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Abstract

We are interested in holistic scene understanding where
images are accompanied with text in the form of complex
sentential descriptions. We propose a holistic conditional
random field model for semantic parsing which reasons
jointly about which objects are present in the scene, their
spatial extent as well as semantic segmentation, and em-
ploys text as well as image information as input. We auto-
matically parse the sentences and extract objects and their
relationships, and incorporate them into the model, both via
potentials as well as by re-ranking candidate detections. We
demonstrate the effectiveness of our approach in the chal-
lenging UIUC sentences dataset and show segmentation im-
provements of 12.5% over the visual only model and detec-
tion improvements of 5% AP over deformable part-based
models [8].

1. Introduction

Images rarely appear in isolation. Photo albums are

usually equipped with brief textual descriptions, while im-

ages on the web are usually surrounded by related text. In

robotics, language is the most convenient way to teach an

autonomous agent novel concepts or to communicate the

mistakes it is making. For example, when providing a novel

task to a robot, such as ”pass me the stapler”, we could pro-

vide additional information, e.g., ”it is next to the beer bot-

tle on the table”. This textual information could be used

to greatly simplify the parsing task. Despite this, the cur-

rent most popular active learning paradigm is to provide the

learner with additional labeled examples which were am-

biguous or wrongly parsed, resulting in a tedious process.

In the past decade, we have witnessed an increasing

interest in the computer vision community into leverag-

ing text and image information in order to improve image

retrieval [12, 27] or generate brief description of images

[7, 15, 19, 1]. However, very few approaches [18, 26] try

to use text to improve semantic understanding of images

beyond simple image classification [21], or tag generation

[6, 2]. This is perhaps surprising, as image descriptions
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Figure 1. Our holistic model which employs visual information as

well as text in the form of complex sentences.

can resolve a lot of ambiguities inherent to visual recog-

nition tasks. If we were able to retrieve the objects and stuff

present in the scene, their relations and the actions they per-

form from textual descriptions, we should be able to do a

much better job at automatically parsing those images.

Here we are interested in exploiting textual information

for semantic scene understanding. In particular, our goal is

to reason jointly about the scene type, objects, their location

and spatial extent in an image, while exploiting textual in-

formation in the form of complex sentential image descrip-

tions generated by humans.

Being able to extract semantic information from text

does not entirely solve the image parsing problem, as we

cannot expect sentences to describe everything that is hap-

pening in the image, and in too great detail. Recent stud-

ies have shown that humans describe certain things and not

others, perhaps as they are considered more important [3]

or more surprising. Furthermore, not all information in the

descriptions may be visually relevant, thus textual informa-

tion also contains considerable noise for the task of interest,

which needs to be properly handled. Moreover, natural lan-

guage parsing algorithms are not perfect, resulting in noisy

estimates.

In this paper we propose a holistic model for semantic

parsing which employs text as well as image information.
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Our model is a conditional random field (CRF) which em-

ploys complex sentential image descriptions to jointly rea-

son about multiple scene recognition tasks. We automati-

cally parse the sentences and extract objects and their re-

lationships, and incorporate those into the model, both via

potentials as well as by re-ranking the candidate bounding

boxes. We demonstrate the effectiveness of our approach in

the challenging UIUC dataset [7], which is a subset of PAS-

CAL VOC 2008, and show that by employing textual infor-

mation, our approach is able to improve detection’s AP by

5% over deformable part-based models [8] and segmenta-

tion AP by 12.5% over state-of-the-art holistic models [29].

2. Related Work
In the past decade, a variety of approaches have looked

into linking individual words to images, e.g., by predicting

words from image regions [6, 2]. More recently, some ap-

proaches tried to generate sentential descriptions from im-

ages [7] and video [1, 9]. The generated sentences are se-

mantically richer than a list of words, as the former describe

objects, their actions and inter-object relations. [7] gener-

ated sentences by learning a meaning space which is shared

between text and image domains. As the latent space is

symmetric, images can also be retrieved given descriptions.

