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Abstract

In this work, we address the problem of estimating 2d hu-
man pose from still images. Recent methods that rely on dis-
criminatively trained deformable parts organized in a tree
model have shown to be very successful in solving this task.
Within such a pictorial structure framework, we address
the problem of obtaining good part templates by propos-
ing novel, non-linear joint regressors. In particular, we em-
ploy two-layered random forests as joint regressors. The
first layer acts as a discriminative, independent body part
classifier. The second layer takes the estimated class distri-
butions of the first one into account and is thereby able to
predict joint locations by modeling the interdependence and
co-occurrence of the parts. This results in a pose estimation
framework that takes dependencies between body parts al-
ready for joint localization into account and is thus able to
circumvent typical ambiguities of tree structures, such as
for legs and arms. In the experiments, we demonstrate that
our body parts dependent joint regressors achieve a higher
joint localization accuracy than tree-based state-of-the-art
methods.

1. Introduction
Estimating the human pose from still images is a very

active field due to its relevance for applications [21]. One

of the most popular approaches in this area is the pictorial

structure framework [13, 11], which models the spatial re-

lations of rigid parts using usually a tree model. Pictorial

structures have been improved for pose estimation in many

ways, e.g., by learning better appearance [24, 9, 1] or shape

models [42] of the body parts.

In object detection, one of the best performing methods

relies on so called deformable part models [10], which use

mixtures of star models over templates of parts. Recently,

[40] showed that mixtures of part templates can also be ef-

ficiently used in a tree model, leading to very powerful pose

estimation models. In particular, instead of modeling the

transformations of a single body part template as in the clas-

sical pictorial structure model, the transformations of the

Body Part Templates Parts Dependent Joint Regressors

Figure 1. The dark gray rectangle on the l.h.s. illustrates a pictorial

structure (PS) model with independent part templates. Each clas-

sifier estimates independently the probability that an image region

belongs to a specific body part, e.g., head (red), right hip region

(blue), and right knee region (green). The confidence maps are

used as unary potentials for a PS model with 13 joints. Neither

the independent classifiers nor the tree structure of the PS model

are able to resolve the ambiguities between the left and right leg.

The light gray rectangle on the r.h.s. illustrates the proposed ap-

proach where two layers are used. While the first layer consists

of the same independent classifiers, the second layer regresses the

locations of the joints in dependency of the independent part clas-

sifiers. The confidence maps of the regressed points, e.g., nose

(red), left hip joint (blue), and left knee (green), are more discrim-

inative and resolve the ambiguities between the legs.

limbs are encoded by different deformable templates per

body part. While this approach outperforms classical picto-

rial structure models for human pose estimation, it has been

shown in [41] that the used templates, which are scanning-

window templates trained with linear SVMs on HOG fea-

tures [7], are very sensitive to noise and limit the perfor-

mance.

In this work, we thus address the problem of obtaining

better part templates in the context of a pictorial structure

framework. Similar to [40], we do not model the limb trans-

formations explicitly, but use discriminative learned tem-

plates that allow the handling of limb pose variations im-
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plicitly. However, contrary to [40], we do not use noise

sensitive, scanning-window templates, but instead propose

non-linear regressors for the joint locations. As regressors,

we rely on random forests that have shown to be fast, ro-

bust, and accurate in the context of predicting body parts or

joint locations from depth data [29, 15].

While previous work treats all body part templates in-

dependently and uses the pictorial structure framework to

model spatial and orientation relations between part tem-

plates, we propose a more discriminative template repre-

sentation that already takes co-occurrences and relations

to other parts to some extent into account, as illustrated

in Fig. 1. To this end, we train joint regressors that use

the output of independent body part templates as input and

thus predict the location of a joint in dependency of the co-

occurrence of other body parts. In this way, joint regressors

are already able to resolve some typical problems of tree

models, such as the discrimination of left and right limbs.

In our experiments, we show that the proposed body

parts dependent joint regressors achieve a much higher joint

localization accuracy than independent part templates or

joint regressors. Integrated into a pictorial structure frame-

work, the approach achieves a better joint localization accu-

racy than a state-of-the-art method [40] at comparable run-

ning time of a few seconds per image.

2. Related Work
Human pose estimation is a well studied area with many

interesting applications, such as, gaming, human-computer

interaction or health care. For a detailed review of various

applications and methods, we refer the reader to [21]. In this

section, we review only the most related work with a focus

on pose estimation within a pictorial structure framework.

