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Abstract

In this paper we propose a novel Semantic Bundle Ad-

justment framework whereby known rigid stationary objects

are detected while tracking the camera and mapping the en-

vironment. The system builds on established tracking and

mapping techniques to exploit incremental 3D reconstruc-

tion in order to validate hypotheses on the presence and

pose of sought objects. Then, detected objects are explic-

itly taken into account for a global semantic optimization

of both camera and object poses. Thus, unlike all systems

proposed so far, our approach allows for solving jointly the

detection and SLAM problems, so as to achieve object de-

tection together with improved SLAM accuracy.

1. Introduction

The visual SLAM problem concerns the ability to incre-

mentally reconstruct the world and simultaneously localize

the sensing device by means of visual cues only. In the last

decade, the field has witnessed impressive advances, with

effective tools available for applications such as AR [17, 23]

or robot navigation and mapping [10, 24]. The classical ap-

proach builds on filtering techniques, such as the Extended

Kalman Filter (EKF) [10, 11, 8]: visual features are tracked

through frames and their 3D positions estimated along with

the unknown camera pose. As only a small subset of the im-

age pixels is tracked, such methods usually produce sparse

maps. Alternatively, the visual SLAM problem has been

tackled by a Bundle Adjustment (BA) style optimization

[27] carried out on a selected subset of frames, usually re-

ferred to as keyframes [17, 24].

One of the most successful BA-style system is PTAM

[17]. The authors propose to split the SLAM problem into

two different tasks associated with parallel threads: one

tracks the camera with respect to current estimates of land-

mark locations, the other is in charge of the global opti-

mization over selected keyframes. As complexity grows

rapidly with the number of features extracted from the en-

vironment, PTAM can be used effectively only within small

workspaces. To overcome this limitation, Strasdat et al. [24]

propose not to consider the whole set of past keyframes

while tracking, but only a small subset of them, thereby

achieving constant time complexity.

Recently, the advent of the Kinect, a 30Hz, low-cost,

low-range RGB-D sensor, has fostered the SLAM commu-

nity towards novel approaches that would optimally exploit

the device. Initial proposals were mainly based on fea-

ture matching and incremental optimization [14, 13], but

soon Newcombe et al. developed Kinect Fusion [23], a new

dense algorithm providing outstanding performance both in

terms of extremely low drift as well as smooth surface re-

construction.

While the tracking and mapping task has thus reached

a certain degree of maturity, none of previous methods can

seamlessly handle or derive semantic information within the

visual SLAM process. Indeed, nowadays the scientific com-

munity is showing ever increasing interest for the novel field

of semantic perception and mapping [12, 9, 19]. The intu-

ition is that a partial reconstruction of the environment can

improve the object detection task, so as to better handle nui-

sances such as occlusions, clutter and viewpoint changes,

while the knowledge of object poses provides useful con-

straints to improve the mapping and tracking tasks. Though

some interesting steps grounded on the above intuition have

been made [9, 7, 4, 3], we claim that none of current propos-

als has really closed the detection-SLAM loop (see Sec. 2).

Accordingly, in this paper we propose a novel framework

for fully integrated SLAM and object detection, which we

dub Semantic Bundle Adjustment. It features the following

peculiar traits:

• it can work with both 2D and 3D sensors;

• object detection is cast as a BA-style optimization that

can be integrated seamlessly into any BA-based SLAM

system;

• SLAM constraints are deployed to robustify object de-

tection, object detection constraints to improve SLAM;

• joint 6DOF object and camera poses estimation is
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achieved through a novel semantic global optimiza-

tion.

The paper is organized as follows. Next section summa-

rizes similar works and highlights the novelty of our pro-

posal. Then, the method is described in Sec. 3. Quantitative

and qualitative results are provided in Sec. 4. Finally, Sec.

5 reports some concluding remarks.