Recognition algorithms (e.g., object detectors) have been

employed in order to produce more accurate sentence gen-

eration. The idea is to use the detected (tracked, in case

of a video) objects and their estimated actions to produce

richer sentences. In [15], detection and segmentation are

exploited to construct a CRF that reasons about actions and

object attributes. When a large dataset of images and associ-

ated captions is available, NN techniques can be employed

to perform sentence retrieval. In [19], a few neighbors are

retrieved using simple global descriptors. These neighbors

are further re-ranked based on more semantic image con-

tent: objects, stuff, people and scene type. In [1], sentences

were generated by parsing semantically videos into objects

and their relations defined by actions.

Topic models have been widely employed to model text

and images, particularly for retrieval tasks. Corr-LDA [4]

was proposed to capture the relations between images and

text annotations, but assumes a one to one correspondence

between text and image topics. Different approaches have

been proposed to avoid this assumption. In [20], regression

is used to predict the topics in one modality from the topics

in the other. This is further extended in [12] so that each

image does not have to be associated with a text descrip-

tion. Topic models have also been used for word sense dis-

ambiguation [22], where the task is to learn a visual model

based only on the name of an object. As words are gener-

ally polysemous, this approach can lead to noisy models if

no special treatment of the different senses is performed.

Berg et al. [3] aimed at predicting what’s important in

Figure 2. Extracting prepositional relations from text.

images. They used sentences generated by humans de-

scribing the images in order to analyze what humans think

is important. Their approach assumes that composition

(e.g., size, location), semantics (e.g., object classes) as well

as contextual factors (i.e., attribute-object and object-scene

pairs) are a good proxy for predicting importance.

Despite the large body of work in generating descrip-

tions or word annotations from images, there is little work

into trying to use text to improve recognition. In [21], im-

age captions were employed in a transfer learning scenario

to improve image classification. A dataset of images and

tags is employed in [27] to learn mutimodal deep bolzmann

machines. By designing the first set of layers to be task

dependent, and the deeper layers to be shared by both do-

mains, useful representations can be learned that improve

both retrieval and image classification. Moreover, tags can

also be generated from this model. Gupta et al. [9] used

prepositional relations and comparative adjectives to learn

object detection models from weakly labeled data.

In [26], a corpus of webpages and non-aligned images

are employed to learn a shared latent space using Kernel-

CCA. Very promising improvements were obtained in the

case of image annotation, however, performance of segmen-

tation was rather poor. This is due to the difficulty of the

problem, as a corpus of non-aligned news articles was em-

ployed. Li et al. [18] proposed a holistic generative model

that reasons about classification, annotation (which classes

are present in the scene) as well as segmentation. Tags are

used to learn the holistic model with no other form of su-

pervision. While these approaches are useful when labeled

data is scarce, we would like to leverage additional supervi-

sion when available. Towards this goal, we utilize semantic

labelings and rich textual descriptions of images to learn

powerful holistic models. Importantly, our model is able to

obtain very significant performance improvements in stan-

dard segmentation and detection tasks i.e., PASCAL VOC.

3. Automatic Text Extraction
In this section we show how to extract meaningful in-

formation from complex sentences for our image parsing

task. We extract part of speech tags (POS) of all sentences

using the Stanford POS Tagger for English language [28].

We parse syntactically the sentences and obtain a parse tree

using the Stanford Parser with factored model [13]. Type

dependencies were obtained using [5]. Highly efficient and
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Figure 3. Size statistics when a class is mentioned or not

portable implementations of these algorithms are available

online 1. Fig. 2 shows an example of POS as well as parse

trees obtained for our sentences. Given the POS, parse trees

and type dependencies, we would like to extract whether an

object class was mentioned as well as its cardinality (i.e.,

number of instances). Additionally, we are interested in ex-

tracting the relationships between the different objects, e.g.,

object A is near or on top of object B. We now discuss how

to extract each type of information.

Presence of a Class: Text can be used to detect the pres-

ence/absence of a class. This can be done by extracting

nouns from the POS, and matching those nouns to the ob-

ject classes. In order to maximize the number of matched

instances, we match nouns not only to the name of the class,

but also to its synonyms and plural forms. This is important,

as man, men and child are all synonyms of person.

Object Cardinality: The object cardinality can appear in

the sentence in two different forms. First, it can be explicitly

mentioned. For example in the sentence ”two children play-

ing on the grass”, we only need to extract the word ”two”.

