
Fine-Grained Crowdsourcing for Fine-Grained Recognition

Jia Deng, Jonathan Krause, Li Fei-Fei
Computer Science Department, Stanford University

Abstract

Fine-grained recognition concerns categorization at
sub-ordinate levels, where the distinction between object
classes is highly local. Compared to basic level recogni-
tion, fine-grained categorization can be more challenging
as there are in general less data and fewer discriminative
features. This necessitates the use of stronger prior for fea-
ture selection. In this work, we include humans in the loop
to help computers select discriminative features. We intro-
duce a novel online game called “Bubbles” that reveals dis-
criminative features humans use. The player’s goal is to
identify the category of a heavily blurred image. During the
game, the player can choose to reveal full details of circu-
lar regions (“bubbles”), with a certain penalty. With proper
setup the game generates discriminative bubbles with as-
sured quality. We next propose the “BubbleBank” algo-
rithm that uses the human selected bubbles to improve ma-
chine recognition performance. Experiments demonstrate
that our approach yields large improvements over the pre-
vious state of the art on challenging benchmarks.

1. Introduction

Fine-grained recognition concerns recognizing sub-

ordinate object classes. Examples include distinguishing

different breeds of dogs, species of birds, models of cars,

and categories of mushrooms. These tasks yield a great deal

of information for a human user and can thus add tremen-

dous value to society.

Fine-grained recognition is challenging. There is in gen-

eral limited data as fine grained labels are much harder to

acquire. More importantly, there are much fewer discrimi-

native features compared to categorization at the basic level.

Distinguishing a dog and a microwave is easy because there

are plenty of helpful visual cues. In comparison, the dif-

ference between fine grained classes can be very subtle and

only a few key features matter. Consider, for example, two

very similar woodpeckers “Northern Flicker” and “Red Bel-

lied Woodpecker” (bird A and B in Figure 1). If irrelevant

features are used, it is virtually impossible to distinguish the

two. But if we know the key differences, the task becomes

(A)
Which bird,
(A) or (B)?

Wrong features: hard

(B)

Right features: easy

Figure 1. The distinction between fine-grained categories is often

very subtle. It is crucial to identify the key features – if the wrong

features are selected, the task can be very difficult. A small number

of right features, on the other hand, makes the task easy.

easy — bird A has a spotted chest while the top of bird B’s

head is red. Given limited data, automatic selection of dis-

criminative features becomes especially difficult as a large

number of irrelevant features can cause severe overfitting.

To tackle the challenge of feature selection, one ap-

proach is applying specialized domain knowledge, This ap-

proach can yield great success [16], but demands from the

researcher a deep understanding of the specific domain.

Another promising direction is including the crowd in the

loop by having humans either label or propose parts and

attributes [3, 13, 11, 22, 9, 21]. These approaches can

potentially reduce the burden of domain specific engineer-

ing. We refer to this category of approaches “fine-grained

crowdsourcing”. It is “fine-grained” in two senses: (1) the

crowd not only provides class labels indicating what the

object is, but also provides detailed information on how
humans achieve fine grained recognition; (2) the learn-

ing algorithm not only optimizes the classification accu-

racy but also incorporates the “finer-grained” hints from the

crowd, which would help avoid overfitting and lead to better

generalization performance. The challenge, however, lies

in how to design effective annotation tasks. Existing ap-

proaches either ask humans to label pre-defined parts and at-

tributes [3, 13], or assign open-ended tasks such as propos-

ing semantic labels [20, 11, 22, 9] and specifying visual

1

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.81

578

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.81

578

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.81

580

primitives (keypoints or regions) [9, 21]. Labeling parts and

attributes places a large burden on the researcher in specify-

ing the annotation task. The open-ended alternatives, on the

other hand, can be difficult for quality control as the tasks

are highly subjective.

In this paper we take one step further in this direction by

introducing a novel crowdsourcing approach to help com-

puters select discriminative features. This approach does

not require the researcher to specify parts and attributes,

is open-ended, and has automatic quality control. Specifi-

cally, we propose a novel online game called “Bubbles” that

reveals the discriminative features. Consider bird species

identification as an example. At each round of the game,

a player sees example images for two bird species. She is

then given a new image and is asked to classify the bird

into one of the two species. She earns points for correct

identification and loses points otherwise. Regardless of the

outcome, the game advances to the next round with a new

image and possibly a new pair of bird species. The key twist

of the game is that the new image is always heavily blurred

so that the player can only see a rough outline of the bird.

