
Block and Group Regularized Sparse Modeling for Dictionary Learning

Yu-Tseh Chi†, Mohsen Ali†, Ajit Rajwade‡, Jeffrey Ho†
†University of Florida, Gainesville, FL, U. S. A.

‡Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, India
†{ychi, moali, jho}@cise.ufl.edu, ‡ajit rajwade@daiict.ac.in

Abstract

This paper proposes a dictionary learning framework
that combines the proposed block/group (BGSC) or recon-
structed block/group (R-BGSC) sparse coding schemes with
the novel Intra-block Coherence Suppression Dictionary
Learning (ICS-DL) algorithm. An important and distin-
guishing feature of the proposed framework is that all dic-
tionary blocks are trained simultaneously with respect to
each data group while the intra-block coherence being ex-
plicitly minimized as an important objective. We provide
both empirical evidence and heuristic support for this fea-
ture that can be considered as a direct consequence of in-
corporating both the group structure for the input data and
the block structure for the dictionary in the learning pro-
cess. The optimization problems for both the dictionary
learning and sparse coding can be solved efficiently using
block-gradient descent, and the details of the optimization
algorithms are presented. We evaluate the proposed meth-
ods using well-known datasets, and favorable comparisons
with state-of-the-art dictionary learning methods demon-
strate the viability and validity of the proposed framework.

1. Introduction
Sparse modeling and dictionary learning have emerged re-

cently as an effective and popular paradigm for solving

many important learning problems in computer vision. Its

appeal stems from its underlying simplicity: given a col-

lection of data X = {x1, · · · ,xl} ∈ R
n, learning can be

formulated using an objective function of the form:

Q(D,C;X) =
∑
g

‖X(g) −DC(g)‖2F +

λD Ψ(D) + λC Ω(C(g)), (1)

where the X(g) are vectors/matrices generated from the

data X, and Ψ,Ω are regularizers on the learned dictio-

nary D and sparse coefficients C(g), respectively. In dictio-

nary learning, Ω(C) is usually based on various sparsity-

Figure 1: Illustration of the proposed Block/Group Sparse Coding
algorithm. A group of data X(g) on the left is sparsely coded with
respect to the dictionary D with block structure D[1] · · ·D[b].

promoting norms that depend on the extra structures placed

on D, and it is the regularizer Ψ(D) that largely determines

the nature of the dictionary D. It is surprising that such an

innocuous formula template has generated an active and fer-

tile research field.

If Eq. (1) provides the elegant theme, its variations are

often composed of extra structures placed on the dictionary

D ([15, 10, 7, 13]), and less frequently, different ways of

generating sparsely-coded data X(g) for training the dictio-

nary. The former affects how the two regularizers Ψ,Ω
should be defined, and the latter determines how the vec-

tors/matrices X(g) should be generated from X. For clas-

sification, a block structure is often imposed on D and hi-

erarchical structures could be further specified using these

blocks ([16, 10]), with the aim of endowing the learned

dictionary certain predictive power. To promote sparsity,

the block structure on D is often accompanied by an ap-

propriate block-based �2-norm (e.g., �1/�2-norm [18]) used

in Ω(C). On the other hand, for X(g), a common ap-

proach is to generate a collection of groups of data vec-

tors {xg1 , · · · ,xgk} from X and to simultaneously sparse

code the data vectors in each data group X(g) [1]. For

classification problems, the idea is to generate data groups

X(g) with feature vectors xgi that should be similarly en-

coded, and such data groups X(g) can be obtained using

problem-specific information such as class labels, similar-

ity values and other information sources (e.g., neighboring

image patches).

In a noiseless setting, our proposed problem of encoding

sparse representations for a group of data samples X using

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.55

375

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.55

375

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.55

377

the minimum number of blocks from D can be cast as the

following optimization program:

P�0,p : min
C

∑
i

I(‖C[i]‖p) s. t. X = DC, (2)

where I(·) is an indicator function , p = 1, 2 and C[i] is the

i-the block (sub-matrix) of C that corresponds to the i-th
block of D as shown in Fig. 1. This combinatorial problem

is known to be NP-hard, and the �1-relaxed version of the

above program is:

P�1,p : min
C

∑
i

‖C[i]‖p s. t. X = DC. (3)

We will call this program Block/Group Sparse Coding
(BGSC) as it incorporates both the group structure in data

and block structure in the dictionary.