2. Related Work

Many recent works share the idea of combining seman-

tic knowledge and geometrical constraints for scene under-

standing. Unlike our proposal, most of them [12, 15, 20]

perform the object detection task on a single view and hence

do not enforce multi-view consistency. In particular, Ekvall

et al. [12] do not try to estimate the exact position of de-

tected objects, even though detection is tight to a SLAM

framework. Others exploit geometric information for con-

sistent object detection, but without deploying previously

detected objects to constrain the mapping task, as instead

we actually do. Vasudevan et al. [28] detect objects using a

standard feature-based pipeline [21] and use the estimated

relative poses for place representation. Meger et al. [22]

find known objects in a map built from laser and odometry

data, but again the object and camera poses are not esti-

mated jointly.

Interesting results on joint detection and reconstruction

have been reported in [9, 19]. The former introduces the no-

tion of “cognitive loop”, but detection is limited to cars and

pedestrians and, moreover, strong assumptions are made

about the environment and camera motion. The latter pro-

poses joint pixel labeling and dense stereo reconstruction.

They show that ambiguities in real word data can be solved

by a unified approach, but the method requires calibrated

cameras with small baselines. Castle et al. [6] detect pla-

nar objects by means of SIFT features [21] and insert them

in a sparse map where feature points are tracked by a stan-

dard EKF SLAM [10]. A similar work, though extended

to non-planar objects, is described in [7]. However, the de-

tection problem is still not fully integrated into the SLAM

framework, so decisions about object presence are taken us-

ing features coming from a single image. Recently, Bao et

al. [4, 3] have proposed a semantic structure from motion

technique which addresses the problem of estimating the

camera poses and recognizing object categories from an im-

age sequence. Though it shares similar intuitions with this

work, our proposal is inherently different. First, we deal

with an incremental SLAM scenario, while [4] extends the

SFM paradigm and thus processes all frames at once. Also,

an external object detector is needed in [4] to cast hypothe-

ses and measurements, while we operate at a much lower

level of abstraction: our measurements are feature corre-

spondences established between incoming frames and a fea-
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Figure 1: A standard pose graph (a) ignores any semantic

information. Including into the optimization matches of ob-

ject’s features (b) as graph edges and the object pose as a

vertex (c) to achieve object detection and improve SLAM.

ture database. More importantly, in our proposal the object

detection pipeline is not external but instead fully integrated

into the SLAM framework so that object existence is in-

ferred through a novel semantic bundle adjustment frame-

work. Finally, our method is aimed at detection and full

6DOF pose estimation of object instances rather than cate-

gory level recognition and image plane localization.

3. Semantic Bundle Adjustment

Bundle adjustment is the problem of the joint estima-

tion of a set of geometric parameters that are simultane-

ously optimized with respect to a cost function quantifying

the model fitting error [27]. In a typical SLAM applica-

tion, where the geometric unknowns are camera poses, a BA

formulation allows for both tracking the sensor movement

and reconstructing the environment incrementally. The cost

function to be optimized is a sum of errors and can be writ-

ten in the form [18]:

F (x) =
∑
〈i,j〉∈C

e (xi,xj , zij)
ᵀ Ωije (xi,xj , zij) (1)

where x = (xᵀ

1 , . . . ,x
ᵀ

n)
ᵀ

is the vector of unknown param-

eters and C a set of constraints. Each index pair 〈i, j〉 ∈ C
refers to a constraint between parameter blocks xi and xj

expressed as an error vector eij
def
= e (xi,xj , zij) with

measured mean zij and information matrix Ωij . For in-

stance, in a monocular SLAM scenario we might wish to

track 2D features between subsequent frames, so that we

are led to include in x both the 6DOF camera poses and the

3D location of matched features. Then, given an estimate

for feature xi and camera pose xj , the constraint e
ᵀ

ijΩijeij
is the re-projection error of the 3D point onto the image

plane with respect to the measured 2D feature point zij .

Cost functions in the form of Eq. (1) are effectively rep-

resented by a graph: parameter block xi maps to vertex

i, while constraint ejk to an edge connecting vertexes j
and k. Note that two parameter blocks can be constrained

by more than one measurement, so we could have more

than one edge linking the same vertex pair. An example
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of such representation is given in Fig. 1a. As the standard

SLAM process deals with the exploration of a previously

unseen environment, little assumptions can be done and the

presence of specific objects seen through different frames,

e.g. the car in Fig. 1a, cannot help the optimization task.