Pictorial structure models are well known since the

70s [13] and became very popular with the introduction

of efficient inference algorithms [11]. While many ap-

proaches relied at the beginning on simple geometric prim-

itives for the body parts and simple color models or back-

ground subtraction for the likelihoods, many improvements

have been made to the part templates. For instance, lin-

ear SVMs for learning discriminative part templates were

introduced in [26]. In [18], a cascade of body parts detec-

tors were proposed to obtain more discriminative templates.

Other approaches rely on several templates for a single body

part [32, 40]. Furthermore, human body models have been

used to obtain better shapes of the body parts [42] or to syn-

thesize training data [23]. A variety of image features for

pose estimation has been investigated in [1].

Another research direction has focused on introducing

richer body models that overcome the limitation of tree

structures. For instance, a body part can be assigned with

high confidence to two nodes of a tree in case of weak part

templates or occlusions, e.g., the left and right body part are

sometimes assigned to a single observation. To prevent this,

additional constraints between the limbs [31, 25, 17, 34] or

even a fully connected graphical model [2, 36] have been

proposed. Loopy models, however, make the inference

more expensive and require approximations for inference.

Other approaches rely on several models. For instance,

several tree models are combined by a boosting procedure

in [37], whereas [28] predicts some parameters of the tree

model from the image data. The latter approach is related to

methods that estimate the pose directly from image features

like [3], but also methods that iteratively refine the model

by adapting the appearance [24, 9].

Besides of independent part templates for body parts,

also hierarchies of part templates have been proposed [33,

38, 35]. [33] also introduces attributes of body parts allow-

ing the sharing of part templates of similar shape. The hier-

archy proposed in [38] even discards the semantic meaning

of body parts and relies on the concept of poselets [4].

Our work is focused on improving the body part tem-

plates or the likelihoods for the joint positions within a pic-

torial structure model. In contrast to previous works, which

run each body part template independently and use a tree

structure or loopy models for modeling the dependencies

among body parts, we propose to take the dependencies

between body parts already into account for predicting the

joint locations. In this way, the joint or part templates are

already able to discriminate left and right limbs and com-

pensate already for some limitations of tree models. Since

the templates are implemented by efficient randomized re-

gression forests that predict directly the joint locations, our

approach is comparable in running time to a state-of-the-

art method [40], while providing a higher joint localization

accuracy.

Random forests have been previously used for pose esti-

mation from depth data [29, 15]. In a similar spirit, an im-

plicit shape model [20] has been used for pose estimation

in [22]. Random forests have been also used to improve

poselets for pose estimation from depth data [16] and for

pedestrian detection [27]. A random forest approach with

two layers has been proposed in [30] for image segmenta-

tion. While the first layer converts an image into a codeword

representation, so-called textons, the second layer performs

pixel-wise image segmentation based on the textons.

3. Pictorial Structure

As a human body model, we use a classical pictorial

structure framework [11]. However, instead of using a limb

representation for the body configuration, we use a joint

representation J = {jk} where each joint jk = (xk) en-

codes the image location of a joint. The root of the tree is

defined by the nose, the only non-joint point in the body

configuration. The prior on part configurations is therefore
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defined by

p(J ) =
∏

(k,l)∈E

ψkl(jk, jl), (1)

where E are the directed edges of the kinematic chain

shown in Fig. 1. As in [11], we model the binary potentials

ψkl(jk, jl) by Gaussian distributions for efficient inference.

The pose configuration can be estimated from a still im-

age by searching the maximum of the posterior distribution

p(J |I) ∝ p(I|J )p(J ). (2)

Assuming independent part templates for the likelihood, the

posterior can be written as

p(J |I) ∝
∏
k

φk(jk) ·
∏

(k,l)∈E

ψkl(jk, jl). (3)

The unary potentials φk(jk) are in many cases only approx-

imations of the likelihoods p(I|jk) and correspond to part

templates. For instance, HOG features [7] and linear SVMs

are used as part templates in [40]. While we use Gaus-

sian binary potentials and perform inference as in [10], our

work focuses only on extracting more discriminative unary

potentials φk(jk). In particular, we address the weakness

of independent part templates and propose non-linear, parts

dependent joint regressors instead.