This can be simply done by extracting the part of speech

tag denoted CS, which encodes the cardinality. The second

form is implicit, and arises when an explicit enumeration is

not given. In this case, only a lower bound on the cardinal-

ity can be extracted. For this purpose, we parse the entire

sentence from left to right and with each mention of a class

noun we increase the count by 1 or 2, depending whether

the word used is singular or plural. For example, we add 1

when we parse ”child” and 2 when we parse ”men”. This

processing is applied to each sentence individually.

Object Relations: We extract object relations by extract-

ing prepositions and the objects they modify. Towards this

goal, we first locate the prepositions of interest in the sen-

tence (i.e., near, in, on, in front of ). For each preposi-

tion we utilize the parse tree in order to locate the objects

modified by the preposition. This allow us to create tu-

ples of the form (object1, prep, object2). Note that for a

given preposition there could be more than one tuple of this

form as well as more than one preposition in each sentence.

For example in the sentence ”two planes are parked near a

car and a person”, we can extract (plane, near, car) and

(plane, near, person). To compute object2 we search for

1http://nlp.stanford.edu/software/index.shtml

NPs on the right side of the preposition by traversing the

tree. We then return the nouns in the NP which are syn-

onyms of our object classes. In the case of object1, we

move up the tree until we hit S or NP and return the nouns in

the left child that are NPs which contain our object classes.

4. Holistic Scene Understanding
In this section we describe our approach to holistic scene

understanding that uses text as well as image information in

order to reason about multiple recognition tasks, i.e., seg-

mentation, detection, scene classification. We formulate the

problem as the one of inference in a CRF. The random field

contains variables representing the class labels of image

segments at two levels in a segmentation hierarchy (smaller

and larger segments) as well as binary variables indicating

the correctness of candidate object detections. In addition,

binary variables encode the presence/absence of a class in

the scene. Fig. 1 gives an overview of our model. Note that

this type of structure has been successfully used for seman-

tic parsing of still images [29, 16].

More formally, let xi ∈ {1, · · · , C} be a random vari-

able representing the class label of the i-th segment in the

lower level of the hierarchy, while yj ∈ {1, · · · , C} is a

random variable associated with the class label of the j-th

segment of the second level of the hierarchy. Following re-

cent approaches [16, 17, 29], we represent the detections

with a set of candidate bounding boxes. Let bl ∈ {0, 1} be

a binary random variable associated with a candidate detec-

tion, taking value 0 when the detection is a false detection.

Let zk ∈ {0, 1} be a random variable which takes value 1 if

class k is present in the image.

We define our holistic CRF as

p(x,y, z,b, s) =
1

Z

∏
type

∏
α

ψtype
α (aα) (1)

where ψtype
α encodes potential functions over sets of vari-

ables. Joint inference is then performed by computing the

MAP estimate of the random field defined in Eq. 1.

In the following, we describe the different potentials that

define our model. For clarity, we describe the potentials in

the log domain, i.e., wtypeφ
type
α = log(ψα). We employ

a different weight for each type of potential, and share the

weights across cliques. We learn the weights from training

data using the structure prediction framework of [11].

We employ potentials which utilize the image I , text T ,

as well as statistics of the variables of interest. In addi-

tion, compatibility potentials relate the different tasks in the

model (i.e., segmentation, detection and classification). We

now describe the potentials we employed in detail.

4.1. Segmentation Potentials

Unary segmentation potential: We compute the unary

potential for each region at segment and super-segment
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Textonboost (unary) [24] 77.8 14.1 3.4 0.7 11.3 3.3 25.5 30.9 10.3 0.7 13.2 10.8 5.2 15.1 31.8 41.0 0.0 3.7 2.4 17.1 33.7 16.8

Holistic Scene Understanding [29] 77.3 25.6 12.9 14.2 19.2 31.0 34.6 38.6 16.1 7.4 11.9 9.0 13.9 25.4 31.7 38.1 11.2 18.8 6.2 23.6 34.4 23.9