On the other hand, given a database of features belonging

to known objects, we would want to take advantage from

matches across frames, as those in Fig. 1b, to achieve ob-

ject detection and also improve SLAM. Purposely, the pro-

posed solution, shown in Fig. 1c, explicitly includes into

the graph the unknown object pose as a vertex constrained

to the matching frames. In the following subsections we

will show how this intuition can be used to develop a novel

integrated SLAM and object detection pipeline that, unlike

previous techniques [3, 7], does not rely on external detec-

tion routines, but validates each hypothesis within a uni-

fied semantic bundle adjustment framework. As our pro-

posal is agnostic with respect to a specific BA-based SLAM

approach, in the following we will simply refer to generic

frame-to-frame constraints coming from a SLAM engine.

3.1. The Model Database

For each object instance to be detected we need a set

of features. If a full 3D model is available, 3D keypoint

detectors (e.g. [29]) and descriptors (e.g. [16, 26]) can be

used; otherwise, the model can also be learned from a set

of calibrated images, 2D keypoint detectors and descriptors

such as [21] providing the required features in this scenario.

Feature descriptors are saved for future matching. Then, as

for feature positions, in the former embodiment we store

3D coordinates, in the latter 2D image coordinates together

with their corresponding view poses.

3.2. The Object Detection Pipeline

State-of-the-art feature-based 2D/3D object detection

pipelines, such as e.g. [21, 1], typically rely on a single view

for casting and validating hypotheses. Such an approach,

though, is inherently hindered by viewpoint changes, clutter

and occlusion. On the other hand, should several snapshots

of the scene be available, it would not be straightforward to

deploy such far richer information as there is no established

machinery to carry out detection from cues gathered from

different uncalibrated views. Our novel BA-formulation

of the object detection problem effectively overcomes the

above limitation.

The Validation Graph As soon as a new frame becomes

available, features are extracted, described and matched to

the model database (see Sec. 3.1). Here, outliers are al-

lowed, since the proposed technique can discard wrong cor-

respondences. Then, for every set of correspondences re-

lated to a given object we build a validation graph as shown

in Fig. 2. If 2D features have been matched, we create a new

X0 X1 X2

X4

X5

X 3

(a) Dashed red: semantic edges representing 2D feature

reprojection errors. Landmark vertexes have diamond-

like shapes to highlight their different dimensionality.

Black dashed arrows represent the known transforma-

tions from the object’s to its views’ reference frames.

X0 X1 X2

X 3

(b) Dashed red: frame-to-object edges from 3D feature

matching and the corresponding frame-to-frame edges

derived from that matching.

Figure 2: A validation graph is built from frame-to-

object correspondences as well as frame-to-frame con-

straints (solid green) provided by the SLAM engine; both

2D (a) and 3D (b) features can be used.

vertex representing the unknown 3D position of the land-

mark and a set of edges to include its reprojection errors

into the cost function. For instance, consider vertex x4 in

Fig. 2a, which is, let’s say, the landmark position for the nth

object feature. The associated cost terms are:

‖qn
3 − V3 [x4]‖

2 + s3,n1

∥∥∥p3,n
1 − V1 [x4]

∥∥∥
2

+ s3,n2

∥∥∥p3,n
2 − V2 [x4]

∥∥∥
2

(2)

where qn
o denotes the nth 2D feature point learned for the

oth object, p
o,n
i is the 2D feature point of the ith frame that

matches qn
o with probability so,ni , Vi [r] rotates and trans-

lates r ∈ R
3 so as to apply the current pose estimate as-

sociated with the ith vertex, i.e. x−1
i , and then projects the

point onto the image plane. When Vi concerns an object

pose, such image plane is one of the calibrated views of

the object acquired at training time, so the reprojection is
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chained with the known rigid transformation between the

object reference frame and the view reference frame (the

black dashed arrows in Fig. 2a). Note that the terms in Eq.