The player can, however, click to reveal small, circular ar-

eas of the image (“bubbles”) to inspect the full details, with

a penalty on game points. Through proper setup of reward,

the game can guarantee that bubbles selected by a success-

ful human player contain discriminative features.

The game enjoys the following advantages: (1) Domain
agnostic. The only assumption is that humans can discover

discriminative visual features from a handful of examples.

Thus it applies to a wide range of domains and appeals to

a generic crowd. In fact, learning to tell unfamiliar cate-

gories apart under time pressure creates challenges and fun.

(2) Automatic quality assurance. If the players earns high

scores, we know with certainty that the areas chosen must

be important. (3) Cost effective. The game provides enter-

tainment and people will volunteer to play. This can enable

large scale data collection with low or zero cost.

Our second contribution is ”BubbleBank”, a new algo-

rithm that uses the crowd-selected bubbles for fine-grained

recognition. For each bubble from the game, we generate a

“bubble detector” that tries to detect the same pattern from

other images. Each image can then be represented by ”Bub-

bleBank”, a collection of max-pooled responses from each

bubble detector. We demonstrate that BubbleBank can im-

prove previous state of the art methods by large margins on

challenging fine-grained benchmarks. Fig. 2 illustrates our

complete framework.

2. Related Work
Our work shares the same end goal as existing work on

fine grained recognition [16, 6, 15, 25, 19, 37, 36], but our

approach is more aligned with the general line of research

that places humans in the loop [20, 11, 22, 29, 9, 5, 24, 23,

Figure 2. In our approach, the crowd first plays the “Bubbles”

game, trying to classify a blurred image into one of the two given

categories. During the game, the crowd is allowed to inspect cir-

cular regions (“bubbles”), with a penalty of game points. In this

process, discriminative regions are revealed. Next, when a com-

puter tries to recognize fine grained categories, it collects the hu-

man selected bubbles and detects similar patterns on a image. The

detection responses are max-pooled to form a “BubbleBank” rep-

resentation that can be used for learning classifiers.

20, 32, 4, 26]. In particular, there has been success in seek-

ing to understand how humans perform recognition, e.g. by

asking humans to directly provide annotation rationales [9],

to label features in NLP tasks [10], to describe the differ-

ences between pairs of images [20], or to perform tasks that

are parts of the machine pipeline [23]. Our work is differ-

ent in that we use online games to discover discriminative

features for fine grained recognition.

This work relates to many human vision studies. The

game is named after a well known psychology technique for

studying features that humans use for face recognition [14].

Human subjects are shown a face image with random bub-

bles revealed and asked to identify the gender or expression.

Our approach differs in that our bubbles are actively chosen

by the player. Another connection to human vision studies

is that our game to a certain extent resembles eye tracking,

revealing the locations looked at by humans.

Our game also draws inspiration from human compu-

tation [30, 31, 17], especially the seminal “Peekaboom”

game [31]. In this two player game, player A is given a word

(e.g. “cow”) and an image. Player A can then click to reveal

parts of the image to Player B. Player B needs to type the

word “cow” after seeing only the revealed area. Our game is

different. First, Peekaboom is not suitable for fine grained

579579581

Figure 3. The game UI. The goal is to correctly classify the center

image into one of the two categories. A green bubble follows the

cursor. The player can click to reveal the area inside the bubble.

The more bubbles used, the fewer points the player can earn.

recognition because an average player cannot be expected

to come up with the same word “Northern Flicker”. Sec-

ond, the goal of Peekaboom is to locate the objects, not the

discriminative parts. In particular, what parts are discrim-

inative for a category depends on what the reference cate-

gory is. In our game, we replace word typing with binary

choices and make discovering discriminative visual features

between unfamiliar categories part of the game play. An-

other difference is that our game is for a single-player. This

eliminates the need to match two players in real time, mak-

ing it much easier to deploy on paid crowdsourcing plat-

forms such as Amazon Mechanical Turk (AMT).