[29] num boxes from text 77.8 26.7 14.3 11.5 18.6 30.8 34.4 37.9 17.2 5.7 19.0 7.3 12.4 27.3 36.5 37.1 11.6 9.4 6.2 25.7 43.8 24.3

ours 76.9 31.3 29.7 37.3 27.7 29.5 52.1 40.0 38.0 6.6 55.9 25.2 33.2 38.2 44.3 42.5 15.2 32.0 20.2 40.7 48.4 36.4

Table 1. Comparison to the state-of-the-art that utilizes only image information in the UIUC sentence dataset. By leveraging text infor-

mation our approach improves 12.5% AP. Note that this dataset contains only 600 PASCAL VOC 2008 images for training, and thus is

significantly a more difficult task than recent VOC challenges which have up to 10K training images.

level by averaging the TextonBoost [16] pixel potentials

inside each region. Thus, our segmentation potentials

φs(xi|I) and φs(yj |I) depend only on the image.

Segment-SuperSegment compatibility: To encode long

range dependencies as well as compatibility between the

two levels of the hierarchy we use the Pn potentials of [14],

φi,j(xi, yj) =

{
−γ if xi �= yj

0 otherwise.

Note that since we learn the weight associated with this po-

tential, we are implicitly learning γ.

4.2. Class Presence Potentials

Class Presence from Text: We use two types of unary

potentials, depending on whether a class was mentioned or

not in the text. When a class is mentioned, we use the aver-

age cardinality (across all sentences) for each class

φclassment (zi|T ) =
{
C̄ard(i) if zi = 1 and class i mentioned

0 otherwise.

When a class is not mentioned we simply use a bias

φclassnotment(zi|T ) =
{
1 if zi = 0 and class i not mentioned

0 otherwise.

We learn different weights for these two features for each

class in order to learn the statistics of how often each class

is “on” or “off” depending on whether it is mentioned.

Class Presence Statistics from Images: We employ the

statistics of the training images in order to compute a unary

potential over the presence and absence of each class zi.

Class-Segment compatibility: This potential ensures

that the classes that are inferred to be present in the scene

are compatible with the classes that are chosen at the seg-

ment level. Thus

φj,k(yj , zk) =

{
−η if yj = k ∧ zk = 0

0 otherwise.

with η an arbitrarily large number, which is also learned.

4.3. Object Detection Potentials

We use DPM [8] to generate candidate object hypothe-

ses. Each object hypothesis comes with a bounding box, a

class, a score and mixture component id. In our model, we

use the detections and reason about whether they are correct

or not. In order to keep detections and segmentation coher-

ent, each box b� is connected to the segments xi it intersects

with. Furthermore, each b� is connected to z to ensure co-

herence at the image level. We now describe the potentials.

Object Candidate Score: We employ DPM [8] as de-

tector. It uses a class-specific threshold that accepts only

the high scoring hypotheses. We reduce these thresholds to

ensure that at least one box per class is available for each

image. To keep the CRF model efficient, we upper bound

the number of object hypotheses to be 3 per class. Thus,

each images has at most 60 boxes (UIUC dataset has 20

classes). For each image, we use the boxes that pass the

DPM thresholds, unless the object class is specifically men-

tioned in text. In this case, we add as many boxes as dictated

by the extracted object cardinality C̄ard(cls). We utilize

both text and images to compute the score for each detec-

tion. In particular, for each box we compute a feature vector

composed of the original detector’s score, the average car-

dinality for that class extracted from text, as well as object

size relative to the image size. We use the latter since ob-

jects mentioned/not mentioned have different statistics (see

Fig. 4). Since people usually tend to describe the salient

objects, the non mentioned objects are usually small. We

train a SVM classifier with a polynomial kernel with these

features. Utilizing this classifier yields text-rescored object

scores r�, which we use to re-rank the detections. We in-

clude the score in the model as a unary potential as follows:

φBBox
cls (bl|I, T ) =

{
σ(rl) if bl = 1 ∧ cl = cls

0 otherwise.

Here cl is the detector’s class, and σ(x) = 1/(1 +
exp(−1.5x)) is a logistic function. We employ a differ-

ent weight for each class in order to perform “context re-

scoring” within our holistic model.