(2) can be easily written according to the more general form

of Eq. (1), i.e.

‖qn
3 − V3 [x4]‖

2 =

(qn
3 − V3 [x4])

ᵀ
I2×2 (q

n
3 − V3 [x4]) (3)

and

s3,n1

∥∥∥p3,n
1 − V1 [x4]

∥∥∥
2

=
(
p
3,n
1 − V1 [x4]

)ᵀ (
s3,n1 I2×2

)(
p
3,n
1 − V1 [x4]

)
. (4)

A similar approach is employed when 3D features are

available. In this scenario 3D coordinates are known in ev-

ery vertex reference frame, so no landmark vertex has to be

created but instead we can directly link the camera frames

to the object (see Fig. 2b). Moreover, we can constrain

together the frames in which matches related to the same

object features are found by an extra edge representing a

virtual match. Accordingly, if mij is the event “feature i
matches feature j” and we know that Pr (mik) = sik and

Pr (mjk) = sjk , we wish to know Pr (mij). Assuming that

mik and mjk are independent and

Pr (mij |mik,mjk ) =

⎧⎪⎨
⎪⎩
1,

if mik = TRUE ∧

mjk = TRUE

0, otherwise

(5)

then Pr (mij) = siksjk. Thus, recalling that now qn
o and

p
o,n
i represent 3D features, the semantic edges for the nth

object feature in Fig. 2b can be written as follows:

s3,n1

∥∥∥qn
3 − x−1

3 x1

[
p
3,n
1

]∥∥∥
2

+ s3,n2

∥∥∥qn
3 − x−1

3 x2

[
p
3,n
2

]∥∥∥
2

+ s3,n1 s3,n2

∥∥∥p3,n
2 − x−1

2 x1

[
p
3,n
1

]∥∥∥
2

(6)

Finally, we add frame-to-frame constraints from the

SLAM engine in order to robustify detection and get con-

sistent optimization results. If the current frame is the first

matching that object, we also expand the validation graph

with frame-to-frame constraints to the previous frame (c.f .

frame x0 in Fig. 2).

Hypotheses Validation and Pose Refinement The val-

idation graph is optimized minimizing the cost function

in Eq. (1), which includes both frame-to-frame as well

as frame-to-object constraints. Then, to retain or discard

edges, we rely on the global weighted mean residual from

the last global optimization, �, as defined in Sec. 3.3. This

residual can be interpreted as the expected error provided by

correct correspondences. Therefore, we compare this value

to the residual of each match coming from the last processed

frame and, if this is above some threshold, the edge is re-

moved. More precisely, in case of 2D feature matches we

remove the edge from the frame vertex to the landmark ver-

tex if ∥∥po,n
i − Vi

[
xh(o,n)

]∥∥2 ≥ α� (7)

where h (o, n) returns the index of the landmark vertex as-

sociated with the nth feature point on the oth object and α
is a given parameter. Of course, if the removal of the frame-

to-landmark edge leaves the landmark vertex attached only

to the object, we delete the object-to-landmark edge too.

As for the 3D feature scenario instead, we compare every

frame-to-object edge to the threshold, so that if

∥∥qn
o − x−1

o xi [p
o,n
i ]

∥∥2 ≥ α� (8)

the edge is removed. Under the hypotheses given in the

previous paragraph about feature matching, the edges repre-

senting virtual matches created toward other frame vertexes

are deleted as well.

After this cleaning procedure, the semantic edges, i.e. the

frame-to-landmark or the frame-to-object edges, connected

to the last processed frame are counted. If above a minimum

number, the remaining constraints are validated, otherwise

we treat them as noise and remove them from the validation

graph. Such a threshold is not critical and we set it to 3 in

our experiments.

If the validation process is successful, an other optimiza-

tion is run on the remaining edges to refine the estimate.