4. Joint Regressors
A joint representation as in (1) has the advantage that

limb transformations like foreshortening do not need to be

explicitly modeled in the pictorial structure model, which

reduces complexity and running time. The independence

assumption of common part templates is relaxed by training

the regressors on image features and confidence maps of

other body parts, i.e.,

φk(jk) = p(jk|I,L), (4)

where L is the set of body parts. In this work, we use the

term ‘joint’ for any landmark point like a skeleton joint or

the nose, whereas ‘body parts’ are defined as regions around

the joints as illustrated Fig. 1.

As regressors, we use random forests [5]. For complete-

ness, we give a brief introduction to random forests in Sec-

tion 4.1. In Sections 4.2, 4.3, and 4.4, we discuss three

variations, namely part templates using random forests, in-

dependent joint regressors, and parts dependent joint regres-

sors.

4.1. Random Forests

Random forests [5] or in general decision forests [6] have

been used for many classification or regression tasks, for in-

stance, labeling body parts in depth images [29], predicting

the joint positions from depth data [15], or localizing facial

feature points [8]. In this section, we describe the general

training procedure and discuss the details regarding used

features, split functions, etc. in the following sections.

Random forests are ensembles of randomized decision

trees that learn a mapping from an image patch P to a dis-

tribution over a parameter space Θ. For classifying body

parts, the parameter space is the set of class labels or body

parts. For predicting the location of a single joint, the pa-

rameter space is R2. To learn such a mapping, a tree T in a

forest T is built from a set of image patches P that are ex-

tracted randomly from a random subset of the training im-

ages. Each patch contains a set of image features FP , such

as HOG or color information, and the parameters θP ∈ Θ
to estimate. During the training of the tree, a set of patches

is divided recursively into two subset PL and PR using a

binary split function ζ∗(FP )→ {0, 1}, which is defined on

the patch features. Every split function is chosen from a ran-

domly generated set of split functions {ζ} by maximizing

the goodness or information gain of the split g(ζ):

ζ∗ = argmax
ζ

g (ζ) , (5)

g (ζ) = H (P)−
∑

S∈{L,R}

|PS (ζ) |
|P| H (PS (ζ)) , (6)

where H is, depending on Θ, the entropy or the sum-of-

squared-differences. After the split, the binary function is

stored at the node and the training continues recursively un-

til the maximum depth of the tree is reached or the gain

drops below a predefined threshold. At the leaves, the dis-

tributions p(θ|L) are estimated based on the parameters of

the patches P arriving at the leaf L.

4.2. Body Part Templates

The body part templates are modeled as classical limb

templates trained with a random forest. As patch feature,

we use a set of features FP = F f
P that is inspired by [14],

where F f
P is a matrix of fixed size containing the values

of the feature f . We use overall 17 features: a normalized

gray-scale version of the image; the Lab color space where

each color channel is processed by a min and a max fil-

tration with 5x5 filter size; HOG with 9 bins using a 5x5

cell and soft binning. The values of each bin of HOG are

mapped to a matrix F f
P and processed by a max filter. Addi-

tionally to the color and HOG features, we added the output

of a skin detector [19] as feature. We train a separate for-

est for each body part, where each forest is trained by body

part patches sampled from a Gaussian distribution centered

at the body part annotation and negative patches sampled

uniformly from the background of the image. Each patch P
is therefore augmented by a binary label c, which is k if it

is sampled from body part lk. We use the same number of

body parts as joints, i.e., 13.
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The used split functions are pixel comparisons as in [14]:

ζγ(P ) =

{
1 F f

P (q)− F f
P (p) < τ

0 otherwise,
(7)

where the parameters γ = (p, q, f, τ) describe two coor-

dinates p and q within the patch boundaries, the selected

appearance channel f ∈ {1, 2, . . . , C}, and the defined

threshold τ , respectively. For selecting the binary tests (6),

we use the entropy

H (P) = −
∑
c

p(c|P) log (p(c|P)) . (8)

The unary potentials for the body parts lk are obtained by

densely extracting image patches from the test image and

passing them through the trained trees. A single patch P
ends at a leaf LT for each tree T . Based on the class prob-

abilities p(c|LT ) stored at the leaves, the unary potential at

patch location xP is defined by the average probability of

all trees in the forest:

φk(lk(xP )) =
1

|T |
∑
T∈T

p(c=k|LT (P )). (9)

Averaging the class probabilities of the trees is a common

approach for random forests [5].