In some applications of which the main concern is identi-

fying contributing blocks rather than finding the sparse rep-

resentation [7], the following optimization program is con-

sidered:

P ′�0,p : min
C

∑
i

I(‖D[i]C[i]‖p) s. t. X = DC. (4)

Again, this program is also NP- Hard and its �1 relaxation

is:

P ′�1,p : min
C

∑
i

‖D[i]C[i]‖p s. t. X = DC. (5)

We will call the programs P ′�0,p and P ′�1,p Reconstructed
Block/Group Sparse Coding (R-BGSC) as they minimize

the norm of the reconstruction term (‖D[i]C[i]‖). The op-

timization algorithms for solving P�1,p and P ′�1,p will be

presented in Sec. 2.

Sharing of dictionary atoms for data in the same group

had been shown to increase the discriminative power of the

dictionary ([1]). With the block structure added to dictio-

nary D, our proposed BGSC and R-BGSC algorithms pro-

mote a group of data to share only few blocks of D for

encoding. Therefore, incorporating these SC algorithms in

a dictionary learning framework, which iteratively updates

coefficients of data and updates atoms of D, will result in

training each block of D using only few groups of data.

This means that, for example, a badly written digit ’9’,

which looks like a ’7’, when grouped together with other

normally written ’9’s, will be encoded using atoms these

’9’s used. The badly written ’9’ will, in turns, be used to

train the atoms in D that represent ’9’s rather than those

that represent ’7’s.

Another novelty of our framework is that we do not

assign a class of signals to specific blocks of a dictio-

nary, unlike other Sparse Representation based Classifica-

tion (SRC) [6, 17] and [13]. This would allow some blocks

to store shared features between some different classes.

Ramirez et. al. [13] trained a single dictionary block for

each group of data. This method increases the redundancy

of the information encoded in the learned dictionary as the

information common to two or more groups (a common sce-

nario in many classification problems) will need to be stored

separately within each block. Since one dictionary block is

assigned to each class, the redundancy induced in the dictio-

nary needs to be reduced for greater efficiency. This is done

by removing dictionary elements whose mutual dot prod-

uct has an absolute value greater than an arbitrary-chosen

threshold (e.g. 0.95). Instead, we provide an objective

function whose minimization naturally produces dictionar-

ies that are less redundant. In particular, our proposal to

encode data from a single class using multiple blocks ob-

viates the need to even incorporate an explicit inter-block

coherence minimization term unlike [13].

As proved in [5], the program P�1,p (Eq. 2) is equivalent

to P�0,p (Eq. 3) 1 when

na(2k − 1)μB < 1− (na − 1)μS , (6)

where na and k are the size and the rank of a block, re-

spectively, and μB and μS are inter- and intra-block coher-

ence defined in Section 2.4, respectively. In other words,

the smaller μS is the more likely the two programs can be

equivalent. A way to achieve minimum μS is to make atoms

orthonormal within each block [11, 3]. However, such dic-

tionaries (over-complete dictionary with union of orthonor-

mal basis) do not perform as well as those with more flex-

ible structure [14]. For example, in SRC-based face recog-

nition, each block contains atoms representing faces of the

same person. It does not make sense to impose strict or-

thogonality on each block. Therefore, rather than imposing

strong orthogonality constraint on each block, we propose

a dictionary learning algorithm that minimizes only intra-

block coherence.

The proposed dictionary learning framework learns the

dictionary D by minimizing the objective function given

in Eq. (16), and the third term in Eq. (16) measures the

mutual coherence within each block of D. The correspond-

ing sparse coding can be either BGSC or R-BGSC. Besides

the novel sparse coding algorithms, BGSC and R-BGSC,

there are three specific features that distinguish our dictio-

nary framework from existing methods:

1. Instead of inter-block coherence, the proposed ICS-DL

algorithm presented in Sec. 2.4 minimizes the intra-

block coherence as one of its main objectives.

2. Our framework does not require to assign a class or a

group of data to block(s) in the dictionary as in [13].

This allows some blocks of the dictionary to be shared

by different classes.