Then, a final cleaning is performed on the whole validation

graph with a threshold � computed just as before. This pro-

cedure can leave the graph in three different states, defined

from the comparison between the final number of semantic

edges Nse and two thresholds ηf and ηt, with ηf < ηt:

Nse < ηf the object is classified as a false detection, the

validation graph is destroyed and the object is removed

from the global graph, if present (c.f . Sec. 3.3);

ηf ≤ Nse < ηt the detection is ambiguous, the validation

graph is saved waiting for more visual cues, but the

object is removed from the global graph, if present (c.f .

Sec. 3.3);

Nse ≥ ηt the object is detected and added to, if not present,

or updated in, if already present, the global graph (c.f .

Sec. 3.3).

Again, the two thresholds are not critical, as at every frame

the validation of new hypotheses benefits from previously

refined feature matches and, moreover, the final cleaning re-

tains only the best edges among all, i.e. those most coherent

with the current solution. In our experiments we set ηf � 3
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and ηt � 10. A higher ηf could skip heavily occluded ob-

jects detectable only with a few matches from several views,

while the difference δ = ηt− ηf is related to the robustness

of the validation routine: the higher δ is, the more corre-

spondences, possibly from different frames, are needed for

a detection, but also the less false positive are propagated

to the global graph and possibly deleted in the following

frames.

3.3. Semantic SLAM

The validation graphs built in the previous section for ev-

ery matched object covers only a subset of the whole map,

i.e. those frames matching with that object. Hence, we carry

out a global semantic optimization in order to jointly op-

timize all camera poses as well as all object poses. This

global graph comprises:

• all the camera pose vertexes with frame-to-frame con-

straints coming from the SLAM engine;

• all the pose vertexes of those objects for which the val-

idation procedure turned out successful (c.f . Sec. 3.2);

• all frame-to-landmark and object-to-landmark con-

straints, in case of 2D feature matching, or frame-to-

object and virtual frame-to-frame constraints, in case

of 3D feature matching, coming from detected objects’

validation graphs.

Optimizing such a graph spreads the error over all the es-

timates and gives a consistent global solution. Finally, we

compute the weighted mean residual as

� =

∑
wije

ᵀ

ijeij∑
wij

(9)

where we have assumed, for simplicity, that an expression

for the weight wij can be derived for all the edges, e.g. the

parameter so,ni for our semantic edges. This residual repre-

sents the mean expected error for an edge consistent with

the current solution. As such, it can be used as valida-

tion threshold during the next object detection routine, as

already discussed in Sec. 3.2.

4. Evaluation

We implemented the proposed framework for evaluation

purposes using the 3D formulation within the G2O graph

optimizer [18]. For both models and frames we extract 3D

keypoints by means of the Intrinsic Shape Signature detec-

tor [29] at three different scales and then describe such key-

points by Spin Images [16]. For each scale, an index is cre-

ated including all models’ descriptors at that scale and for

each descriptor in an incoming frame, a k-nearest neighbor

Figure 3: 4-objects sequence: final reconstruction with

aligned bounding boxes around detected objects.

search at its scale based on the Euclidean distance is per-

formed. Matches are validated according to the distance-

ratio criterion suggested in [21]: denoting as d1 the nearest

distance and d2 the nearest belonging to a different model,

the match is accepted if d1/d2 < β, with β = 0.9.

The adopted strategy returns a large number of matches,

so a reduced set is picked out by a RANSAC-based 6DOF

object pose estimation [2]. We set the inlier threshold to

0.05m, which in our experiments is roughly 20 times the

mesh resolution. The final set still includes outliers, but our

semantic bundle adjustment algorithm can cope with them

effectively. With reference to Eq. (7) (8), we set α = 7,

though we found equally good or sometimes even slightly

better results with values in range [5, 8] too.

4.1. Quantitative Results

Our proposal is about the estimation of both camera and

objects 6DOF poses, but to the best of our knowledge no

publicly available dataset provides all such ground-truth in-

formation. Therefore, to achieve quantitative results, we

decided to render object meshes into frames belonging to

the publicly available RGB-D SLAM dataset [25], which is

a collection of sequences acquired by a Kinect and avail-

able together with ground-truth camera poses. Moreover,

before rendering objects, we performed a 2Hz time sub-

sampling and an ICP-like [5] pose optimization in order to

improve the accuracy of ground-truth camera poses. This

non-trivial refinement was successfully performed on the

“freiburg1 floor” sequence. Then, from the refined se-

quence, we created the 7-objects and 4-objects sequences

by rendering into RGB-D frames 4 and 7 objects from our

model database respectively. A database composed of all

the 7 full 3D models has been used for both sequences, the

presence of non-detectable object models in the 4-objects

sequence acting as a nuisance within the feature matching

process.

