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Abstract

The problem of rigid motion segmentation of trajectory
data under orthography has been long solved for non-
degenerate motions in the absence of noise. But because
real trajectory data often incorporates noise, outliers, mo-
tion degeneracies and motion dependencies, recently pro-
posed motion segmentation methods resort to non-trivial
representations to achieve state of the art segmentation ac-
curacies, at the expense of a large computational cost. This
paper proposes a method that dramatically reduces this cost
(by two or three orders of magnitude) with minimal accu-
racy loss (from 98.8% achieved by the state of the art, to
96.2% achieved by our method on the standard Hopkins 155
dataset). Computational efficiency comes from the use of a
simple but powerful representation of motion that explicitly
incorporates mechanisms to deal with noise, outliers and
motion degeneracies. Subsets of motion models with the
best balance between prediction accuracy and model com-
plexity are chosen from a pool of candidates, which are then
used for segmentation.

1. Rigid Motion Segmentation
Rigid motion segmentation (MS) consists on separating

regions, features, or trajectories from a video sequence into

spatio-temporally coherent subsets that correspond to in-

dependent, rigidly-moving objects in the scene (Figure 1.b

or 1.f). The problem currently receives renewed attention,

partly because of the extensive amount of video sources and

applications that benefit from MS to perform higher level

computer vision tasks, but also because the state of the art

is reaching functional maturity.

Motion Segmentation methods are widely diverse, but

most capture only a small subset of constraints or alge-

braic properties from those that govern the image formation

process of moving objects and their corresponding trajec-

tories, such as the rank limit theorem [9, 10], the linear in-

dependence constraint (between trajectories from indepen-

dent motions) [2, 13], the epipolar constraint [7], and the

reduced rank property [11, 15, 13]. Model-selection based

(a) Original video frames (b) Class-labeled trajectories

(c) Model support region (d) Model inliers and control points

(e) Model residuals (f) Segmentation result

Figure 1: Model instantiation and segmentation. a) f th orig-

inal frame, Italian Grand Prix c©2012 Formula 1. b) Class-

labeled, trajectory data W (red, green, blue and black cor-

respond to chassis, helmet, background and outlier classes

respectively). c) Spatially-local support subset Ŵf for a

candidate motion in blue. d) Candidate motion model in-

liers in red, control points (cfi from Eq. 3) in white. e)

Residuals (rfi from Eq. 11) color-coded with label data, the

radial coordinate is logarithmic. f) Segmentation result.

methods [11, 6, 8] balance model complexity with modeling

accuracy and have been successful at incorporating more

of these aspects into a single formulation. For instance,

in [8] most model parameters are estimated automatically

from the data, including the number of independent motions

and their complexity, as well as the segmentation labels (in-

cluding outliers). However, because of the large number of

necessary motion hypotheses that need to be instantiated,

as well as the varying and potentially very large number of
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model parameters that must be estimated, the flexibility of-

fered by this method comes at a large computational cost.

Current state of the art methods follow the trend of us-

ing sparse low-dimensional subspaces to represent trajec-

tory data. This representation is then fed into a clustering

algorithm to obtain a segmentation result. A prime example

of this type of method is Sparse Subspace Clustering (SSC)

[3] in which each trajectory is represented as a sparse linear

combination of a few other basis trajectories. The assump-

tion is that the basis trajectories must belong to the same

rigid motion as the reconstructed trajectory (or else, the re-

construction would be impossible). When the assumption

is true, the sparse mixing coefficients can be interpreted as

the connectivity weights of a graph (or a similarity matrix),

which is then (spectral) clustered to obtain a segmentation

result. At the time of publication, SSC produced segmenta-

tion results three times more accurate than the best prede-

cessor. The practical downside, however, is the inherently

large computational cost of finding the optimal sparse rep-

resentation, which is at least cubic on the number of trajec-

tories.

The work of [14] also falls within the class of subspace

separation algorithms. Their approach is based on cluster-

ing the principal angles (CPA) of the local subspaces associ-

ated to each trajectory and its nearest neighbors. The clus-

tering re-weights a traditional metric of subspace affinity

between principal angles. Re-weighted affinities are then

used for segmentation. The approach produces segmenta-

tion results with accuracies similar to those of SSC, but the

computational cost is close to 10 times bigger than SSC’s.

In this work we argue that competitive segmentation re-

sults are possible using a simple but powerful representation

of motion that explicitly incorporates mechanisms to deal

with noise, outliers and motion degeneracies. The proposed

method is approximately 2 or 3 orders of magnitude faster

than [3] and [14] respectively, currently considered the state

of the art.

1.1. Affine Motion

Projective Geometry is often used to model the image

motion of trajectories from rigid objects between pairs of

frames. However, alternative geometric relationships that

facilitate parameter computation have also been proven use-

ful for this purpose. For instance, in perspective projection,

general image motion from rigid objects can be modeled

via the composition of two elements: a 2D homography,

and parallax residual displacements [5]. The homography

describes the motion of an arbitrary plane, and the parallax

residuals account for relative depths, that are unaccounted

for by the planar surface model.

Under orthography, in contrast, image motion of rigid

objects can be modeled via the composition of a 2D affine
transformation plus epipolar residual displacements. The

2D affine transformation models the motion of an arbitrary

plane, and the epipolar residuals account for relative depths.

Crucially, these two components can be computed sepa-

rately and incrementally, which enables an explicit mech-

anism to deal with motion degeneracy.

In the context of 3D motion, a motion is degenerate when

the trajectories originate from a planar (or linear) object, or

when neither the camera nor the imaged object exercise all

of their degrees of freedom, such as when the object only

translates, or when the camera only rotates. These are com-

mon situations in real world video sequences. The incre-

mental nature of the decompositions described above, fa-

cilitate the transition between degenerate motions and non-

degenerate ones.