Finally, our BubbleBank algorithm is related to work that

uses collections of part/object detectors [3, 13, 18]. Our ap-

proach differs in that our BubbleBank consists of detectors

tailored to the outputs of the Bubbles game, with a simple

representation that requires no additional detector learning.

3. The Bubbles Game
The Game Mechanism Fig. 3 shows the game UI. A

player is given example images of two categories. In the

center lies a a blurred, de-saturated image with only the

rough outline of the object visible. The goal is to correctly

classify the center image into one of the two categories. A

green “bubble” (size adjustable) follows the mouse cursor

as the player hovers over the center image. When the player

clicks, the area under the circle is revealed in full detail. If

the player answers correctly, she earns new points. Other-

wise she loses points. Either way, the game then advances

to the next round, with a new center image and possibly a

new pair of categories. Note that all images are assumed to

have ground truth class labels so that we can instantly judge

the player’s answers.

We design the reward of the game such that a player

can only earn high scores if she identifies the categories

correctly and uses bubbles parsimoniously. First, we set

the penalty on wrong answers very large, for example, 100

points for correct identification but−300 for incorrect ones.

This renders random guessing an ineffective strategy. Also,

the player is allowed to pass difficult images or categories

with no penalty, such that they are not forced to guess. Sec-

ond, there is a cost associated with the total area revealed.

The points for correct identification will decrease as more

area is revealed. For example, in our experiments the scores

typically drop to zero when about 30% of the object bound-

ing box is revealed. This thus encourages careful bubble

use. This reward setup therefore reliably distinguishes good

players and assures the quality of their bubbles.

Another issue of game design is determining the amount

of blurring for the center image. With insufficient blurring,

the player can directly identify the category, whereas too

much blurring would obscure the global shape. To address

this issue, we start with a small amount of blurring and in-

crease it gradually in new games until the use of bubbles

becomes necessary. Note that this in fact creates useful side

information about the scale of the discriminative features.

The game can be enjoyable as it has an engaging

challenge-reward setup with instant feedback. To earn high

scores, the user needs to discover the differences between

highly confusing categories. This is similar to the classical

“spot-the-difference” games. Next, the user needs to think

about where to place the bubbles. To further enhance the ex-

perience, we can create a sense of time pressure by adding a

countdown timer and “freezing” the bubbles for a few sec-

onds once a certain amount of area has been revealed.

We finally note that there is nothing specific about birds

in the game design. In particular, the players do not need

to understand any attributes or parts. Thus the game can be

readily applied in a different domain. The only assumption

is that humans can learn from a few examples, which turns

out to be valid through our large scale AMT deployment.

AMT Deployment The game is suitable for deployment

on paid crowdsourcing platforms such as AMT. Each AMT

task would consist of multiple rounds of games. The worker

must score enough points in order to submit the task, oth-

erwise the games will continue indefinitely. The threshold

for submission is set high enough such that random guess-

ing is infeasible. This ensures that only the good workers

would be able to submit. Notably, there is no need to make

approval/reject decisions, as is necessary for conventional

tasks. All submissions are guaranteed to be high quality

and can be automatically approved. This is a significant ad-

vantage as quality control is often a significant concern for

crowdsourcing.

We deployed the game on AMT using the CUB-200-

2010 bird dataset [35] that contains 200 types of birds. A

total of 275 workers submitted 3339 tasks, with an average

price of $0.07 each. This gives 90659 rounds of games, an

580580582

Figure 4. Examples of game results from AMT. The red boxes show zoomed-in views of the bubbles. Top row: Bubbles drawn on images

of “Common Tern”’ when compared against “Herring Gull”. Second row: Bubbles for “Common Tern” on the same images of the top

row when compared against “Arctic Tern”. Third row: Bubbles for “Parakeet Auklet” when compared against “Horned Puffin”. Fourth
row: Bubbles for “Parakeet Auklet” on the same images of the third row when compared against “Least Auklet”.

average of 27 rounds per task. We generate the games from

visually confusing category pairs (see Sec. 5.2 for details).