3. The dictionary is trained simultaneously with respect

to each group of training samples X(g) using our pro-

posed block/group regularized SC algorithm.

1They proved the case when p = 2 and X is a single vector. In Section

2.1, we will show that the condition still holds when X is a matrix.

376376378

2. Methods
In this section, we describe the algorithms in our pro-

posed framework. We will start with sparse coding al-

gorithms first and work our way towards the full dictio-

nary learning algorithm. We denote scalars with lower-case

letters, vectors with bold lower-case letters, matrices with

upper-case letters, and the i-th block and group of a matrix

(or vector) with Z[i], and Z(i), respectively.

2.1. Theoretical Guarantee
It is important to understand the conditions on D un-

der which our convex relaxations (Eq. (3) and (5)) are

equivalent to their original combinatorial (Eq. (2) and (4))

programs. In other words, we want to examine the condi-

tions under which our proposed programs can indeed have

exact recoveries as their corresponding combinatorial pro-

grams. The conditions when X(g) is a single vector was

proved in [7]. Using linear algebra, we can convert our pro-

grams, where X(g) and C(g) are matrices, into equivalent

programs, where X(g) and C(g) are vectors. The conversion

is straightforward and listed in the supplementary materials.

We then prove the equivalence conditions of our programs

in a similar way as given in [7].

2.2. Block/Group Sparse Coding
The program P�1,p in Eq. (3) can be cast as an optimiza-

tion problem that minimizes the objective function:

Qc(C;X,D)=
∑
g

Qc(C
(g);X(g),D)

=
∑
g

(
1

2
‖X(g)−DC(g)‖2F + λ

∑
i

∥∥∥C(g)
[i]

∥∥∥
p

)
. (7)

For clarity of presentation, we will present the optimization

steps only for one specific group of data X and its corre-

sponding sparse coefficients C. Eq. (7) can be written as:

1

2
‖X−DC‖2F + λ

∑
i

∥∥C[i]

∥∥
p

=
1

2
‖X−

∑
i �=r

D[i]C[i]−D[r]C[r]‖2F +λ
∥∥C[r]

∥∥
p
+ c, (8)

where c includes the terms that do not depend on C[r].
When p = 1, this objective function is separable. Iterates
of elements in C[r] can be solved using a method similar to

[1]. When p = 22, it is only block-wise separable. Comput-
ing the gradient of Eq. (8) with respect to C[r], we obtain
the following sub-gradient condition:

−Dᵀ
[r]X+Dᵀ

[r]

∑

i �=r

D[i]C[i]+D
ᵀ
[r]D[r]C[r]+λ∂‖C[r]‖F ∈ 0. (9)

Assuming for now the optimal solution for C[r] has a

non-zero norm (‖C[r]‖F > 0). and denoting the first two

terms by −N, substituting the positive semi-definite matrix

2We use element-wise �2 norm here which is the Frobenius norm.

Dᵀ
[r]D[r] with its eigen-decomposition UΣUᵀ, multiplying

both sides of the equation with Uᵀ and using the fact that

∂‖C[r]‖F =
C[r]

‖C[r]‖F
, we have

UΣUᵀC[r] + λ
C[r]

‖C[r]‖F
= N

ΣUᵀC[r] + λ
UᵀC[r]

‖C[r]‖F
= UᵀN. (10)

Changing the variables Y = UᵀC[r] and using the fact

that the Frobenius norm is invariant under orthogonal trans-

formations, we have

ΣY + λ
Y

‖Y‖F
= N̂, (11)

where N̂ = UᵀN. Setting κ = ‖Y‖F and Ŷ = Y/‖Y‖F ,

we have

Ŷ = (κΣ+ λI)−1N̂, s. t. ‖Ŷ‖F = 1. (12)

Since Σ is a diagonal matrix, (κΣ+λI)−1 is also a diagonal

matrix with diagonal entries 1/(κσi + λ), where σi is the i-

th eigen-value in Σ. Therefore, the constraint ‖Ŷ‖F = 1
implies that ∑

i,j

N̂2
i,j

(κσi + λ)2
= 1, (13)

where N̂i,j is (i, j)-th element of matrix N̂.

