to the nearest BPLR,

though this case rarely occurs because BPLRs are densely

sampled. We then cluster features relevant to vPi by check-

ing if they reside in at least one common BPLR, i.e.,

G(vPi ) = {vPj |π(vPi ) ∩ π(vPj ) �= ∅}. (8)

We assume that the grouped features with high probabil-

ity undergo similar transformations in matching. It follows

that the correspondences relevant to vPi in Hough voting can

be collected by

R(vPi ) =
⋃

vP
j ∈G(vP

i )

Mj . (9)

According to Eq.(6), there exists at most one correct cor-

respondence inMi. Hough voting as well as voters R(vPi )
are adopted to pick the most plausible correspondence asso-

ciated with feature vPi . Specifically, it is accomplished by

normalized kernel density estimation (KDE):

m∗ii′ = argmax
mii′∈Mi

1

|R(vPi )|
∑

m∈R(vP
i )

exp (−d(mii′ ,m)

σ
),

(10)

where σ is a positive constant whose value is set as the aver-

age distance among the existing correspondences. Note that

the normalization term 1/|R(vPi )| does not affect the result

in Eq.(10), but it is required in comparing densities across

feature points.

The procedure of correspondence selection is repeated

for each feature in image IP . It results in NP selected cor-

respondencesM∗ = {m∗ii′}N
P

i=1. We then sort them accord-

ing to their associated densities in Eq.(10), and return the

top correspondences by a proper threshold. In the experi-

ments, our approach is evaluated by precision-recall curves,

plotted with various thresholds. An example of the verifica-

tion results by Hough voting is shown in Figure 3b.

4.3. Inverted Hough transform for correspondence
recommendation

While Hough transform identifies correct correspon-

dences M∗ ⊆ M and boosts the precision in matching,

the goal of inverted Hough transform is to enrich M so

that the recall can be increased. The locally clustered fea-

tures by BPLRs have consensus transformations and can as-

sist each other in finding plausible correspondences. We

investigate this property and develop the inverted Hough

transform, which allows grouped features to propagate their

homographies to each other and recommends each feature

concerted correspondences by exploring the propagated ho-

mographies.
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Algorithm 1 The procedure of the proposed framework

1: Input: Feature sets V P and V Q; Max iteration T
2: Output: Matched correspondencesM∗

3: Initialize correspondence sets {Mi}NP

i=1 via (6)

4: while t < T do
5: M∗ ← ∅
6: for all vPi ∈ V P do
7: Detect correspondence m∗ii′ ∈Mi via (10);

8: M∗ ←M∗ ∪m∗ii′ ;
9: for all vPi ∈ V P do

10: Identify recommended feature vQk via (13);

11: Construct mik = (vPi , v
Q
k , Hik);

12: Mi ←Mi ∪mik;

13: Sort elements inM∗ with thresholding;

For each vPi ∈ IP , we search the relevant features,

G(vPi ) in Eq.(8). Each of these features delivers a hypoth-

esis about the homography of vPi . These hypotheses are

collected in

M̃i = {m∗jj′ |vPj ∈ G(vPi )}, (11)

where m∗jj′ is the selected correspondence of vPj through

Hough voting. The set M̃i may contain outliers caused by

corrupted matchings. Hence, we pick the homography of

the most plausible correspondence m̃jj′ ∈ M̃i for recom-

mendation, where

m̃jj′ = argmax
m∗

jj′∈M̃i

∑
m∈M̃i

exp (−d(m∗jj′ ,m)

σ
). (12)

Suppose that the relative transformation of m̃jj′ is Hjj′ .

The projected region of vPj from IP to IQ through Hjj′ is

denoted by S. The matching feature in IQ is determined by

vQk = argmax
vQ
k ∈V Q

S ∩ SQ
k

S ∪ SQ
k

. (13)

It follows that correspondence mik = (vPi , v
Q
k , Hik) is rec-

ommended, i.e., Mi ← Mi ∪ mik. This process is done

for each feature in IP . The resulting correspondence setM
in Eq.(7) is incrementally enriched. An example of inverted

Hough transform is given in Figure 3c.

Hough voting and its inverted variant are tightly coupled.

