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Abstract
Visual scene understanding is a difficult problem inter-

leaving object detection, geometric reasoning and scene
classification. We present a hierarchical scene model for
learning and reasoning about complex indoor scenes which
is computationally tractable, can be learned from a reason-
able amount of training data, and avoids oversimplification.
At the core of this approach is the 3D Geometric Phrase
Model which captures the semantic and geometric relation-
ships between objects which frequently co-occur in the same
3D spatial configuration. Experiments show that this model
effectively explains scene semantics, geometry and object
groupings from a single image, while also improving indi-
vidual object detections.

1. Introduction
Consider the scene in Fig. 1.(a). A scene classifier will

tell you, with some uncertainty, that this is a dining room

[21, 23, 15, 7]. A layout estimator [12, 16, 27, 2] will tell

you, with different uncertainty, how to fit a box to the room.

An object detector [17, 4, 8, 29] will tell you, with large un-

certainty, that there is a dining table and four chairs. Each

algorithm provides important but uncertain and incomplete

information. This is because the scene is cluttered with ob-

jects which tend to occlude each other: the dining table oc-

cludes the chairs, the chairs occlude the dining table; all of

these occlude the room layout components (i.e. the walls).

It is clear that truly understanding a scene involves inte-

grating information at multiple levels as well as studying the

interactions between scene elements. A scene-object inter-

action describes the way a scene type (e.g. a dining room or

a bedroom) influences objects’ presence, and vice versa. An

object-layout interaction describes the way the layout (e.g.

the 3D configuration of walls, floor and observer’s pose) bi-

ases the placement of objects in the image, and vice versa.

An object-object interaction describes the way objects and
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Figure 1. Our unified model combines object detection, layout estimation

and scene classification. A single input image (a) is described by a scene

model (b), with the scene type and layout at the root, and objects as leaves.

The middle nodes are latent 3D Geometric Phrases, such as (c), describ-

ing the 3D relationships among objects (d). Scene understanding means

finding the correct parse graph, producing a final labeling (e) of the objects

in 3D (bounding cubes), the object groups (dashed white lines), the room

layout, and the scene type.

their pose affect each other (e.g. a dining table suggests

that a set of chairs are to be found around it). Combining

predictions at multiple levels into a global estimate can im-

prove each individual prediction. As part of a larger system,

understanding a scene semantically and functionally will al-

low us to make predictions about the presence and locations

of unseen objects within the space.

We propose a method that can automatically learn the

interactions among scene elements and apply them to the

holistic understanding of indoor scenes. This scene in-

terpretation is performed within a hierarchical interaction

model and derived from a single image. The model fuses

together object detection, layout estimation and scene clas-

sification to obtain a unified estimate of the scene com-

position. The problem is formulated as image parsing in

which a parse graph must be constructed for an image as in

Fig. 1.(b). At the root of the parse graph is the scene type

and layout while the leaves are the individual detections of

objects. In between is the core of the system, our novel 3D
Geometric Phrases (3DGP) (Fig. 1.(c)).

A 3DGP encodes geometric and semantic relationships
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between groups of objects which frequently co-occur in

spatially consistent configurations. As opposed to previous

approaches such as [5, 24], the 3DGP is defined using 3D

spatial information, making the model rotation and view-

point invariant. Grouping objects together provides contex-

tual support to boost weak object detections, such as the

chair that is occluded by the dining table.

Training this model involves both discovering a set of

3DGPs and estimating the parameters of the model. We

present a new learning scheme which discovers 3DGPs in

an unsupervised manner, avoiding expensive and ambigu-

ous manual annotation. This allows us to extract a few use-

ful sets of GPs among exponentially many possible config-

urations. Once a set of 3DGPs is selected, the model param-

eters can be learned in a max-margin framework. Given the

interdependency between the 3DGPs and the model param-

eters, the learning process is performed iteratively (Sec. 5).

To explain a new image, a parse graph must estimate the

scene semantics, layout, objects and 3DGPs, making the

space of possible graphs quite large and of variable dimen-

sion. To efficiently search this space during inference, we

present a novel combination of bottom-up clustering with

top-down Reversible Jump Markov Chain Monte Carlo (RJ-

MCMC) sampling (Sec. 4).

As a result of the rich contextual relationships captured

by our model, it can provide scene interpretations from a

single image in which i) objects and space interact in a phys-

ically valid way, ii) objects occur in an appropriate scene

type, iii) the object set is self-consistent and iv) configura-

tions of objects are automatically discovered (Fig. 1.(d,e)).