We solve for the root of the above one-variable equation

w.r.t. κ using standard numerical methods such as Newton’s

method. Once κ is computed, we can obtain Ŷ and Y using

Eqs. (12) and (11), respectively. The iterate of C[r] can be

computed by projecting Y back to the original domain i.e.

C[r] = UY.

When the solution of κ in Eq. (13) is not positive, there

is no solution for Eq. (10) as it contradicts the assump-

tion that κ > 0. In this case, the optimality happens at

C[r] = 0 because the derivative of ‖C[r]‖F does not exist

when ‖C[r]‖F = 0 and our objective function, Eq. (8), is

convex and bounded from below. The proof of this claim is

straightforward: Let f(x) be a continuous convex function

which is bounded from below and differentiable everywhere

except at x = xo. We solve ∂f(x) = 0 for the minimum

of f(x). If the solution of ∂f(x) = 0 does not exist, the

minimum of f(x) must occur at x = xo for otherwise we

would find x′ such that ∂f(x′) = 0.

As we can see from Eq. (13), the block sparsity of C
depends on the value of λ. The larger λ is, the less likely

there exists a feasible solution to κ in Eq. (13). On the other

hand, when λ = 0, solution of κ will always be positive,

and hence there is no non-zero C[r]s. This is analogous to

the shrinkage mechanism in standard Lasso program ([4]).

When X is a single vector, our BGSC is equivalent to the

P�q/�1 program in [6]. When there is no block structure on

D, BGSC is equivalent to the group sparse coding (GSC)

in [1].

377377379

2.3. Reconstructed Block/Group Sparse Coding

For clarity of presentation, we will again derive the novel

R-BGSC algorithm for one group of data in this section.

P ′�1,p in Eq. (5) can be cast as an optimization problem in

terms of C[r] that minimizes

1

2
‖X−

∑
i�=r

D[i]C[i]−D[r]C[r]‖2F+λ
∑
i

∥∥D[i]C[i]

∥∥
p
+c, (14)

where c is a constant that includes the terms that do not

depend on C[r]. The iterate of C[r] can be derived in a

similar fashion as the previous algorithm. We will leave the

derivation to the supplementary material. Note that when

X is a single vector, R-BGSC is equivalent to the P ′�q/�1
program in [6].

2.4. Intra-Block Coherence Suppression Dictionary
Learning

The intra-block coherence is defined as

μS(D) = max
i

(
max

p,q∈I(i),p �=q

∣∣dᵀ
p · dq

∣∣
‖dp‖‖dq‖

)
, (15)

where I(i) is the index set of the atoms in block

i. Inter-block coherence μB is defined as μB(D) =

maxi�=j

(
(1
na

σ1(D
ᵀ
[i]D[j])

)
, where σ1 is the largest singu-

lar value and na is the size of block.

As mentioned in the Introduction, it is necessary to have

a dictionary updating algorithm that minimizes the intra-

block coherence. We therefore proposed the following ob-

jective function:

Qd(D;X,C)=
∑
g

1

2
‖X(g) −DC(g)‖2F + γ

|D|∑
k=1

‖dk‖2+

β
∑
b

⎛
⎝ ∑

p,q∈I(b),p �=q

‖dᵀ
pdq‖2

⎞
⎠+ λ Ω(C), (16)

where Ω is the regularizer term on C (See Eq.(14) and (8)),

and the third term minimizes the intra-block coherence.

For the sake of clarity, we derive the update formula re-

quired in optimizing the objective function above for one

group of data. Again, we first assume the optimal solution

for dk to have a non-zero norm. Computing the gradient

with respect to dr, and equating it to zero, we have

−Xcᵀr +
∑
k �=r

dkckc
ᵀ
r + drcrc

ᵀ
r + γ

dr

‖dr‖2+

β
∑

j∈I(b),j �=r

djd
ᵀ
jdr = 0, (17)

where cr is the r-th row of C and dr is in block b.
Note that crc

ᵀ
r indicates the weight of how much the

atom dr is being used to encode X. It is clear from the first

three terms of the above equation why group-regularized

SC algorithms tend to generate high intra-block coherence

blocks. As we can see, the value of dr depends not only on

how much it is being used to encode X (1st and 3rd term)

but also on how much other dk’s are being used to encode

X. Since, BGSC and R-BGSC minimize the number of

blocks to be used for encoding X, the atoms dr are likely

in the same block as dk. For example, if the coefficient

C of X has only one non-zero block, then the atoms dr

and dk, which correspond to the non-zero rows of coeffi-

cients c’s in the above equation, are all in the same block.