4.3. Independent Joint Regressors

For the regression, a sampled patch P is additionally

augmented with an offset vector vP,k pointing to the lo-

cation of the corresponding joint jk. During training, the

goodness (6) for evaluating the split functions is based on

the sum-of-squared-distances; that is

H (P) = 1

|P|
∑
P∈P

‖vP,k − μk‖2, (10)

where μk denotes the mean. At the leaves, the class proba-

bilities p(c|LT ) and the probabilities over the offset vectors

p(v|LT ) are stored. The unary potential at location x for

joint k is defined by

φk(jk(x)) =
∑
y∈Ω

1

|T |
∑
T∈T

{
p (c=k|LT (P (y)))

· p (x−y|LT (P (y)))
}
. (11)

After computing the unary potentials for an image, the

unary potentials for each joint are normalized to be within

the range [0, 1]. During training, a random forest can min-

imize both splitting criteria, i.e., (8) and (10), simultane-

ously. This is achieved simply via randomly alternating be-

tween the two goodness measures while the samples are re-

cursively split down the tree, c.f . [14].

Figure 2. Sample images from the FashionPose dataset with anno-

tations. The red circles bottom right show the error thresholds 0.1,

0.15, and 0.25 used for evaluation.

4.4. Parts Dependent Joint Regressors

The previous part potentials are calculated indepen-

dently. That is, during both training and evaluation, each

sampled patch is evaluated without taking its spatially sur-

rounding potentials into account. For the task of joint local-

ization, this can result in ambiguities, e.g., for left and right

knees as illustrated in Fig. 1. To resolve this issue, we pro-

pose a third potential that predicts the joint locations as in

(11), but also takes neighboring part potentials into account:

φk(jk,L) = p(jk|I,L) (12)

However, incorporating a multi-dimensional neighbor-

hood structure is usually computationally demanding.

Therefore, we approximate (12) by splitting our regression

model into two layers. The first layer only calculates inde-

pendent part potentials φk(lk) (9). The second layer also

predicts unary potentials but also incorporates the poten-

tials of the first layer and their locations as additional fea-

ture maps. Thus the set of training patches for the sec-

ond forest can be written as {P = (F∗
P , cP ,vP )}, where

F∗
P = {1, . . . , C; Φ1, . . . ,Φk} is the enriched set of feature

channels. The leaf probabilities p(c|L, LT ) and p(v|L, LT )
now depend on the probabilities of the body parts and we

obtain

φk(jk,L)=
∑
y∈Ω

1

|T |
∑
T∈T

{
p (c=k|L, LT (P (y)))

· p (x−y|L, LT (P (y)))
}
. (13)

5. Experiments
For evaluation we use two datasets, namely the well-

known Leeds Sports Pose dataset (LSP [18]) and a newly
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Figure 3. Comparison of the joint localization accuracy of the

proposed unary potentials and comparison with a state-of-the-art

method [40]. While the body part classification (9) and the in-

dependent joint regression (11) perform similarly, they are dras-

tically outperformed by the proposed body parts dependent joint

regressors (13). Since the body parts dependent joint regressors

do not encode any explicit information of the human skeleton, us-

ing a pictorial structure model (PS), which models the kinematic

chain, gives an additional performance boost. The body parts de-

pendent joint regression together with a pictorial structure model

outperforms [40]. In particular at low error rates like 0.1, the num-

ber of correctly localized joints is 20% higher than [40].

collected dataset that we call FashionPose. While the LSP

dataset contains a high variation of poses, the variation of

appearance and dress style within each of the eight sport

classes is rather small. We have therefore collected a new

dataset that has very high variation in cloth and appearance.

In our experiments, we compare our method to three re-

lated methods, namely linear and non-linear SVMs for part

templates [18] and flexible mixtures-of-parts [40]. We also

compare our approach to two other state-of-the-art meth-

ods, namely pose-specific part appearance classifiers [18]

and spatial hierarchies of mixture models [35].

FashionPose Dataset. Since clothing imposes a partic-

ular challenge for pose estimation in general, which is not

well reflected in current datasets for pose estimation from

still images, we collected a new dataset. The proposed

dataset consists of 7,543 accurate annotated images down-

loaded from a variety of fashion blogs, e.g., lookbook.
nu and kalei.do. Each image contains a person where

the full body is visible and is annotated by 12 joints and a

point for the head, namely the nose. We did not annotate

the head by the top of the head and the neck as in other

datasets [39, 18] since these two points were very difficult

to annotate accurately. Occluded joints have also been an-

notated.