We quantitatively evaluate our model on a novel challeng-

ing dataset, the indoor-scene-object dataset. Experiments

show our hierarchical scene model constructed upon 3DGPs

improves object detection, layout estimation and semantic

classification accuracy in challenging scenarios which in-

clude occlusions, clutter and intra-class variation.

2. Related Work
Image understanding has been explored on many levels,

including object detection, scene classification and geome-

try estimation.

The performance of generic object recognition has im-

proved recently thanks to the introduction of more power-

ful feature representations [20, 4]. Felzenszwalb et al. pro-

posed a deformable part model (DPM) composed of multi-

ple HoG components [8] which showed promising perfor-

mance for single objects. To improve detection robustness,

the interactions between objects can be modeled. Category-

specific 2D spatial interactions have been modeled via con-

textual features by Desai et al. [5], whereas Sadeghi et
al. [24] modeled groups of objects as visual phrases in 2D

image space that were determined by a domain expert. Li et
al. [18] identified a set of useful visual phrases from a train-

ing set using only 2D spatial consistency. Improving upon

these, Desai et al. [5] proposed a method that can encode

detailed pose relationships between co-appearing objects

in 2D image space. In contrast to these approaches, our

3DGPs are capable of encoding both 3D geometric and con-

textual interactions among objects and can be automatically

learned from training data.

Researchers have also looked at the geometric config-

uration of a scene. Geiger et al. [10] related traffic pat-

terns and vanishing points in 3D. To obtain physically con-

sistent representations, Gupta et al. [11] incorporated the

concept of physical gravity and reasoned about object sup-

ports. Bao et al. [2, 1] utilized geometric relationship to

help object detection and scene structure estimation. Sev-

eral methods attempted to specifically solve indoor layout

estimation [12, 13, 27, 30, 22, 26, 25]. Hedau et al. pro-

posed a formulation using a cubic room representation [12]

and showed that layout estimation can improve object de-

tection [13]. This initial attempt demonstrated promising

results, however experiments were limited to a single ob-

ject type (bed) and a single room type (bedroom). Other

methods [16, 30] proposed to improve layout estimation by

analyzing the consistency between layout and the geomet-

ric properties of objects without accounting for the specific

categorical nature of such objects. Fouhey et al. [9] incor-

porated human pose estimation into indoor scene layout un-

derstanding. However, [9] does not capture relationships

between objects or between an object and the scene type.

A body of work has focused on classifying images into

semantic scene categories [7, 21, 23, 15]. Li et al. [19] pro-

posed an approach called object bank to model the corre-

lation between objects and scene by encoding object detec-

tion responses as features in a SPM and predicting the scene

type. They did not, however, explicitly reason about the

relationship between the scene and its constituent objects,

nor the geometric correlation among objects. Recently,

Pandey et al. [21] used a latent DPM model to capture the

spatial configuration of objects in a scene type. This spatial

representation is 2D image-based, which makes it sensitive

to viewpoint variations. In our approach, we instead define

the spatial relationships among objects in 3D, making them

invariant to viewpoint and scale transformation. Finally, the

latent DPM model assumes that the number of objects per

scene is fixed, whereas our scene model allows an arbitrary

number of 3DGPs per scene.

3. Scene Model using 3D Geometric Phrases
The high-level goal of our system is to take a single im-

age of an indoor scene and classify its scene semantics (such

as room type), spatial layout, constituent objects and object

relationships in a unified manner. We begin by describing

the unified scene model which facilitates this process.

Image parsing is formulated as an energy maximization
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Figure 2. Two possible parse graph hypotheses for an image - on the left an incomplete interpretation (where no 3DGP is used) and on

the right a complete interpretation (where a 3DGP is used). The root node S describes the scene type s1, s3 (bedroom or livingroom)

and layout hypothesis l3, l5 (red lines), while other white and skyblue round nodes represent objects and 3DGPs, respectively. The square

nodes (o1, ..., o10) are detection hypotheses obtained by object detectors such as [8] (black boxes). Weak detection hypotheses (dashed

boxes) may not be properly identified in isolation (left). A 3DGP, such that indicated by the skyblue node, can help transfer contextual

information from the left sofa (strong detections denoted by solid boxes) to the right sofa.

problem (Sec. 3.1), which attempts to identify the parse

graph that best fits the image observations. At the core of

this formulation is our novel 3D Geometric Phrase (3DGP),

which is the key ingredient in parse graph construction (Sec.

3.2). The 3DGP model facilitates the transfer of contex-

tual information from a strong object hypothesis to a weaker

one when the configuration of the two objects agrees with a

learned geometric phrase (Fig. 2 right).