Each round identifies one image and lasts 25 seconds on av-

erage. Among all game rounds, 71% were successful (i.e.

the player correctly identifies the category), 14% failed, and

15% were skipped by passing the image or switching cate-

gories. Fig. 4 shows examples of successful games for four

pairs of categories. Remarkably, the workers are able to dis-

cover the subtle differences between very difficult pairs of

categories. As in Fig. 4, the difference between “Common

Tern” and “Arctic Tern” lies in whether the tip of the beak

is black and in the length of the tail. Also observe how dif-

ferent features are selected for the same image when it is

discriminated against different categories. When “Common

Tern” is compared against “Herring Gull”, the black patch

on the head is discriminative and gets picked often. But

when discriminated against “Arctic Tern”, the black patch is

no longer relevant and is less frequently chosen. For failed

games, we observe that a significant fraction is due to a few

very difficult category pairs.

It is also remarkable how little is needed to distinguish a

pair of fine-grained categories. Fig. 5 plots the cumulative

distribution of the area revealed in successful games — over

90% of the games reveal less than 10% of the object bound-

ing box. This validates our hypothesis that (1) humans can

indeed discover the fine differences from a handful of ex-

amples and (2) for fine-grained recognition, the key features

are highly local.

1% 5% 10%

Bubble sizes as propor ons of an image
0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pe
rc
en
ta
ge
 o
f g
am
es
 u
si
ng
 e
qu
al
 o
r l
es
s
ar
ea

Proportion of image area revealed in a game

Figure 5. Statistics of image area revealed in successful games.

The area revealed in most of the successful games is small. Over

90% of the games use less than 10% of the object bounding box.

Finally, we can aggregate the bubbles on the same im-

age from multiple games played by multiple players and

obtain a heat map of discriminative regions. Fig. 6 shows

two examples. It suggests that the game can indeed discover

meaningful cues for fine-grained recognition.

4. The BubbleBank Algorithm

The Bubbles game reveals discriminative features. In

this section we show how to use the human selected bub-

bles to improve recognition. Our basic idea is to generate

a detector for each bubble and represent each image as a

collection of responses of the bubble detectors.

The Bubble Detectors Since each bubble is drawn in the

context of discriminating two classes, we start by assuming

581581583

Figure 6. Heat maps of bubbles averaged over multiple games

played by multiple players.

only two classes. Our intuition is that since each bubble

contains discriminative features for recognition, it suffices

to detect such patterns in a test image. It is thus natural to

obtain a detector for each bubble.

How do we represent each bubble detector? Since each

bubble is usually a small area, it can be represented by a

single descriptor such as SIFT, or a concatenation of sim-

ple descriptors. This descriptor acts as an image filter —

to detect on a test image, we convolve it with densely sam-

pled patches and then take the maximum response (max-

pooling). To further exploit the cues provided by the bub-

bles, we specify a pooling region for each detector. Instead

of convolving with the entire image, each detector operates

on a fixed, rectangular region whose center is determined by

the relative location of the bubble in the original image. In

other words, we have a strong spatial prior about where we

expect to detect bubbles. Note that here we have assumed

that the object has been localized, as is standard in the clas-

sification task in fine grained recognition [35, 37, 36].

Now, assume that we have collected multiple bubbles,

each from a training image of one of the two classes (each

training image can have multiple bubbles from a single

round of game or multiple games played by different play-

ers). We can then form a bank of bubble detectors (“Bub-

bleBank”) and represent the image by a vector of the max-

pooled responses from each detector, in a spirit similar to

the ObjectBank [18] representation. Then a binary clas-

sifier can be learned on top of this representation. Fig. 2

illustrates the BubbleBank representation.

Extending to Multiple Classes Extending to multiple

classes is straightforward — we can simply obtain bub-

bles for all pairs of categories and then use all of them to

form our the BubbleBank. This, however, does not scale

well with the number of classes because we need to run

O(K2) games for K classes. Fortunately, obtaining bub-

bles for every pair of categories is unnecessary in practice.

Not all classes are equally similar to others. It is likely that

a bubble useful for differentiating a class from another very

confusing class is also helpful for discriminating the same

class against less similar ones. For example, the bubbles se-

lected for “Common Tern” against “Herring Gull” in Fig. 4

are also useful for distinguishing “Common Tern” from the

woodpeckers in Fig. 1. Therefore, for a large number of

classes, we can pick only the most confusing category pairs.