Cardinality potential: We use a high-order potential on

the b� variables to exploit the cardinality estimated from

text. This does not slow down inference significantly as
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[29] num boxes from text 77.8 26.7 14.3 11.5 18.6 30.8 34.4 37.9 17.2 5.7 19.0 7.3 12.4 27.3 36.5 37.1 11.6 9.4 6.2 25.7 43.8 24.3

text rescored det. 77.9 28.1 12.8 31.0 32.3 32.3 44.3 42.1 27.4 6.4 26.0 22.1 24.1 29.5 37.3 40.8 11.4 21.6 16.5 26.8 45.1 30.3

+ card and scene 76.9 30.2 29.3 37.4 26.2 29.5 52.0 40.5 38.0 6.8 55.4 25.5 31.9 37.4 44.3 42.4 15.2 32.1 18.4 33.3 48.4 35.8

+ prep 76.9 31.3 29.7 37.3 27.7 29.5 52.1 40.0 38.0 6.6 55.9 25.2 33.2 38.2 44.3 42.5 15.2 32.0 20.2 40.7 48.4 36.4

Table 2. Performance gain when employing different amounts of text information. Our method is able to gradually increase performance.
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Oracle Z - noneg 76.8 36.7 28.3 34.8 21.9 30.9 56.1 47.6 36.8 10.0 58.2 28.8 33.4 54.8 42.6 41.8 15.1 28.1 16.3 35.7 48.7 37.3

Oracle Z - neg 76.8 31.2 28.2 34.7 21.7 31.1 56.0 50.3 36.7 10.5 57.4 29.5 34.4 55.1 42.5 41.9 16.9 32.2 18.8 35.7 49.2 37.7

ours 76.9 31.3 29.7 37.3 27.7 29.5 52.1 40.0 38.0 6.6 55.9 25.2 33.2 38.2 44.3 42.5 15.2 32.0 20.2 40.7 48.4 36.4

Table 3. Comparison to oracle Z (see text for details).

the high-order potential is over binary variables. In this po-

tential we would like to encode that if the text refers to two

cars being in the image, then our model should expect at
least two cars to be on. Thus our potential should penalize

all car box configurations that have cardinality smaller than

the estimated cardinality. We thus define two potentials

φBBox
card−1(b

i|T ) =
{
−ζ1 if C̄ard(i) ≥ 1 and

∑
j b

i
j = 0

0 otherwise.
and

φBBox
card−2(b

i|T ) =
{
−ζ2 if C̄ard(i) ≥ 2 and

∑
j b

i
j = 1

0 otherwise.

where bi = {bi1, bi2, · · · } refers to all detections of class i.
We utilize two potentials to deal with noise in estimation,

as the higher the cardinality the more noisy the estimate is.

Using prepositions: People tend to describe the objects

in relation to each other, e.g., “the cat is on the sofa”.

This additional information should help boost certain box

configurations that are spatially consistent with the rela-

tion. In order to exploit this fact, we extract prepositions

from text and use them to score pairs of boxes. In par-

ticular, we extracted four prepositions (i.e., near, in, on,

in front of ) from text using the algorithm proposed in the

previous section. For each relation, we get a triplet rel =
(cls1 , prep, cls2 ). We train a classifier for each preposi-

tion that uses features defined over pairs of bounding boxes

of the referred object classes, e.g., if the extracted relation

was {person, in − front − of , car}, we take top 5 detec-

tions for person and car and form all possible pairs. For

each pair, we extract the following spatial relation features:

distance and signed distance between the closest left/right

or top/bottom sides, amount of overlap between the boxes,

and scores of the two boxes. We collect these feature vec-

tors for each preposition ignoring the actual labels of the

objects. We train for each preposition an SVM classifier

with a polynomial kernel using these features. For each re-

lation rel = (cls1 , prep, cls2 ) extracted from text, we form

all possible pairs between the boxes for class cls1 and class

cls2. We compute the new score for each box using the

preposition classifier on the pairwise features as follows

r̂i = max
j,prep

score(ri,j,prep)

near on in in front of
0

0.5

1

1.5

2

Prepositions (relation only):  39.4 %

A
cc

ur
ac

y
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True pos.
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Figure 5. Text extraction accuracies: prepositions

where ri,j,prep is the output of the classifier for preposition

prep between boxes i and j. We do similarly for the box for

cls2. While order of classes (left or right to the preposition)

might matters for certain prepositions (such as “on top of”)

in our experiments ignoring the position of the box yielded

the best results. We then define unary potentials as

φprep(b�|T ) =
{
r̂i if bl = 1

0 otherwise.