Our scene model M = (Π, θ) contains two elements;

the 3DGPs Π = {π1, ..., πN} and the associated parame-

ters θ. A single 3DGP πi defines a group of object types

(e.g. sofa, chair, table, etc.) and their 3D spatial configura-

tion, as in Fig. 1(d). Unlike [30], which requires a training

set of hand crafted composition rules and learns only the

rule parameters, our method automatically learns the set of

3DGPs from training data via our novel training algorithm

(Sec. 5). The model parameter θ includes the observation

weights α, β, γ, the semantic and geometric context model

weights η, ν, the pair-wise interaction model μ, and the pa-

rameters λ associated with the 3DGP (see eq. 1).

We define a parse graph G = {S,V} as a collection of

nodes describing geometric and semantic properties of the

scene. S = (C,H) is the root node containing the scene se-

mantic class variable C and layout of the room H , and V=
{V1, ..., Vn} represents the set of non-root nodes. An indi-

vidual Vi specifies an object detection hypothesis or a 3DGP

hypothesis, as shown in Fig. 2. We represent an image ob-

servation I = {Os, Ol, Oo} as a set of hypotheses with as-

sociated confidence values as follows. Oo = {o1, ..., on}
are object detection hypotheses, Ol={l1, ..., lm} are layout

hypotheses and Os={s1, ..., sk} are scene types (Sec. 3.3).

Given an image I and scene model M, our goal is to

identify the parse graph G={S,V} that best fits the image.

A graph is selected by i) choosing a scene type among the

hypothesesOs, ii) choosing the scene layout from the layout

hypotheses Ol, iii) selecting positive detections (shown as

o1, o3, and o10 in Fig. 2) among the detection hypotheses

Oo, and iv) selecting compatible 3DGPs (Sec. 4).

3.1. Energy Model

Image parsing is formulated as an energy maximization

problem. Let VT be the set of nodes associated with a set

of detection hypotheses (objects) and VI be the set of nodes

corresponding to 3DGP hypotheses, with V = VT ∪ VI .

Then, the energy of parse graph G given an image I is:

EΠ,θ(G, I) = α
�
φ(C,Os)︸ ︷︷ ︸

scene observation

+ β
�
φ(H,Ol)︸ ︷︷ ︸

layout observation

+
∑

V ∈VT

γ
�
φ(V,Oo)

︸ ︷︷ ︸
object observation

+
∑

V ∈VT

η
�
ψ(V,C)

︸ ︷︷ ︸
object-scene

+
∑

V ∈VT

ν
�
ψ(V,H)

︸ ︷︷ ︸
object-layout

+
∑

V,W∈VT

μ
�
ϕ(V,W )

︸ ︷︷ ︸
object overlap

+
∑

V ∈VI

λ
�
ϕ(V,Ch(V ))

︸ ︷︷ ︸
3DGP

(1)

where φ(·) are unary observation features for semantic

scene type, layout estimation and object detection hypothe-

ses, ψ(·) are contextual features that encode the compati-

bility between semantic scene type and objects, and the ge-

ometric context between layout and objects, and ϕ(·) are

the interaction features that describe the pairwise interac-

tion between two objects and the compatibility of a 3DGP

hypothesis. Ch(V ) is the set of child nodes of V .

Observation Features: The observation features φ and cor-

responding model parameters α, β, γ capture the compat-

ibility of a scene type, layout and object hypothesis with

the image, respectively. For instance, one can use the spa-

tial pyramid matching (SPM) classifier [15] to estimate the

scene type, the indoor layout estimator [12] for determining

layout and Deformable Part Model (DPM) [8] for detect-

ing objects. In practice, rather than learning the parameters

for the feature vectors of the observation model, we use the

confidence values given by SPM [15] for scene classifica-

tion, from [12] for layout estimation, and from the DPM [8]

for object detection. To allow bias between different types

of objects, a constant 1 is appended to the detection confi-

dence, making the feature two-dimensional as in [5] 1.

Geometric and Semantic Context Features: The geomet-

ric and semantic context features ψ encode the compatibil-

ity between object and scene layout, and object and scene

1This representation ensures that all observation features associated

with a detection have values distributed from negative to positive, make

graphs with different numbers of objects are comparable.
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type. As discussed in Sec. 3.3, a scene layout hypothesis

li is expressed using a 3D box representation and an ob-

ject detection hypothesis pi is expressed using a 3D cuboid

representation. The compatibility between an object and

the scene layout (ν�ψ(V,H)) is computed by measuring

to what degree an object penetrates into a wall. For each

wall, we measure the object-wall penetration by identify-

ing which (if any) of the object cuboid bottom corners in-

tersects with the wall and computing the (discretized) dis-

tance to the wall surface. The distance is 0 if none of the

corners penetrate a wall. The object-scene type compati-

bility, η�ψ(V,C), is defined by the object and scene-type

co-occurrence probability.