Specifically, we can first train a baseline classifier and then

find out the confusing pairs via cross-validation. Alterna-

tively, if a semantic hierarchy is available and visual sim-

ilarity between classes is known to align well with the se-

mantic hierarchy, as is often the case [8], we can directly

select pairs of categories from within small subtrees.

We conclude this section by further comparing Bubble-

Bank with related methods. On one hand, BubbleBank is

related to a class of methods that learn attributes, parts, or

object detectors (ObjectBank [18], Poselet [3], Birdlet [13])

and use their responses for classification. However, all

these methods require additional annotation to train the de-

tectors. On the other hand, BubbleBank is also related

to more generic methods such as the codebook-free and

annotation-free approach (CFAF) [36] and LLC [34]. These

approaches use simple template representations but gener-

ate them through uniform or random sampling, with no ad-

ditional supervision. Here we highlight some key differ-

ences: (1) our detectors are derived from a game that guar-

antees quality; (2) due to the assured quality, our representa-

tion of bubble detectors can be made very simple using low

level descriptors without additional training; (3) we assume

a strong spatial prior for each bubble detector.

5. Experiments
5.1. Dataset and Implementation
Dataset We use a standard fine-grained benchmark, the

CUB-200 dataset [35] that contains 200 bird species. There

are 6033 images in total and around 30 images per class. All

of our experiments use the default training-test split. We ex-

periment on the full dataset as well as a subset of 14 classes

from the Vireo and Woodpecker family (CUB-14) that have

been used in previous work [13, 36, 38]. All images are

cropped to the bounding boxes, as is standard for many pub-

lished results [35, 5, 37, 36, 1]. At test time, we do not use

any ground truth information other than assuming that the

image has been cropped.

Bubble Detectors We implement the bubble detectors us-

ing SIFT [27] and color histograms extracted at the bubble

locations. The color histograms are based on a color naming

method [28] that converts each pixel into a 11 dimensional

vector, each dimension representing the probability of one

of the 11 basic color terms (e.g. “black”, “blue”, “brown”

etc.). We form an L2 normalized histogram by averaging

the color naming vectors within each bubble. The color vec-

tor is then concatenated with the SIFT descriptor to form the

final 139-dimensional descriptor. To run the bubble detec-

tors, we resize an image to a max dimension of 300 pixels

582582584

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

Pe
rc
en
ta
ge

Maximum bubble response value (p=1)

Positive images
Negative images

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

Pe
rc
en
ta
ge

Maximum bubble response value (p=4)

Positive images
Negative images

Figure 7. The effect of power scaling. When the max-pooled de-

tector responses are raised to the power of p > 1, the differences

between values in the higher range are amplified.

and extract the same SIFT and color descriptors on dense

patches at every 2 pixels at multiple resolutions. The detec-

tor response at each location is the dot product of the image

patch descriptor and the bubble descriptor. We specify the

pooling region for each detector to be a 0.5× 0.5 rectangle

centered at the original bubble location, after normalizing

all (x, y) coordinates to be in [0, 1]× [0, 1].

Power Scaling We train 1-vs-all linear SVMs [12] on top

of our BubbleBank representations due to its superior effi-

ciency. We found that raising each dimension to a constant

power p > 1 (followed by L2 normalization) can signifi-

cantly improve the recognition performance. Specifically,

we let xi ← xp
i for dimension i of the BubbleBank vector.

We determine p through cross-validation (p = 8 for CUB-

14 and p = 4 for CUB-200). The improvements are large:

setting p = 8 improves the mean average precision (mAP)

of CUB-14 from 50.80% to 58.47%.

This power scaling technique is motivated by our obser-

vation on the values of detector responses. If a similar pat-

tern exists in the image, then the detector will tend to have

high response typically within [0.8, 1] (assuming L2 nor-

malized descriptors); if no similar pattern exists, the max-

imum response, however, can take a wide range of values

in [0, 0.8]. This is less desirable because the exact response

value is unimportant when the detector does not fire. Power

scaling thus serves to “suppress” the lower range and am-

plify the higher range. Fig. 7 (left) plots the distribution

of the maximum bubble detector responses on images from

a pair of classes in CUB-14. The red bars correspond to

the responses of bubbles on images from the same class

(i.e. positive examples) and blue bars the other class (i.e.

negative examples). Observe the values are heavily biased

toward the upper range. There is only a small difference

between the modes of the two classes (around 0.82 versus

around 0.78). After power scaling with p = 4, as shown in

Fig. 7 (right), the ratio between the modes is amplified and

the values in the lower range compressed.