Class-detection compatibility: This term allows the

bounding box to be active only when the class label of that

object is also declared as present in the scene. Thus

φBClass
l,k (bl, zk) =

{
−α if zk = 0 ∧ cl = k ∧ bl = 1

0 otherwise.

where α is a very large number estimated during learning.

Shape prior: The mixture components of a part-based

model typically reflect the pose and shape of the ob-

ject. Following [29], we exploit this by defining potentials

φshcls(xi, bl|I) which utilize a shape prior for each compo-

nent. Note that this feature only affects the segments inside

the bounding box. We learn a different weight per-class, as

the shape prior is more reliable for some classes than others.

4.4. Scene Potentials

Text Scene Potential: We first extract a vocabulary of

words appearing in the full text corpus, resulting in 1793

words. We then train an SVM classifier with an RBF ker-

nel over the bag-of-words (textual, not visual). As an addi-

tional feature, we use the average extracted cardinality for
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Figure 4. Text extraction accuracies: Cardinality

each class, which significantly boosted performance. We

then define the unary potential for the scene node as

φScene(s = u|T ) = σ(tu)

where tu denotes the classifier score for scene class u and σ
is again the logistic function.

Scene-class compatibility: Following [29], we define a

pairwise compatibility potential between the scene and the

class labels as

φSC(s, zk) =

⎧⎪⎨
⎪⎩
fs,zk if zk = 1 ∧ fs,zk > 0

−τ if zk = 1 ∧ fs,zk = 0

0 otherwise.

where fs,zk represents the probability of occurrence of class

zk for scene type s, which is estimated empirically from the

training images. This potential “boosts” classes that fre-

quently co-occur with a scene type, and “suppresses” the

classes that rarely co-occur with it.

4.5. Learning and Inference

Inference in this model is typically NP-hard. We rely on

approximated algorithms based on LP relaxations. In par-

ticular, we employ the distributed convex belief propagation

algorithm of [23] to compute marginals. For learning, we

employ the primal-dual algorithm of [11] and optimize the

log-loss. Following [29], we utilize a holistic loss which is

the sum of the losses of the individual tasks. Intersection

over union is used for detection, 0-1 loss for classification

and pixel-wise labeling for segmentation.

5. Experimental Evaluation
To evaluate our method we use the UIUC dataset [7],

which contains 1000 images taken from PASCAL VOC

2008. We use the segmentation annotations of [10], which

has labels for most images. We labelled the missing images

ourselves, and corrected some of the noisier MTurk annota-

tions. Following [7], we use the first 600 images for train-

ing, and the remaining 400 for testing. Thus each class has

∼ 50 training images. In addition, each image contains up

to 5 sentences, 3 on average. We trained the DPM detectors

using all VOC’10 trainval images excluding our test set.

Extracting information from text: We first evaluate the

accuracy of the extracted information from text. We hand-

annotated GT cardinality and prepositions for each sen-

tence, which we call textGT. These annotations solely de-

pend on text, and thus only the mentioned entities are con-

tained in textGT, e.g., for man is walking with child, the

textGT cardinality for person is two even though there may

be more people in the image. This allows for a fair eval-

uation of our automatic text extraction. The top row of

Fig. 4 shows the performance for our cardinality extraction

technique with respect to: (a) Reliability – the number of

times the image contains at least as many objects as the

predicted cardinality, (b) visual information – the number

of true, missed and extra predictions of the objects from

text, compared to the visual GT, and (c) textGT – the num-

ber of true, missed and extra predictions of the object from

text, compared to the textGT. Most missed cases belong to

the most common and non-salient classes chair, car, potted-

plant, bottle and bird. The plots show that the prediction of

the lower bound on the number of objects is generally good

(left), while the actual precision based on textGT is accept-

able (right) and the precision with respect to visual GT is

rather poor. In most cases the predicted cardinality is much

lower than the actual number of objects in the image. This

is likely due to the fact that people tend to describe the most

interesting/salient object in the image and pay less attention

to smaller and more common objects. However, despite the

rather low prediction accuracy, our experiments show that

cardinality is a very strong textual cue. Fig. 5 shows accu-

racy of preposition extraction from text.