Interaction Features: The interaction features ϕ are com-

posed of an object overlap feature μ�ϕ(V,W ) and a 3DGP

feature λ�ϕ(V,Ch(V )). We encode the overlap feature

ϕ(V,W ) as the amount of object overlap. In the 2D im-

age plane, the overlap feature isA(V ∩W )/A(V )+A(V ∩
W )/A(W ) whereA(·) is the area function. This feature en-

ables the model to learn inhibitory overlapping constraints

similar to traditional non-maximum suppression [4].

3.2. The 3D Geometric Phrase Model

The 3DGP feature allows the model to favor a group of

objects that are commonly seen in a specific 3D spatial con-

figuration, e.g. a coffee table in front of a sofa. The prefer-

ence for these configurations is encoded in the 3DGP model

by a deformation cost and view-dependent biases (eq. 2).

Given a 3DGP node V , the spatial deformation

(dxi, dzi) of a constituent object is a function of the dif-

ference between the object instance location oi and the

learned expected location ci with respect to the centroid

of the 3DGP (the mean location of all constituent objects

mV ). Similarly, the angular deformation dai is computed

as the difference between the object instance orientation ai
and the learned expected orientation αi with respect to the

orientation of the 3DGP (the direction from the first to the

second object, aV ). Additionally, 8 view-point dependent

biases for each 3DGP encode the amount of occlusion ex-

pected from different view-points. Given a 3DGP node V
and the associated model πk, the potential function can be

written as follows:

λ
�
k ϕk(V,Ch(V )) =

∑
p∈P

b
p
k I(aV = p)−

∑
i∈Ch(V )

d
i�
k ϕ

d
k(dxi, dzi, dai)

(2)

where λk={bk, dk}, P is the space of discretized orienta-

tions of the 3DGP and ϕd(dxi, dzi, dai)={dx2i , dz2i , da2i }.
The parameters dik for the deformation cost ϕik penalize

configurations in which an object is too far from the an-

chor. The view-dependent bias bpk “rewards” spatial con-

figurations and occlusions that are consistent with the cam-

era location. The amount of occlusion and overlap among

objects in a 3DGP depends on the view point; the view-

dependent bias encodes occlusion and overlap reasoning.

Notice that the spatial relationships among objects in a

3DGP encodes their relative positions in 3D space, so the

3DGP model is rotation and view-point invariant. Previous

work which encoded the 2D spatial relationships between

objects [24, 18, 5] required large numbers of training im-

ages to capture the appearance of co-occuring objects. On

the other hand, our 3DGP requires only a few training ex-

amples since it has only a few model parameters thanks to

the invariance property.2

3.3. Objects in 3D Space
We propose to represent objects in 3D space instead of

2D image space. The advantages of encoding objects in 3D

are numerous. In 3D, we can encode geometric relation-

ships between objects in a natural way (e.g. 3D euclidean

distance) as well as encode constraints between objects and

the space (e.g. objects cannot penetrate walls or floors).

To keep our model tractable, we represent an object by its

3D bounding cuboid, which requires only 7 parameters (3

centroid coordinates, 3 dimension sizes and 1 orientation.)

Each object class is associated to a different prototypical

bounding cuboid which we call the cuboid model (which

was acquired from the commercial website www.ikea.com

similarly to [22].) Unlike [13], we do not assume that ob-

jects’ faces are parallel to the wall orientation, making our

model more general.

Similarly to [12, 16, 27], we represent the indoor space

by the 3D layout of 5 orthogonal faces (floor, ceiling, left,

center, and right wall), as in Fig. 1(e). Given an image, the

intrinsic camera parameters and rotation with respect to the

room space (K,R) are estimated using the three orthogo-

nal vanishing points [12]. For each set of layout faces, we

obtain the corresponding 3D layout by back-projecting the

intersecting corners of walls.
An object’s cuboid can be estimated from a single image

given a set of known object cuboid models and an object
detector that estimates the 2D bounding box and pose (Sec.
6). From the cuboid model of the identified object, we can
uniquely identify the 3D cuboid centroid O that best fits the
2D bounding box detection o and pose p by solving for

Ô = argmin
O

||o− P (O, p,K,R)||22 (3)

where P (·) is a projection function that projects 3D cuboid

O and generates a bounding box in the image plane. The

above optimization is quickly solved with a simplex search

method [14]. In order to obtain robust 3D localization of

each object and disambiguate the size of the room space

given a layout hypothesis, we estimate the camera height

(ground plane location) by assuming all objects are lying

on a common ground plane. More details are discussed in

the supplementary material.