While the former densely detects correct correspondences

from the enriched candidates, the latter provides harmonic

enrichment owing to better detection results. The conver-

gency of the alternate voting procedure is guaranteed. The

number of all the correspondences, i.e., C, is finite and fixed.

At each iteration, the number of correspondence candidates,

i.e., M, is monotonically strictly increasing. Since M is a
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Figure 4. Comparison among various approaches on each test im-

age of the SNU dataset. Precision is the fraction of correct corre-

spondences among the detected matches. Recall is the fraction of

correct detections among the correct correspondences in C.

subset of C, the iterative procedure must converge. Empir-

ically, it rapidly converges after a few iterations, typically

2 ∼ 4, in all our experiments. We conclude this section by

summarizing our approach in Algorithm 1.

5. Experimental Results
We conduct three sets of experiments for performance

evaluation. First, our approach is compared with other state-

of-the-art techniques in identifying multiple common ob-

jects. Second, we show the advantages of our approach

in progressive enrichment of correspondence candidates.

Third, we show that our approach can collaborate with dif-

ferent detectors and descriptors, and match features across

images with large illumination changes.

5.1. Matching with multiple common objects

The SNU dataset [11] is used in the experiments. It con-

tains six image pairs. The appearance of multiple common

objects, partial occlusions, and clutter backgrounds make

matching over this dataset quite challenging. However, it

provides a good test bed to manifest the importance of ge-

ometric verification and correspondence recommendation,

since the initial correspondences are not reliable enough.
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(a) SM: 392/551 (b) CVP: 504/551 (c) HVIV: 744/774

(d) RRWM: 34/104 (e) ACC: 76/104 (f) HVIV: 126/147

(g) SM: 267/504 (h) CVP: 475/504 (i) HVIV: 738/784

Figure 5. The matching results of various approaches on (a)∼ (c) image Books, (d)∼ (f) image Bulletins, and (g)∼ (i) image Toys.

In each figure, the approach as well as its performance (correct detections / correct candidates inM) are shown.

We follow [24] and consider a correspondence to be cor-

rect if the area of the intersection of the predicted and true

regions divided by the area of the union of the two regions

is larger than 40%. We measure the performance of fea-

ture matching by both precision and recall. While precision

is the fraction of detected correspondences that are correct,

recall is the fraction of correct correspondences that are de-

tected. For each adopted approach, all the detected corre-

spondences are ranked by its own criterion, such as the ele-

ment values of the eigenvector in spectral matching [18] or

the estimated density Eq.(10) in our approach. With proper

thresholds, the performance of each approach is presented

by a precision-recall curve.

Our approach, Hough voting and inverted Hough vot-
ing (HVIV), is compared with other state-of-the-art sys-

tems, including descriptor-based approach, opponent SIFT
(OSIFT) [28], clustering-based approaches, common visual
pattern discovery (CVP) [20] and agglomerative correspon-
dence clustering (ACC) [8], and graph-based approaches,

spectral matching (SM) [18] and reweighted random walks
(RRWM) [9]. Besides, we implement one additional base-

line Hough voting (HV), which carries out only the Hough

transform part of our approach. For the sake of fair com-

parison, all the approaches work on the same feature points,

each of which is detected by the Hessian affine detector [23]

and depicted by the opponent SIFT descriptor [28]. The

initial correspondence set of all the approaches is selected

according to the nearest search of the opponent SIFT.

The quantitative results are summarized in Figure 4. The

performances of the approaches based on graph matching,

i.e., SM and RRWM, are not stable due to their sensitivity

to outliers. In this dataset, wrong correspondences are of-

ten far more than correct ones in initialization. The baseline

OSIFT does not work well, since the unary local features

are not sufficient to handle clutter backgrounds and com-

plex deformations and transformations of objects. Instead,

CVP, ACC, HV and HVIV, improve the performances by in-

vestigating geometric consistence. Among them, our HVIV

considerably outperforms CVP, ACC and HV in most cases.

This is because our approach clusters mutually relevant fea-

tures for correspondence verification and recommendation.

It avoids the adverse effect of distracting outliers, resolves

the limitation of initial candidate construction, and thus

achieves both high precision and recall. Some matching re-

sults of various approaches are shown in Figure 5. It can

be observed that our approach gives to more accurate and

dense correspondences.