5.2. Results

CUB-14 We first evaluate our approach on CUB-14. Fol-

lowing [36], both the training and testing sets are aug-

Method mAP (%)

MKL [5] 37.02

Birdlet [13] 40.25

CFAF [36] 44.73

Ours (SPM 1× 1) 52.98

Ours (SPM 1× 1, 2× 2) 48.63

Ours (Random Bubbles) 43.72

Ours 58.47
Table 1. Results on CUB-14.

mented by horizontally flipping the images. Since the

14 classes come from two visually very distinctive sub-

groups, vireo and woodpecker, we run the bubbles game

within each subgroup. This gives 42 pairs of classes. We

obtained 16336 bubbles from 4101 successful, positively

scored games using a total of 210 unflipped training images.

The same bubbles can be mirrored on the flipped images,

which gives a total of 32672 bubble detectors.

Table 1 reports mean average precision of our method on

CUB-14. We also compare with other methods including

multiple kernel learning [5], Birdlet [13] and CFAF [36]. 1

Our method achieves 58.47%, outperforming the previous

best result 44.73% [36] by a margin of 14%. Also note that

Birdlet [13] requires additional annotations in the form of

2D key points and 3D ellipsoids. Our annotation task is

much simpler but as effective.

How much does our fine-grained crowdsourcing matter?

As a control experiment, we replace the crowdsourced bub-

bles with randomly generated ones while keeping every-

thing else exactly the same. With random bubbles, the per-

formance drops drastically, from 58.47% to 43.72%. Inter-

estingly, with random bubbles, the performance is similar

to 44.73% achieved by CFAF [36], which also uses random

templates but further boosts performance by a bagging tech-

nique. This control experiment demonstrates that (1) the

Bubbles game is essential and (2) the quality of the bubbles

are indeed assured by the game mechanism.

We also evaluate the strong spatial prior used in our pool-

ing. Table 1 reports the results of pooling over the entire

image (SPM 1× 1) and pooling over multiple regions from

a 1× 1, 2× 2 spatial pyramid. We see that both are signifi-

cantly worse than pooling over a single, local neighborhood.

How many bubbles do we need? Fig. 8 reports recog-

nition performances using subsampled bubbles (using 1%,

5%, 10%, 20%, 50%, 80% of the full set of 32672 bub-

bles). As a comparison, we also include the performances

of using random bubbles. Strikingly, using only 1634 hu-

man selected bubbles (5% of the entire set), we already

outperform CFAF [36] (51.05% versus 44.73%). Note that

CFAF used 42000 random templates, a feature dimensional-

ity of 882000, a customized SVM learning procedure, and

1The results from [38] on the same 14 classes are not comparable as a

newer version [33] of the dataset with more images is used

583583585

0 0.5 1 1.5 2 2.5 3

x 10
4

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Number of bubbles

m
A

P

Ours
Ours (Random Bubbles)
CFAF (Yao et al. 2012)

Figure 8. Number of subsampled bubbles versus recognition per-

formance (mAP) on CUB-14. Our approach outperforms the pre-

vious state of the art [36] with only 1634 bubbles. Error bars are

obtained by 10 runs.

80 rounds of bagging, whereas we achieve better perfor-

mance using only 1634 bubbles, a feature dimensionality

of 1634, off-the-shelf SVM training [12], and no bagging.

The simplicity of our BubbleBank algorithm further con-

firms the effectiveness of our fine-grained crowdsourcing.

Fig. 9 shows success and failure cases of classification

along with the top bubbles contributing to the predictions,

We observe that the correct predictions can indeed be at-

tributed to discriminative bubbles. The failure cases are also

noteworthy. The first two cases are a result of treating each

bubble independently. Often humans draw multiple bubbles

on the same image and the bubbles may not be sufficiently

discriminative in isolation. This suggests future work on de-

tecting groups of bubbles. The third case is due to misfiring

on the background. This points to a potential improvement

through segmentation or through modeling context.