The dataset is not only challenging due to the large vari-

ation of dressing style ranging from casual dresses and

Figure 4. The accuracy plots for individual joints using body parts

dependent joint regressors with a pictorial structure model. For

better readability, we plot only the left joints. As expected, local-

izing the wrist is the most difficult task, whereas head, shoulders,

and hip joints are reasonable well localized. The numbers for all

joints at error thresholds 0.1 and 0.15 are provided in Table 1.

gowns to haute couture, but it also contains a large varia-

tion of poses. For evaluation, we grouped the dataset into a

training set containing 6,543 images and a set of 1,000 test-

ing images and rescaled all images to a common upper body

size of 75 pixels, measured by the distance between the av-

erage position of the two hip joints and the average position

of the two shoulder joints. The dataset is more challenging

than the Fashionista dataset [39] that contains only 685 im-

ages. While the Fashionista dataset has been proposed for

parsing clothes and not for pose estimation, the FashionPose

dataset can be also augmented with additional annotations

for evaluating methods for parsing clothes in still images as

well. The FashionPose dataset is publicly available.1 Some

example images with ground truth annotation are shown in

Fig. 2.

Evaluation measurement. In our experiments, we mea-

sure the joint localization error as a fraction of the upper

body size. This measurement is well established for other

computer vision tasks, e.g., fiducial point detection. It is in-

dependent of the actual size of the image and more precise

than common measures derived from bounding box-based

object detection like PCP [12]. PCP declares a limb as cor-

rectly detected if the error of the predicted endpoints are

within 50% of the limb length from the ground truth end-

points. We use the imprecise PCP measure only for com-

parison with other reported results on the Leeds Sports Pose

dataset; otherwise we use the more informative normalized

joint localization error.

Experiments on FashionPose. For the training of the

1http://www.vision.ee.ethz.ch/˜mdantone/
fashionpose
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error thres. 0.10 0.10 0.15 0.15

joints ours Yang et al. ours Yang et al.

Head 66.97 56.16 78.84 77.76
L. shoulder 61.94 53.21 73.81 72.75
R. shoulder 61.81 55.39 74.19 74.03
Left hip 57.16 38.43 72.90 58.61
Right hip 58.58 34.96 73.81 58.09
Left elbow 41.81 27.89 56.00 46.14
Right elbow 41.29 32.51 58.84 50.64
Left wrist 32.26 24.29 44.26 38.17
Right wrist 29.68 21.72 39.48 33.16
Left knee 52.13 39.07 65.29 56.94
Right knee 49.94 38.43 62.71 57.32
Left ankle 43.87 32.26 58.97 49.61
Right ankle 41.68 31.10 58.58 48.20

Table 1. Detection accuracy for all joints at error thresholds 0.1
and 0.15. The comparison shows that our method performs similar

or better than [40] for all joints.

random forests for the body part templates, independent and

parts dependent joint regression, we fixed some parameters

intuitively. The patch size, and thus of the feature matrices

F f
P , is 30x30 pixels. Each forest consists of 15 trees with

maximum depth of 20 and a minimum number of 20 patches

per leaf. For training, we generate 25,000 binary tests (7)

at each node, where we use 1,000 random parameter set-

tings for γ\τ and for each setting additionally 25 random

thresholds τ . Each tree has been grown on a set of 500,000

positive and 500,000 negative patches extracted from 4,000

randomly selected training images. For computational rea-

sons, we evaluate the split functions at each node for only

maximal 200,000 patches.

We first evaluated the performance of the part templates

(Section 4.2), the independent joint regressors (Section 4.3),

and the body parts dependent joint regressors (Section 4.4).

The accuracy based on the normalized joint estimation er-

ror is given in Fig. 3. The proposed body parts depen-

dent joint regressors clearly outperform the independent

part templates and joint regressors. Integrating them into

a pictorial structure model (Section 3), which encodes the

kinematic skeleton, improves the accuracy further. The ac-

curacy curves for individual joints are plotted in Fig. 4. We

also evaluated the accuracy when the unary potentials for

classification (9) and independent regression (11) are multi-

plied. In this case, the performance has not improved com-

pared to the individual unary potentials. This shows that

training the regressors depending on the body part templates

(13) is essential for the performance gain.