5.2. Incremental correspondence enrichment

In this experiment, we show the advantages of our

approach in incremental correspondence enrichment, and

compare it with baseline Hough voting (HV) and the pro-
gressive graph matching framework (PROG) [10], which is

one of the best approaches in correspondence enrichment.

The benchmark dataset collected by Cho et al. [10] is

adopted for performance evaluation. It is composed of 30
image pairs. Each of them has one common object for

matching. The experiments are conducted with the same

settings as those described above, including the use of the

same local feature detector, descriptor and evaluation crite-
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(a) RRWM+PROG: 21/24 (b) HV: 22/22 (c) HVIV: 56/61

(d) RRWM+PROG: 73/74 (e) HV: 69/69 (f) HVIV: 116/125

Figure 6. The matching results by RRWM+PROG, HV and our HVIV. While RRWM+PROG and HV detect almost all the correct corre-

spondences, our approach further improves the results by progressively enriching the correspondence set.

ria. As PROG provides a general mechanism for progres-

sive graph matching, it can work with any graph-based ap-

proaches. RRWM [9] is adopted here as the graph-matching

module of PROG. The parameters k1 and k2 pertain to

PROG are set as 10 and 5, respectively.

With the same detector, descriptor, matching criterion,

and initial correspondences, Figure 6 displays the cor-

rect correspondences detected by RRWM+PROG, HV and

our HVIV, respectively. Note that the results obtained by

RRWM+PROG are different from the ones reported in orig-

inal paper, this may be because the matching results are

sensitive to the adopted detector, descriptor and matching

criterion.

It can be observed that HVIV remarkably increases the

number of true candidate matches, and results in better

matching outcomes. This is because the objective func-

tions of correspondence verification and recommendation

steps in our approach are both derived upon densities and

hence coherent. The two steps complement each other to

jointly lead to better results. Besides, the grouped features

by BPLRs faithfully identify relevant voters in both Hough

and inverted Hough transforms. It excludes distracting vot-

ers and provides recommendations of high quality. With

the same precision, our approach averagely achieves 54.0%
growth rate in true correspondences when comparing with

HV, and 44.4% growth rate when comparing with PROG.

5.3. Plug-in with other feature descriptors

Our approach can be treated as a geometric filter. It drops

the corrupted correspondences by geometric checking and

enhances the matching by propagating concerted transfor-

mations among dependent features. It can be applied to var-

ious types of feature descriptors, and improve the perfor-

mance. In the experiment, our approach collaborates with

the LIOP descriptor [29], and establishes correspondences

across images with drastic illumination changes.

We perform the quantitative analysis on complex il-

lumination dataset used in [29]. It contains two image

pairs Desktop and Corridor. Besides, the image pair

Leuvenwith exposure change from Oxford dataset1 is also

adopted. For each image pair, the Hessian-affine detector is

used to localize feature positions. The initial matching can-

didates are constructed by LIOP, which is designed to be

invariant to dramatic illumination changes.

HV and our HVIV are applied to the correspondences

discovered by LIOP. The results in form of precision-recall

curves are plotted in Figure 7. Despite the robustness to il-

lumination changes, the performance of LIOP can still be

enhanced by ensuring homography consistency and enrich-

ing correspondence candidates.

6. Conclusion and Future Work
We have presented a simple but effective approach that

carries out alternate Hough voting and its inverted variant to

establish correspondences in complex matching tasks, and

boosts the performances in both precision and recall. It for-

mulates feature matching as a density estimation problem.

Through iterative optimization, more correct correspon-

dences are detected from the enriched candidates, while

plausible enrichments are gradually revealed by the prop-

agated beliefs in the concerted homographies. Besides, we

group mutually dependent features via BPLRs. It not only

increases the accuracy but also speeds up the process. The

proposed approach is comprehensively evaluated on three

datasets coupled with different descriptors. The promis-

ing results consolidate the usefulness of our approach. For

future work, we will apply our approach to handling co-

segmentation, image synthesis and reconstruction. This is

because high-quality, dense matches generally facilitate the

accomplishments of these applications.
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Figure 7. Plug-in comparison with the LIOP descriptor on three image pairs.
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