2Although the view-dependent biases are not view-point invariant,

there are still only a few parameters (8 views per 3DGP).
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4. Inference
In our formulation, performing inference is equivalent to

finding the best parse graph specifying the scene type C,

layout estimation H , positive object hypotheses V ∈ VT

and 3DGP hypotheses V ∈ VI .

Ĝ = argmax
G

EΠ,θ(G, I) (4)

Finding the optimal configuration that maximizes the en-

ergy function requires exponential time. To make this prob-

lem tractable, we introduce a novel bottom-up and top-

down compositional inference scheme. Inference is per-

formed for each scene type separately, so scene type is con-

sidered given in the remainder of this section.

Bottom-up: During bottom-up clustering, the algorithm

finds all candidate 3DGP nodes Vcand = VT ∪ VI given

detection hypothesis Oo (Fig. 3 top). The procedure starts

by assigning one node Vt to each detection hypothesis ot,
creating a set of candidate terminal nodes (leaves) VT =
{V1

T , ...,V
Ko

T }, where Ko is the number of object cate-

gories. By searching over all combinations of objects in

VT , a set of 3DGP nodes, VI = {V1
I , ...,V

KGP

I }, is formed,

where KGP denotes the cardinality of the learned 3DGP

model Π given by the training procedure (Sec. 5). A 3DGP

node Vi is considered valid if it matches the spatial config-

uration of a learned 3DGP model πk. Regularization is per-

formed by measuring the energy gain obtained by including

Vi in the parse graph. To illustrate, suppose we have a parse

graphG that contains the constituent objects of Vi but not Vi
itself. If a new parse graph G′ ← G ∪ Vi has higher energy

0 < EΠ,θ(G
′, I)− EΠ,θ(G, I) = λ�k ϕk(Vi, Ch(Vi)), then

Vi is considered as a valid candidate. In other words, let πk
define the 3DGP model shown in Fig. 4(c). To find candi-

dates VkI for πk, we search over all possible configurations

of selecting one terminal node among the sofa hypotheses

V
sofa
T and one among the table hypotheses V

table
T . Only

candidates that satisfy the regularity criteria are accepted as

valid. In practice, this bottom-up search can be performed

very efficiently (less than a minute per image) since there

are typically few detection hypotheses per object type.

Top-down: Given all possible sets of nodes Vcand, the op-

timal parse graph G is found via Reversible Jump Markov

Chain Monte Carlo (RJ-MCMC) sampling (Fig. 3 bottom).

To efficiently explore the space of parse graphs, we pro-

pose 4 reversible jump moves, layout selection, add, delete
and switch. Starting from an initial parse graph G0, the

RJ-MCMC sampling draws a new parse graph by sampling

a random jump move, and the new sample is either ac-

cepted or rejected following Metropolis-Hasting rule. Af-

ter N iterations, the graph that maximizes the energy func-

tion argmaxGE(G, I) is selected as the solution. The ini-

tial parse graph is obtained by 1) selecting the layout with

highest observation likelihood [12] and 2) greedily adding
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Figure 3. Bottom-up: Candidate objects VT and 3DGP nodes VI

are vetted by measuring spatial regularity. Red, green and blue

boxes indicate sofas, tables and chairs. Black boxes are candi-

date 3DGP nodes. Top-down: the Markov chain is defined by 3

RJ-MCMC moves on the parse graph Gk. Given Gk, a new G′

is proposed via one move and acceptance to become Gk+1 is de-

cided using the Metropolis-Hasting rule. Moves are shown in the

bottom-right subfigures. Red and white dotted boxes are new and

removed hypotheses, respectively.

object hypotheses that most improve the energy, similarly

to [5]. The RJ-MCMC jump moves used with a parse graph

at inference step k are defined as follows.

Layout selection: This move generates a new parse graph

Gk+1 by changing the layout hypothesis. Among |L| pos-

sible layout hypotheses (given by [12]), one is randomly

drawn with probability exp(lk)/
∑|L|
i exp(li), where lk is

the score of the kth hypothesis.

Add: This move adds a new 3DGP or object node from

Vi ∈ Vcand \Gk into Gk+1. To improve the odds of pick-

ing a valid detection, a node is sampled with probability

exp(si)/
∑|Vcand\Gk|
j exp(sj), where si is the aggregated

detection score of all children. For example, in Fig. 3(bot-

tom), si of Vc is the sum of the sofa and table scores.

Delete: This move removes an existing node Vi ∈ Gk to

generate a new graph Gk+1. Like the Add move, a node is

selected with probability exp(−si)/
∑|Gk|
j exp(−sj).