We also compared our approach to a state-of-the-art

method proposed by Yang et al. [40] that uses a flexible

mixture of templates modeled by linear SVMs. For a fair

comparison, we trained the publicly available source code

on the entire 6,543 rescaled training images. A comparison

of the approach [40] and the parts dependent joint regres-

sion is shown in Fig. 3. For an error threshold up to 0.25, the

Figure 5. Accuracy plots for individual joints on the LSP dataset.

pictorial structure model with parts dependent joint regres-

sion outperforms [40]. Larger error thresholds indicate a

poor accuracy that is probably insufficient for applications;

see Fig. 2. For error thresholds like 0.1, the accuracy is im-

proved by more than 20%. Table 1 compares the accuracies

for all joints at error thresholds 0.1 and 0.15. Our approach

localizes the joints with a higher accuracy. We also exper-

imented with a three-layer system, but we could not see a

significant improvement (+0.3%).

Experiments on Leeds Sports Pose Dataset. Due to the

small size of the LSP dataset [18], we trained only 10 trees

using 100,000 positive and 100,000 negative patches sam-

pled from the 1,000 training images. The other parameters

are the same used for the FashionPose dataset. In order to

compare with previous works, we use the PCP criteria. To

this end, we added the neck and the top of the head as joints

and converted our joint representation into a limb represen-

tation by using the joints as endpoints of the limbs. The

torso is obtained by the line between the average position

of the two hip joints and the average position of the two

shoulder joints.

The results of our method using body parts dependent

joint regression with a pictorial structure are given in Ta-

ble 2. The comparison with a pictorial structure model that

uses linear SVMs [18] or a cascade of non-linear SVMs [18]

as part templates shows that our proposed unary potentials

achieve a much higher accuracy. The accuracy with re-

spect to the normalized joint localization error for individ-

ual joints is plotted in Fig. 5.

We also compare our approach with the state-of-the-art

on this dataset. In [18], the pose data has been also clus-

tered to train a model for each cluster. As can be seen from

Table 2, this increases the performance by around 20%.

The performance gain can be also explained by the dataset

that contains eight different sports classes that are very dis-

tinct in appearance and poses. Nevertheless, our approach
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Limps Avg. Torso Upper Leg Lower Leg Upper Arm Forearm Head

Related methods

Linear SVM [18] 36.4 64.1 42.4 43.1 41.2 40.7 26.2 23.7 16.5 15.7 49.9

Non-linear SVM [18] 44.7 70.9 53.5 58.7 49.3 47.4 37.1 29.1 26.8 18.8 55.9

Proposed 55.5 81.6 66.0 67.0 60.8 61.2 46.4 43.8 25.6 23.8 79.2

State-of-the-art

Cluster + Linear SVM [18] 43.6 74.1 54.4 53.6 49.0 49.3 30.5 30.9 17.5 17.7 59.7

Cluster + Non-linear SVM [18] 55.1 78.1 64.8 66.7 60.3 57.3 48.3 46.5 34.5 31.2 62.9

Spatial Hierarchy of Mixture Models [35] 58.8 93.7 68.0 57.8 49.0 29.2 86.5

Cluster + S. Hierarchy of M. M. [35] 61.3 95.8 69.9 60.0 51.9 32.9 87.8

Table 2. Detection accuracy on the Leeds Sports Pose dataset. For comparison, we converted our estimated joint positions into a limb

representation and use PCP as measure. For more details regarding the evaluation, we refer to the text. Our method outperforms related

methods using linear or non-linear SVMs for part templates within a pictorial structure framework. Only [35] achieves a better performance,

but this approach uses a more complex and more expensive model than pictorial structures with a tree structure.

Figure 6. Qualitative results on some representative images from the FashionPose and the LSP dataset.

already achieves comparable results with a single model.

[35] uses a more complex model than a tree structure that

captures the space of plausible human poses much better.

While this method achieves better results on this dataset,

this comes probably at the cost of higher training and run-

ning times. Since the focus of this work is the improvement

of the unary potentials in a pictorial structure framework,

we used only a single tree model and have not performed

clustering or used a more complex body model. However,

we expect that also more complex models benefit from bet-

ter part or joint templates.

6. Conclusion
In this paper, we have addressed robust human pose

estimation from still images by proposing novel discrimi-

native part template predictors within a pictorial structure

framework. Our joint location regressors consist of random

forests that operate over two layers. While the first layer

acts as an independent body part classificator, the second

one takes the predicted distributions of the first layer for es-

timating the joint locations into account, thus allowing to

put the body parts into relation. In the experimental part,

we have shown that our model yields higher accurate human

joint predictors than independent part templates and outper-

forms state-of-the-art methods that also use a tree structure

for the human model.
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