Therefore, updating dk using only the first three terms in

the above equation will result in high intra-block coherence.

This justifies putting the intra-block coherence suppressing

regularizer term in Eq. (16).

To the best of our knowledge, there is no work discussing

how to group the training samples. Intuitively, one would

split a class of training data into multiple similar groups us-

ing techniques such as K-means. However, this might put

all the in-class outliers, e.g. badly written ’9’s that look like

a ’7’, into one group and hence allow them to act as one

different class and to be used to train the dictionary blocks

corresponding to the wrong classes. From our empirical ob-

servations, it is better to have a group of data that has similar

variability as the whole class. This would force these in-
class outliers to be regularized by inliers of the same class.

We will leave the rest of the derivation to the supple-

mentary material as it is again similar to the derivation in

the previous two sections. Note that it is not uncommon to

add a post-processing step to make atoms in D unit vectors

or requiring ‖dr‖2 = 1. This results in a more efficient al-

gorithm (See Section 1.3 of the supplementary material for

details).

3. Experiment on Hand-Written Digit Recog-
nition

In this experiment, we used the USPS dataset [9], which

contains a total of 9,298 16-by-16 images of hand-written

digits3. We vectorized the images and normalized the vec-

tors to have unit �2-norm. We collected 15 groups of data

for each digit where each group contained 50 randomly cho-

sen images from the same class.

The experiment was conducted as follows:

1. Generate a random dictionary D with nb blocks and

each block contains na columns (atoms) (a total of

nb × na columns).

2. Iteratively compute coefficients using BGSC and up-

date the dictionary using ICS-DL algorithm.

3. Use the coefficients of the training data to train 10 one-

vs-all linear SVMs[2].

4. Compute the sparse coefficients of the test samples us-

ing either BGSC or R-BGSC. Use the SVMs to clas-

sify the test samples using their coefficients.

3Matlab codes for this experiment and two other experimental results are

provided in the supplementary materials.

378378380

Table 1 demonstrates the impact of the dictionary’s block

structure on the error rates. The parameters are β = 200,

λtrain = ∼0.64, and λtest = 0.2. For the experiment in the

last column of Table 1, we assign two blocks to each digit.

The results show that the error rates are similar when the

number of blocks (nb) is greater than 10 even though the

number of classes of this dataset is 10. The reason is that

there exists some variability within each class and mutual

similarity between images of different classes. In fact, as

shown in Fig. 2(a), the sparse coefficients of most of the

training data have 3 to 6 active blocks when nb = 20.

The last column of Table 1 shows that the hard assign-

ment of blocks to classes results in higher error rate even

though the size of the dictionary is twice as large as those of

the first three experiments in Table 1. As mentioned in the

Introduction, we did not assign blocks to classes and prefer

using more blocks for encoding data with larger variability.

Moreover, we allow data from different class to share mu-

tual blocks. Fig. 2(a) illustrates the coefficients of the train-

ing data. We can see that ’7’ and ’9’ share two blocks of

dictionary due to their similarity. However, they each have

an exclusive block with large coefficients (darker in color)

to allow them to encode the difference.

Table 1: Classification error(%) with different structure on D. nb:
number of blocks in D. na: number of atoms in each block.

(nb, na)

(20,25) (40,12) (10,50) (20,50) (20,50)†

Error(%) 2.53 3.42 6.22 2.95 6.52

†: Assign each digit to two blocks of the dictionary.

Next we demonstrate the effect of the value β in ICS-DL

on classification rates. The parameters are λtrain = 0.4 and

(nb, na) = (20, 25). When β = 0, our ICS-DL algorithm

does not suppress intra-block coherence and is hence equiv-

alent to the dictionary learning algorithm in [1]. We used

BGSC to compute the coefficients during training. During

testing, we used either BGSC or R-BGSC to compute the

coefficients of test samples. λtest was varied between 0.15

and 0.35 and the best result was reported in Table 2. We

stopped the training roughly after 200 iterations when the

dictionary update did not change much. The results in Ta-

ble 2 suggest that suppressing the intra-block coherence can

indeed improve the performance. However, as β increases,

the error rate increases. In the extreme case when impos-

ing a strict orthogonality on the blocks using the UOB-DL,

the error rate increases to 4.27(see Table 3). These results

provide an empirical support for not using strict orthogo-

nality constraint. Note that when β = 0, our result is very

close to that of SISF-DL[13] (See Table 3). However, our

ICS-DL algorithm does not impose any inter-block orthog-

onality constraint on the dictionary as SISF-DL does.