Frame-to-frame correspondences are obtained by match-

ing SIFT features [21], projecting them in 3D based on the

depth map and running a RANSAC-based camera pose es-

timation [2], which is the basic approach taken by recent

SLAM engines for RGB-D sensors such as [14, 13]. The

sensor carries out a closed loop in a medium-size office, but
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(a) (b)

Figure 5: 7-objects sequence: Final error in rotation (a), in degrees, and translation (b), in meters, for every processed frame

(numbered) and detected objects (a: Doll, b: Duck, c: Frog, d: Mario, e: Rabbit, f: Squirrel, g: Tortoise). Blue triangles:

plain SLAM; red squares: our technique.

(a) (b)

Figure 6: 4-objects sequence: Final error in rotation (a), in degrees, and translation (b), in meters, for every processed frame

(numbered) and the detected objects (a: Doll, b: Duck, c: Frog, d: Mario). Blue triangles: plain SLAM; red squares: our

technique.

Figure 4: 7-objects sequence: without explicit loop closure

detection a plain SLAM engine (left) accumulates error over

time, whilst the ability to detect Mario allows our technique

to also constrain the last and first frames and thus to tear

down the global error (right) .

no explicit loop closure detection scheme is implemented.

The results in Fig. 5 and 6 show, together with object de-

tection (also in Fig. 3), improved accuracy compared to

the adopted plain SLAM engine due to the links between

frames established through our semantic edges, such as in

particular those due to detection of objects at the beginning

and at the end of the sequences (see Fig. 4).

To illustrate the effectiveness of the proposed match val-

idation technique, Tab. 1 reports the frame-to-object edges

in the validation graph of the Frog model for some frames of

the 7-objects sequence. Frog is firstly matched in frame 16,

with 11 feature correspondences surviving the RANSAC

step (row “Frame 16” in Tab. 1). These matches are clearly

false positives (Frog is the object displayed in frame 36) and

our cleaning algorithm is able to recognize this inconsis-

tency leaving only 3 edges into the graph. Thus, the object

pose is not inserted into the global graph to be optimized,

though the wrong edges are saved. Later, Frog is correctly

matched, the correct correspondences pass all the valida-

tion tests and the object is added to the global graph, but

the previous wrong edges raise the weighted mean residual

and cause a large reconstruction error (rows from “Frame

34” to “Frame 37”). However, after a few frames, as more

good correspondences are gathered, the 3 wrong edges are

detected and erased, thus tearing down the error on the ob-

ject’s pose estimate (rows “Frame 38” and “Frame 39”).

4.2. Qualitative Results

In this experiment we make a step further and, though

qualitatively, validate our proposal on a truly real Kinect se-

quence taken in our Lab. Accordingly, the feature matching

task gets more difficult, and we found it more appropriate

to rely here on a more advanced descriptor deploying both

shape and color information such as [26]. As depicted in

Fig. 7, we performed a complete loop capturing the object

Doll at the beginning and at the end of the sequence. Then,

we ran both the plain SLAM engine and our novel semantic

pipeline: while a simple tracking scheme eventually drifts

(see Fig. 7a), our approach correctly validates object pres-

ence and implicitly closes the loop by deploying object de-
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Frame 16 Frame 36

Frame 38 Frame 39

x16 x34 x35 x36 x37 x38 x39 Pose Error (R / t)