CUB-200 We next evaluate our approach on the full

CUB-200 dataset using the standard setting [5, 35]. Since

there are many more classes than CUB-14 and visually con-

fusing pairs of classes are not necessarily from the same

subgroup, we use a different approach to select the pairs for

crowdsourcing. We first obtain the confusion matrix of the

KDES method [2] via cross-validation on training data (no

test data is used) and then pick the top 763 most confusing

pairs. Each of the 200 classes shows up at least once in those

763 pairs. We then obtain 220242 bubbles through 46958
successful, positively scored games using training images.

Table 2 compares the classification accuracy of our

method to various published results. We achieve an accu-

racy of 32.8%, a 6% improvement over the previous best

result (26.7%) from TriCos [6] 2. We also observe that ran-

dom bubbles causes a large performance drop (from 32.8%
to 26.5%), which again underscores the effectiveness of our

fine-grained crowdsourcing.

6. Conclusion
In this work, we have proposed a novel “human-in-the-

loop” approach for fine-grained recognition. First, we in-

2[6] uses segmentation and only evaluates on uncropped images.

Method Accuracy (%)

MKL [5] 19.0

Random Forest [37] 19.2

Hierarchical Matching [7] 19.2

Multi-cue [15] 22.4

KDES [2, 1] 26.2

TriCos [6] 26.7

Ours (Random Bubbles) 26.5

Ours 32.8
Table 2. Results on CUB-200.

troduce a new online game “Bubbles” that reveals impor-

tant features humans in fine-grained recognition. The game

is domain agnostic and guarantees high quality data. Sec-

ond, we propose the “BubbleBank” algorithm that uses the

human selected bubbles to learn classifiers for fine-grained

categories. Experiments demonstrates large improvements

of our approach over the previous state of the art.

Acknowledgments We thank Alexandre Alahi, Michelle

Greene, Olga Russakovsky, Bangpeng Yao, and anonymous re-

viewers for their comments. The research is partially supported by

grants from Intel ISTC, an ONR-MURI, and NSF-IIS-1115313.

References
[1] http://www.cs.washington.edu/robotics/projects/kdes/.

[2] L. Bo, X. Ren, and D. Fox. Kernel descriptors for visual

recognition. NIPS, 7, 2010.

[3] L. Bourdev and J. Malik. Poselets: Body part detectors

trained using 3d human pose annotations. In CVPR, 2009.

[4] S. Branson, P. Perona, and S. Belongie. Strong supervision

from weak annotation: Interactive training of deformable

part models. In ICCV, Barcelona, 2011.

[5] S. Branson, C. Wah, F. Schroff, B. Babenko, P. Welinder,

P. Perona, and S. Belongie. Visual recognition with humans

in the loop. ECCV, 2010.

[6] Y. Chai, E. Rahtu, V. Lempitsky, L. Van Gool, and

A. Zisserman. Tricos: A tri-level class-discriminative co-

segmentation method for image classification. In ECCV,

2012.

[7] Q. Chen, Z. Song, Y. Hua, Z. Huang, and S. Yan. Hierarchi-

cal matching with side information for image classification.

In CVPR, 2012.

[8] J. Deng, A. Berg, K. Li, and L. Fei-Fei. What does clas-

sifying more than 10,000 image categories tell us? ECCV,

2010.

[9] J. Donahue and K. Grauman. Annotator rationales for visual

recognition. In ICCV, 2011.

[10] G. Druck, B. Settles, and A. McCallum. Active learning by

labeling features. In EMNLP, 2009.

[11] K. Duan, D. Parikh, D. Crandall, and K. Grauman. Dis-

covering localized attributes for fine-grained recognition. In

CVPR, 2012.

[12] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. Liblin-

ear: A library for large linear classification. The Journal of
Machine Learning Research, 9:1871–1874, 2008.

584584586

Figure 9. Test images and their top bubbles that contribute most to the classification decision. All bubbles are normalized to the same size

for viewing. Top and middle row: Correctly classified test examples. Bottom row: Incorrectly classified test examples.