4λtrain varies slightly with respect to na.

Table 2: Classification error(%) with different β in ICS-DL.

β

0 100 200 300 400 600 800

Error(%) 4.02 3.47 2.58 2.43 2.26 2.42 3.12

To further demonstrate the intra-block coherence sup-

pressing property of our ICS-DL algorithm, we plot the

intra-block coherence values of the dictionaries trained with

β = 0 and β = 200, respectively, in Fig. 2(b). We also pro-

vided the error rates every 4 iterations from the 30-th itera-

tion onward. Solid and dotted lines indicate the coherence

and error, respectively. The red solid line demonstrates that

our ICS-DL method can keep the intra-block coherence at

a low value. On the contrary, without the intra-block co-

herence suppression term, the blue solid line shows that the

coherence value becomes comparably large with increasing

number of iterations. The blue dotted line shows that its

associated error rate even increases between iterations 40

and 60 which implies that over-fitting occurs within some

blocks.

Once we have a trained dictionary, we used the coef-

ficients of training samples to train ten linear SVMs. We

can use the already available coefficients computed during

the training phase as they are computed as a group. An-

other way to obtain coefficients of training samples is to re-

compute them individually. Fig. 2(c) shows the error rates

of five of the different scenarios. The dictionary was trained

with β = 400, λtrain = 0.4, (nb, na) = (20, 25) and num-

ber of iteration is 150. The results in Fig. 2(c) shows that

R-BGSC generally performed slightly better than BGSC es-

pecially in scenarios 1 and 2 in Fig. 2(c). However, the

result from scenario 3 with λtest = 0.25 achieves the best

error rate at 2.26% (0.02% better than that of scenario 4

with λtest = 0.30).

Finally, we compared our results with other state-of-the-

art results using dictionary learning algorithms ([13, 12])

shown in Table 3. We also compare with the UOB-

DL ([11]) which imposes strict orthogonality constraint on

blocks. The results show that our algorithms outperform

other dictionary learning methods, even the one specially

tailored for hand-written digits recognition [8]. Although

Table 2 suggests that suppressing intra-block coherence

of D improves the classification performance, imposing a

strict orthogonality on the blocks, however, does not result

in any improvement.

Table 3: Error rate(%) of the USPS and the MNIST datasets with
recently published approaches. The results of SISF-DL, SDL-D L,
TDK-SVM are taken from [13], [12], and [8], respectively.

BGSC R-BGSC SISF-DL SDL-DL UOB-DL TDK

USPS 2.26 2.28 3.98 3.54 4.27 2.40

MNIST 2.32 − 1.26 1.05 − −

379379381

(a) Coefficients of the USPS training data.

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

In
tr

a-
B

lo
ck

 C
oh

er
en

ce

20 40 60 80 100 120
0

0.6

20 40 60 80 100 120
2

3

4

5

6

7

8

9

E
rr

or
 R

at
e(

%
)

Training Iterations

(b)

0 0.1 0.2 0.3 0.4 0.5
2

2.5

3

3.5

4

4.5

5

λ
test

E
rr

or
(%

)

1:G|BG |BG

2:G|BG |R-BG

3:I|BG |BG

4:I|BG |R-BG

5:I|R-BG|R-BG

(c)

Figure 2: (a) Visualization of the sparse coefficients of the training samples of digits. Each column contains 15 groups. Gray pixels
correspond to non-zero coefficients. (b) Intra-block coherence (solid) and error rates (dotted) of two dictionaries (red for β = 200 and
blue for β = 0). Error rates of the first 30 iterations are not shown. (c) Error rates (%) of the USPS dataset under five different scenarios.
The scenarios differ in terms of how the training samples are organized for computing the coefficients and which proposed SC algorithms
were used. First column in the legend (separated by ’|’) indicates how the coefficients of the training samples are computed, in groups (G)
or individually (I) . The second column indicates which SC algorithm is used to compute the coefficients of the training samples. The third
column indicates which SC algorithm is used to compute the coefficients of the test samples individually.