Scene classifier: We used 15 scene types (i.e., dining

area, room, furniture, potted-plant, cat, dog, city, motor-

bike, bicycle, field/farm, sheep, sky, airport, train, sea). Our

text-based scene classifier achieved 76% classification ac-

curacy. The best visual scene classifier achieved only 40%.

Holistic parsing using text: We next evaluate our holistic

model for semantic segmentation. As evaluation measure,

we employ the standard VOC IOU meassure. Our base-

lines consists of TextonBoost [25] (which is employed by

our model to form segmentation unary potentials) as well

as the holistic model of [29], which only employs visual in-

formation. As shown in Table 2, due to little training data

the unary alone performs very poorly (17%). The holistic

model of [29] achieves 23.9%. In contrast, by leveraging

text, our approach performs very well, achieving 36.4%.

Fig. 7 shows some examples of our inference.
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Figure 6. Segmentation accuracy as a function of the number of

sentences used per image: (a) all sentences in training, and differ-

ent number in test, (b) N in train and N test

Parsing with Oracle: Table 3 shows results obtained with

our approach when using GT cardinality potentials instead

of text cardinality potentials. Note that GT cardinality only

affects the potential on z and potential on the number of de-

tection boxes. The remaining potentials are kept the same.

“GT noneg” denotes the experiment, where we encourage

at least as many boxes as dictated by the cardinality to be

on in the image. With “GT-neg” we denote the experiment

where we also suppress the boxes for classes with card. 0.

This means that for images where GT card. for a class is 0,

we simply do not put any boxes of that class in the model.

Interestingly, by using GT instead of extracted cardinal-

ities from text, we do not observe a significant boost in per-

formance. This means that our holistic model is able to fully

exploit the available information about the scene.

Model components: We next show how different compo-

nents of our model influence its final performance. Rescor-

ing the DPM detections via text gives significant improve-

ment in AP, as shown in Table 4. We use these detections

as candidate hypotheses in our model. Plugging the text-

rescored detections directly into the model of [29] improves

its performance to 30.3%. Adding the text-based cardinal-

ity and scene potentials, boosts the performance by another

5.5%, achieving 35.8%. Finally, using also the prepositions

extracted from text, gives the final performance of 36.4%.

Amount of Text: We also experimented with the number

of sentences per image. We tried two settings, (a) by using

all available sentences per image in training, but different

number in test, and (b) by varying also the number of train-

ing sentences. The segmentation results are shown in Fig. 5;

As little as one sentence per image already boosts the per-

formance to 32%. Since sentences can also not be directly

related to the visual content of the image, having more of

them increases performance. Two sentences already per-

form at the maximum. Similarly, re-scoring the detector in

the same regime, shows that the detector achieves close to

the best accuracy already with one sentence (Table 4). Fig. 5

shows results with different number of test sentences.

Time considerations: Our approach takes 1.8h for train-

ing the full dataset and 4.3s on average per image.

# train 1 2 3 4 all all all all all

# test 1 2 3 4 1 2 3 4 all

T-DPM 35.6 36.1 36.3 36.7 35.6 36.3 36.4 36.6 36.6

DPM 31.5

Table 4. Results: Detector’s AP (%) using text-based re-scoring

for different number of sentences used per image in train and test.

6. Conclusions
In this paper, we tackled the problem of holistic scene

understanding in scenarios where visual imagery is accom-

panied by text in the form of complex sentential descrip-

tions or short image captions. We proposed a CRF model

that employs visual and textual data to reason jointly about

objects, segmentation and scene classification. We showed

that by leveraging text, our model improves AP over vision-

only state-of-the-art holistic models by 12.5%. As part of

future work, we plan to exploit additional textual informa-

tion (e.g., attributes) as well as leverage general text that

accompanies images in webpages, e.g., Wikipedia.
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