5. Training
Given input data x = (Os, Ol, Oo) with labels y =

(C,H, VT ) per image, we have two objectives during model

training: i) learn the set of 3DGP models Π and ii) learn the

corresponding model weights θ. Since the model param-

eters and 3DGPs are interdependent (e.g. the number of

model parameters increases with the number of GPs), we

propose an iterative learning procedure. In the first round, a

set of 3DGPs is generated by a propose-and-match scheme.

Given Π, the model parameters θ are learned using a latent

max-margin formulation. This formulation accommodates

the uncertainty in associating an image to a parse graph

G similarly to [8, 28]; i.e. given a label y, the root node

and terminal nodes of G can be uniquely identified, but the
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3DGP nodes in the middle are hidden.

Generating Π: This step learns a set of 3DGPs, Π,

which captures object groups that commonly appear in the

training set in consistent 3D spatial configurations. Given

an image, we generate all possible 3DGPs from the ground

truth annotations {y}. The consistency of each 3DGP πk
is evaluated by matching it with ground truth object config-

urations in other training images. We say that a 3DGP is

matched if λ�k ϕk(V,Ch(V )) > th (see Sec. 4). A 3DGP

model πk is added to Π if it is matched more than K times.

This scheme is both simple and effective. To avoid redun-

dancy, agglomerative clustering is performed over the pro-

posed 3DGP candidates. Exploring all of the training im-

ages results in an over-complete set Π that is passed to the

parameter learning step.

Learning θ and pruning Π: Given a set of 3DGPs Π,

the model parameters are learned by iterative latent com-
pletion and max-margin learning. In latent completion, the

most compatible parse graph G is found for an image with

ground truth labels y by finding compatible 3DGP nodes

VI . This maximizes the energy over the latent variable (the

3DGP nodes), ĥi, given an image and label (xi, yi).

ĥi = argmax
h

EΠ,θ(xi, yi, h) (5)

After latent completion, the 3DGP models which are not

matched with a sufficient number (< 5) of training exam-

ples are removed, keeping the 3DGP set compact and ensur-

ing there are sufficient positive examples for max-margin

learning. Given all triplets of (xi, yi, ĥi), we use the cutting

plane method [5] to train the associated model parameter θ
by solving the following optimization problem.

min
θ,ξ

1

2
‖θ‖2 + C

∑
i

ξ
i

s.t. max
h

EΠ,θ(xi, y, h)− EΠ,θ(xi, yi, ĥi) ≤ ξ
i − δ(y, yi), ∀i, y (6)

where C is a hyper parameter in an SVM and ξi are slack

variables. The loss contains three components, δ(y, yi) =
δs(C,Ci)+ δl(H,Hi)+ δd(VT , VTi). The scene classifica-

tion δs(C,Ci) and detection δd(VT , VTi) losses are defined

using hinge loss. We use the layout estimation loss pro-

posed by [12] to model the layout estimation loss δl(H,Hi).
The process of generating Π and learning the associated

model parameters θ is repeated until convergence.

Using the learning set introduced in Sec. 6, the method

discovers 163 3DGPs after the initial generation of Π and

retains 30 after agglomerative clustering. After 4 iterations

of pruning and parameter learning, our method retains 10

3DGPs. Fig. 4 shows selected examples of learned 3DGPs

(the complete set is presented in supplementary material.)

6. Experimental Results
Datasets: To validate our proposed method, we collected

a new dataset that we call the indoor-scene-object dataset,

 1:Chair 

 2:Chair 

 3:Chair 

 4:Dining Table 

 1:Bed 

 2:Side Table 
 1:Sofa 

 2:Table 

(a) (b) (c)
Figure 4. Examples of learned 3DGPs. The object class (in color) and the

position and orientation of each object is shown. Note that our learning

algorithm learns spatially meaningful structures without supervision.

which we contribute to the community. The indoor-scene-
object dataset includes 963 images. Although there exist

datasets for layout estimation evaluation [12], object detec-

tion [6] and scene classification [23] in isolation, there is

no dataset on which we can evaluate all the three problems

simultaneously. The indoor-scene-object dataset includes

three scene types: living room, bedroom, and dining room,

with ∼300 images per room type. Each image contains a

variable number of objects. We define 6 categories of ob-

jects that appear frequently in indoor scenes: sofa, table,

chair, bed, dining table and side table. In the following ex-

periments, the dataset is divided into a training set of 180

images per scene, and a test set of the remaining images.

Ground truth for the scene types, face layouts, object loca-

tions and poses was manually annotated. We used C = 1 to

train the system without tuning this hyper parameter.

Scene Classifier: The SPM [15] is utilized as a baseline

scene classifier, trained via libSVM [3]. The baseline scene

classification accuracy is presented in Table 1. The score for

each scene type is the observation feature for scene type in

our model (φ(C,Os)). We also train two other state-of-the

art scene classifiers SDPM [21] and Object bank [19] and

report the accuracy in Table. 1.