We also apply our framework on the MNIST dataset.

However, due to the amount and complexity of this dataset,

we were not able to fully exploit different dictionary struc-

tures and parameters to obtain a reasonable result. The pa-

rameters to obtain the results in Table 3 are (nb, na) =
(40, 40)5, β = 500, λtrain = 1.20, and λtest = 0.4. 300

groups, each contains 100 data, were used.

4. Conclusion
We have proposed a novel dictionary learning framework

that includes two novel block/group regularized sparse cod-

ing algorithms and one novel dictionary learning algorithm.

Experimental comparisons with several state-of-the-art dic-

tionary learning methods are favorable, and in particular,

for hand-written digit recognition experiment, the proposed

framework outperformed these state-of-the-art dictionary

learning algorithms.

References
[1] S. Bengio, F. Pereira, Y. Singer, and D. Strelow. Group

sparse coding. Advances in NIPS, 22:82–89, 2009.

[2] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support

vector machines. ACM Trans. Intell. Syst. Technol., 2:27:1–

27:27, 2011.

[3] A. Drémeau and C. Herzet. An em-algorithm approach for

the design of orthonormal bases adapted to sparse represen-

tations. In ICASSP, 2010, pages 2046–2049. IEEE, 2010.

[4] M. Elad. Sparse and Redundant Representations. Springer

Verlag, 2010.

[5] Y. Eldar, P. Kuppinger, and H. Bolcskei. Block-sparse sig-

nals: Uncertainty relations and efficient recovery. Signal
Process., IEEE Trans. on, 58(6):3042–3054, 2010.

[6] E. Elhamifar and R. Vidal. Robust classification using struc-

tured sparse representation. In CVPR, 2011 IEEE Confer-
ence on, pages 1873–1879. IEEE, 2011.

5Our dictionary size is 5 times smaller than what was used in SISF-DL.

[7] E. Elhamifar and R. Vidal. Block-sparse recovery via convex

optimization. Signal Process., IEEE Trans. on, PP(99):1,

2012.

[8] B. Haasdonk and D. Keysers. Tangent distance kernels for

support vector machines. In ICPV, 2002, volume 2, pages

864–868. IEEE, 2002.

[9] J. Hull. A database for handwritten text recognition research.

Pattern Anal. Mach. Intell., IEEE Trans. on, 16(5):550–554,

1994.

[10] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal

methods for sparse hierarchical dictionary learning. In Inter-
national Conference on Machine Learning (ICML), 2010.

[11] S. Lesage, R. Gribonval, F. Bimbot, and L. Benaroya. Learn-

ing unions of orthonormal bases with thresholded svd. In

ICASSP’05., volume 5, pages v–293. IEEE, 2005.

[12] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman.

Supervised dictionary learning. Advances in NIPS, 2008.

[13] I. Ramirez, P. Sprechmann, and G. Sapiro. Classification

and clustering via dictionary learning with structured inco-

herence and shared features. In CVPR, 2010, pages 3501–

3508. IEEE, 2010.

[14] R. Rubinstein, A. Bruckstein, and M. Elad. Dictionaries for

sparse representation modeling. Proceedings of the IEEE,

98(6):1045–1057, 2010.

[15] P. Sprechmann, I. Ramirez, G. Sapiro, and Y. Eldar. C-

hilasso: A collaborative hierarchical sparse modeling. Signal
Process., IEEE Trans. on, 59(9):4183–4198, 2011.

[16] Z. Szabo, B. Poczos, and A. Lorincz. Online group-

structured dictionary learning. In CVPR, 2011 IEEE Con-
ference on, pages 2865 –2872, june 2011.

[17] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Ro-

bust face recognition via sparse representation. Pattern Anal.
Mach. Intell., IEEE Trans. on, 31(2):210–227, 2009.

[18] M. Yuan and Y. Lin. Model selection and estimation in re-

gression with grouped variables. Journal of the Royal Statis-
tical Society: Series B, 68(1):49–67, 2006.

380380382