Frame 16 3 (11) — — — — — — n/a

Frame 34 3 31 (38) — — — — — 114.6◦ / 1.053m

Frame 35 3 31 55 (55) — — — — 88.5◦ / 1.190m

Frame 36 3 31 55 122 (122) — — — 86.3◦ / 1.237m

Frame 37 3 31 55 122 127 (127) — — 86.8◦ / 1.273m

Frame 38 0 31 55 122 127 123 (123) — 0◦ / 0.180m

Frame 39 0 31 55 122 127 123 0 (47) 0◦ / 0.200m

Table 1: 7-objects sequence: an excerpt from the validation graph of model Frog. Rows reports the number of frame-to-object

edges for the vertexes in the graph at the end of the validation procedure for the frame in first column. Also, the number of

matches before edge cleaning is shown in brackets. Last column reports the pose error for Frog in the global graph.

(a) (b)

Figure 7: A plain SLAM engine (a) accumulates errors and eventually cannot close the loop; integrated object detection and

semantic optimization (b) allows for implicit loop closure and improved reconstruction.

Figure 8: AR with 3D occlusion handling: once the Doll

is detected (top right) a red umbrella can be rendered, even

when the object is later occluded (bottom right); the final

augmented 3D reconstruction is shown on the left.

tection information (see Fig. 7b).

Finally, we demonstrate the ability to carry out Aug-

mented Reality with full 3D occlusion handling. Indeed,

unlike previous work which enables to augment only the

whole scene reconstruction due to the lack of semantic in-

formation related to individual objects [17, 23], our frame-

work brings in seamlessly 3D mapping, camera tracking

and object detection/localization, i.e. all the information

needed to pick up visual content specifically related to each

object and render it coherently with respect to the 3D struc-

ture of the scene, in particular so as to handle occlusions

effectively.

5. Concluding Remarks

We have proposed a novel Semantical Bundle Adjust-

ment framework which allows for solving jointly the object

detection and SLAM problems. From a probabilistic point

of view, the underline density is multi-modal due to the

mixing of probabilities related to object existence and ob-

ject/camera poses. To address the problem through bundle

adjustment, which is inherently unimodal, we follow two

steps: first the validation graphs establishes upon objects’

existence, then the global semantic graph jointly solves for

camera and detected object poses.

The current implementation of the framework is mainly

aimed at demonstrating the underlying theory and relies on

its 3D formulation. As such, it is not conceived as a real-

time application, the bottleneck being detection, description

and matching of 3D features, which requires several sec-

onds, although the semantic optimization can run in the or-

der of tens of milliseconds. We plan to come-up soon with a

real-time application grounded on the 2D formulation of the

theory, leveraging on a fast SIFT GPU implementation and

still providing a dense 3D reconstruction through RGB-D

sensing. From a theoretical perspective, we plan to extend

our work towards two main directions: detection of multi-

ple object instances, which is not supported in the current

formulation but quite easily addressable in principle, and

generalizing the framework to deal also with category-level

recognition.

154215421544



References

[1] A. Aldoma, F. Tombari, L. Di Stefano, and M. Vincze. A

global hypothesis verification method for 3d object recogni-

tion. In Computer Vision (ECCV), IEEE European Conf. on,

Florence, Italy, Oct 2012.

[2] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares

fitting of two 3-d point sets. Pattern Analysis and Ma-

chine Intelligence (PAMI), IEEE Trans. on, 9(5):698–700,

Sep 1987.

[3] S. Y. Bao, M. Bagra, Y.-W. Chao, and S. Savarese. Seman-

tic structure from motion with points, regions, and objects.

In Computer Vision and Pattern Recognition (CVPR), IEEE

Int’l Conf. on, 2012.

[4] S. Y. Bao and S. Savarese. Semantic structure from motion.

In Computer Vision and Pattern Recognition (CVPR), IEEE

Int’l Conf. on, 2011.

[5] P. J. Besl and H. D. McKay. A method for registration of 3-d

shapes. Pattern Analysis and Machine Intelligence (PAMI),

IEEE Trans. on, 14(2):239–256, 1992.

[6] R. O. Castle, G. Klein, and D. W. Murray. Combining

monoslam with object recognition for scene augmentation

using a wearable camera. Image and Vision Computing,

28(11):1548–1556, 2010.
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