Indoor layout estimation: The indoor layout estimator

as trained in [12] is used to generate layout hypotheses

with confidence scores for Ol and the associated feature

φ(H,Ol). As a sanity check, we also tested our trained

model on the indoor UIUC dataset [12]. Our model

with 3DGPs increased the original 78.8% pixel accuracy

rate [12] to 80.4%. Pixel accuracy is defined as the per-

centage of pixels on layout faces with correct labels.

To further analyze the layout estimation, we also evalu-

ated per-face estimation accuracy. The per-face accuracy is

defined as the intersection-over-union of the estimated and

ground-truth faces. Results are reported in Table. 2.

Object detection: The baseline object detector (DPM [8])

was trained using the PASCAL dataset [6] and a new dataset

we call the furniture dataset containing 3939 images with

5426 objects. The bounding box and azimuth angle (8 view

points) of each object were hand labeled. The accuracy of

Obj. Bank [19] SDPM [21] SPM [15] W/o 3DGP 3DGP

Acc. 76.9 % 86.5 % 80.5 % 85.5 % 87.7 %

Table 1. Scene classification results using state-of-the-art methods (left-

two), the baseline [15] (center) and our model variants (right-two). Our

model outperforms all the other methods.

383838



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Sofa

recall

pr
ec

is
io

n

 

 

DPM
NO−3DGP
3DGP−M1
3DGP−M2     .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Table

recall

pr
ec

is
io

n

 

 

DPM
NO−3DGP
3DGP−M1
3DGP−M2     .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Chair

recall

pr
ec

is
io

n

 

 

DPM
NO−3DGP
3DGP−M1
3DGP−M2     .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Bed

recall

pr
ec

is
io

n

 

 

DPM
NO−3DGP
3DGP−M1
3DGP−M2     .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Dining Table

recall

pr
ec

is
io

n

 

 

DPM
NO−3DGP
3DGP−M1
3DGP−M2     .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Side Table

recall

pr
ec

is
io

n

 

 

DPM
NO−3DGP
3DGP−M1
3DGP−M2     .

Figure 5. Precision-recall curves for DPMs [8] (red), our model without

3DGP (green) and with 3DGP using M1 (black) and M2 (blue) marginal-

ization. Average Precision (AP) of each method is reported in Table.3.

each baseline detector is presented in Fig. 5 and Table 3.

The detection bounding boxes and associated confidence

scores from the baseline detectors are used to generate a

discrete set of detection hypotheses Oo for our model. To

measure detection accuracy, we report the precision-recall

curves and average precision (AP) for each object type, with

the standard intersection-union criteria for detections [6].

The marginal detection score m(oi) of a detection hypoth-

esis is obtained by using the log-odds ratio that can be ap-

proximated by the following equation similarly to [5].

m(oi) =

{
EΠ(Ĝ, I)− EΠ(Ĝ\oi , I), oi ∈ Ĝ

EΠ(Ĝ+oi , I)− EΠ(Ĝ, I), oi /∈ Ĝ
(7)

where Ĝ is the solution of our inference, Ĝ\oi is the graph

without oi, and Ĝ+oi is the graph augmented with oi. If

there exists a parent 3DGP hypothesis for oi, we remove

the corresponding 3DGP as well when computing Ĝ\oi .
To better understand the effect of the 3DGP, we employ

two different strategies for building the augmented parse

graph Ĝ+oi . The first schemeM1 builds Ĝ+oi by adding oi
as an object hypothesis. The second scheme M2 attempts

to also add a parent 3DGP into Ĝ+oi if 1) the other con-

stituent objects in the 3DGP (other than oi) already exist in

Ĝ and 2) the score is higher than the first scheme (adding oi
as an individual object). The first scheme ignores possible

3DGPs when evaluating object hypotheses that are not in-

cluded in Ĝ due to low detection score, whereas the second

scheme also incorporates 3DGP contexts while measuring

the confidence of those object hypotheses.

Results: We ran experiments using the new indoor-scene-
object dataset. To evaluate the contribution of the 3DGP to

the scene model, we compared three versions algorithms:

1) the baseline methods, 2) our model without 3DGPs (in-

cluding geometric and semantic context features), and 3)

Method Pix. Acc Floor Center Right Left Ceiling

Hedau [12] 81.4 % 73.4 % 68.4 % 71.0 % 71.9 % 56.2 %

W/O 3DGP 82.8 % 76.9 % 69.3 % 71.8 % 72.5 % 56.3 %

3DGP 82.6 % 77.3 % 69.3 % 71.5 % 72.4 % 55.8 %

Table 2. Layout accuracy obtained by the baseline [12], our model without

3DGP and with 3DGP. Our model outperforms the baseline for all classes.