[13] R. Farrell, O. Oza, N. Zhang, V. Morariu, T. Darrell, and

L. Davis. Birdlets: Subordinate categorization using volu-

metric primitives and pose-normalized appearance. In ICCV,

2011.

[14] F. Gosselin and P. Schyns. Bubbles: a technique to reveal

the use of information in recognition tasks. Vision research,

41(17):2261–2271, 2001.

[15] F. Khan, J. van de Weijer, A. Bagdanov, and M. Vanrell.

Portmanteau vocabularies for multi-cue image representa-

tion. NIPS, 2011.

[16] N. Kumar, P. Belhumeur, A. Biswas, D. Jacobs, W. Kress,

I. Lopez, and J. Soares. Leafsnap: A computer vision system

for automatic plant species identification. ECCV, 2012.

[17] E. Law, B. Settles, A. Snook, H. Surana, L. von Ahn, and

T. Mitchell. Human computation for attribute and attribute

value acquisition. In Proceedings of the First Workshop on
Fine-Grained Visual Categorization (FGVC), 2011.

[18] L. Li, H. Su, E. Xing, and L. Fei-Fei. Object bank: A

high-level image representation for scene classification and

semantic feature sparsification. NIPS, 24, 2010.

[19] J. Liu, A. Kanazawa, D. Jacobs, and P. Belhumeur. Dog

breed classification using part localization. ECCV, 2012.

[20] S. Maji. Discovering a lexicon of parts and attributes. In Sec-
ond International Workshop on Parts and Attributes, ECCV,

2012.

[21] S. Maji and G. Shakhnarovich. Part annotations via pairwise

correspondence. In Workshops at the Twenty-Sixth AAAI
Conference on Artificial Intelligence, 2012.

[22] D. Parikh and K. Grauman. Interactively building a discrim-

inative vocabulary of nameable attributes. In CVPR, 2011.

[23] D. Parikh and C. Zitnick. Human-debugging of machines. In

Second Workshop on Computational Social Science and the
Wisdom of Crowds, NIPS, volume 11, 2011.

[24] A. Parkash and D. Parikh. Attributes for classifier feedback.

In ECCV, 2012.

[25] O. Parkhi, A. Vedaldi, A. Zisserman, and C. Jawahar. Cats

and dogs. In CVPR, 2012.

[26] A. Sorokin and D. Forsyth. Utility data annotation with ama-

zon mechanical turk. In CVPRW, 2008.

[27] K. E. A. van de Sande, T. Gevers, and C. G. M. Snoek.

Evaluating color descriptors for object and scene recogni-

tion. TPAMI, 32(9):1582–1596, 2010.

[28] J. Van De Weijer, C. Schmid, and J. Verbeek. Learning color

names from real-world images. In CVPR, 2007.

[29] S. Vijayanarasimhan and K. Grauman. Large-scale live ac-

tive learning: Training object detectors with crawled data and

crowds. In CVPR, 2011.

[30] L. Von Ahn and L. Dabbish. Labeling images with a com-

puter game. In CHI, pages 319–326. ACM, 2004.

[31] L. Von Ahn, R. Liu, and M. Blum. Peekaboom: a game for

locating objects in images. In CHI. ACM, 2006.

[32] C. Wah, S. Branson, P. Perona, and S. Belongie. Multiclass

recognition and part localization with humans in the loop. In

ICCV, Barcelona, 2011.

[33] C. Wah, S. Branson, P. Welinder, P. Perona, S. Belongie, and

C. Wah. Caltech-ucsd birds-200-2011, 2011.

[34] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.

Locality-constrained linear coding for image classification.

In CVPR, 2010.

[35] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Be-

longie, and P. Perona. Caltech-ucsd birds 200. 2010.

[36] B. Yao, G. Bradski, and L. Fei-Fei. A codebook-free and

annotation-free approach for fine-grained image categoriza-

tion. In CVPR, 2012.

[37] B. Yao, A. Khosla, and L. Fei-Fei. Combining randomization

and discrimination for fine-grained image categorization. In

CVPR, 2011.

[38] N. Zhang, R. Farrell, and T. Darrell. Pose pooling kernels for

sub-category recognition. In CVPR, 2012.

585585587