Figure 6. 2D and 3D (top-view) visualization of the results using our

3DGP model. Camera view point is shown as an arrow. This figure is

best viewed in color.

the full model with 3DGPs. In both 2) and 3), our model

was trained on the same data and with the same setup.

As seen in the Table 3, our model (without or with

3DGPs) improves the detection accuracy significantly (2−
16%) for all object classes. We observe significant improve-

ment using our model without 3DGPs for all objects ex-

cept tables. By using 3DGPs in the model, we further im-

prove the detection results, especially for side tables (+8%
in AP). This improvement can be explained by noting that

the 3DGP consisting of a bed and side-table boosts the de-

tection of side-tables, which tend to be severely occluded

by the bed itself (Fig. 4 (middle)). Fig. 7 provides qualita-

tive results. Notice that M2 marginalization provides higher

recall rates in lower precision areas for tables and side ta-

bles than M1 marginalization. This shows that the 3DGP

can transfer contextual information from strong object de-

tection hypotheses to weaker detection hypotheses.

The scene model (with or without 3DGPs) significantly

improves scene classification accuracy over the baseline

(+7.2%) by encoding the semantic relationship between

scene type and objects (Table. 1). The results suggest that

our contextual cues play a key role in the ability to clas-

sify the scene. Our model also outperforms state-of-the-art

scene classifiers [19, 21] trained on the same dataset.

Finally, we demonstrate that our model provides more

accurate layout estimation (Table. 2) by enforcing that all

objects lie inside of the free space (see Fig. 7). We ob-

serve that our model does equal or better than the base-

line [12] in 94.1%(396/421) of all test images. Although

the pixel label accuracy improvement is marginal compared

to the baseline method, it shows a significant improvement

in the floor estimation accuracy (Table. 2). We argue that

the floor is the most important layout component since its

extent directly provides information about the free space

in the scene; the intersection lines between floor and walls

uniquely specify the 3D extent of the free space.

Method Sofa Table Chair Bed D.Table S.Table

DPM [8] 42.4 % 27.4 % 45.5 % 91.5 % 85.5 % 48.8 %

W/O 3DGP 44.1 % 26.8 % 49.4 % 94.7 % 87.8 % 57.6 %

3DGP-M1 52.9 % 37.0 % 52.5 % 94.5 % 86.7 % 64.5 %

3DGP-M2 52.9 % 38.9 % 52.6 % 94.6 % 86.7 % 65.4 %

Table 3. Average Precision of the DPM [8], our model without 3DGP and

with 3DGP. Our model significantly outperforms DPM baseline in most of

the object categories.
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Objects
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Table : green
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Bed : yellow
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S. Table : pink

3DGP

 Layout Accuracy: 0.61  Layout Accuracy: 0.77  Layout Accuracy: 0.71  Layout Accuracy: 0.82  Layout Accuracy: 0.60  Layout Accuracy: 0.76 

 diningroom 

 Layout Accuracy: 0.86 

 bedroom 

 Layout Accuracy: 0.87 

 bedroom 

 Layout Accuracy: 0.71 

 livingroom 

 Layout Accuracy: 0.94 

 diningroom 

 Layout Accuracy: 0.76 

 livingroom 

 Layout Accuracy: 0.76 

 diningroom 

 Layout Accuracy: 0.86 

 bedroom 

 Layout Accuracy: 0.85 

 livingroom 

 Layout Accuracy: 0.71 

 livingroom 

 Layout Accuracy: 0.96 

 diningroom 

 Layout Accuracy: 0.78 

 bedroom 

 Layout Accuracy: 0.76 

Figure 7. Example results. First row: the baseline layout estimator [12]. Second row: our model without 3DGPs. Third row: our model with 3DGPs.

Layout estimation is largely improved using the object-layout interaction. Notices that the 3DGP helps to detect challenging objects (severely occluded,

intra-class variation, etc.) by reasoning about object interactions. Right column: false-positive object detections caused by 3DGP-induced hallucination.

See supplementary material for more examples. This figure is best shown in color.

7. Conclusion
In this paper, we proposed a novel unified framework

that can reason about the semantic class of an indoor scene,

its spatial layout, and the identity and layout of objects

within the space. We demonstrated that our proposed object

3D Geometric Phrase is successful in identifying groups of

objects that commonly co-occur in the same 3D configu-

ration. As a result of our unified framework, we showed

that our model is capable of improving the accuracy of each

scene understanding component and provides a cohesive in-

terpretation of an indoor image.
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