Planar Model Under orthography, the projection of tra-

jectories from a planar surface can be modeled with the

affine transformation:⎡
⎣ xc

yc

1

⎤
⎦ = [ D t

0� 1

]⎡⎣ xw

yw

1

⎤
⎦ = Aw→c

2D

⎡
⎣ xw

yw

1

⎤
⎦ , (1)

where D ∈ R
2×2 is an invertible matrix, and t ∈ R

2 is

a translation vector. Trajectory coordinates (xw, yw) are in

the plane’s reference frame (modulo a 2D affine transfor-

mation) and (xc, yc) are image coordinates.

Now, let W ∈ R
2F×P be matrix of trajectory data that

contains the x and y image coordinates of P feature points

tracked through F frames, as in

W =

⎡
⎢⎢⎢⎢⎢⎣

x1,1 · · · x1,P
y1,1 · · · y1,P

...
. . .

...

xF,1 · · · xF,P

yF,1 · · · yF,P

⎤
⎥⎥⎥⎥⎥⎦ . (2)

To compute the parameters of A2D from trajectory data, let

C = [c1, c2, c3] ∈ R
2f×3 be three columns (three full tra-

jectories) from W, and let cfi = [c2f−1i , c2fi ]� be the x and

y coordinates of the i-th control trajectory at frame f . Then

the transformation between points from an arbitrary source

frame s to a target frame f can be written as:[
cf1 cf2 cf3
1 1 1

]
= As→f

2D

[
cs1 cs2 cs3
1 1 1

]
, (3)

and As→f
2D can be simply computed as:

As→f
2D =

[
cf1 cf2 cf3
1 1 1

] [
cs1 cs2 cs3
1 1 1

]−1
. (4)

The inverse in the right-hand side matrix of Eq. 4 exists so

long as the points csi are not collinear. For simplicity we

refer to As→f
2D as Af

2D and consequently As
2D is the identity

matrix.
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3D Model In order to upgrade a planar (degenerate)

model into a full 3D one, relative depth must be accounted

using the epipolar residual displacements. This means ex-

tending Eq. 1 with a direction vector, scaled by the corre-

sponding relative depth of each point, as in:⎡
⎣ xc

yc

1

⎤
⎦ = [ D �t

�0� 1

]⎡⎣ xw

yw

1

⎤
⎦+ δzw

⎡
⎣ a13

a23
0

⎤
⎦ . (5)

The depth δzw is relative to the arbitrary plane whose mo-

tion is modeled by A2D; a point that lies on such plane

would have δzw = 0. We call the orthographic version of

the plane plus parallax decomposition, the 2D Affine Plus
Epipolar (2DAPE) decomposition.

Eq. 5 is equivalent to

⎡
⎣ xc

yc

1

⎤
⎦ =

⎡
⎣ a11 a12 a13 t1

a21 a22 a23 t2
0 0 0 1

⎤
⎦
⎡
⎢⎢⎣

xw

yw

δzw

1

⎤
⎥⎥⎦ (6)

where it is clear that the parameters of A3D define an or-

thographically projected 3D affine transformation. Deter-

mining the motion and structure parameters of a 3D model

from point correspondences can be done using the classical

matrix factorization approach [10], but besides being sensi-

tive to noise and outliers, the common scenario where the

solution becomes degenerate makes the approach difficult

to use in real-world applications. Appropriately accommo-

dating and dealing with the degenerate cases is one of the

key features of our work.

2. Overview of the Method
The proposed motion segmentation algorithm has three

stages. First, a pool of M motion model hypotheses M =
{M1, . . . ,MM} is generated using a method that combines

a Random Sampling and Consensus (RANSAC) [4] tech-

nique with the 2DAPE decomposition. The goal is to gen-

erate one motion model for each of the N independent,

rigidly-moving objects in the scene; N is assumed to be

known a priori. The method instantiates many more mod-

els than those expected necessary (M � N ) in an attempt

increase the likelihood of generating correct model propos-

als for all N motions. A good model accurately describes

a large subset of coherently moving trajectories with the

smallest number of parameters (§3).

In the second stage, subsets of motion models from M
are combined to explain all the trajectories in the sequence.

The problem is framed as an objective function that must

be minimized. The objective function is the negative log-

likelihood over prediction accuracy, regularized by model

complexity (number of model parameters) and modeling

overlap (trajectories explained by multiple models). Notice

that after this stage, the segmentation that results from the

optimal model combination could be reported as a segmen-

tation result (§5).

The third stage incorporates the results from a set of

model combinations that are closest to the optimal. Seg-

mentation results are aggregated into an affinity matrix,

which is then passed to a spectral clustering algorithm to

produce the final segmentation result. This refinement stage

generally results in improved accuracy and reduced seg-

mentation variability (§6).

3. Motion Model Instantiation

Each model M ∈ M is instantiated independently us-

ing RANSAC. This choice is motivated because of this

method’s well-known computational efficiency and robust-

ness to outliers, but also because of its ability to incorpo-

rate spatially local constraints and (as explained below) be-

cause most of the computations necessary to evaluate a pla-

nar model can be reused to estimate the likelihoods of a

potentially necessary 3D model, yielding significant com-

putational savings.

The input to our model instantiation algorithm is a

spatially-local, randomly drawn subset of trajectory data

Ŵ[2F×I] ⊆ W[2F×P ] (§3.1). In turn, at each RANSAC

trial, the algorithm draws uniformly distributed, random

subsets of three control trajectories (C[2F×3] ⊂ Ŵ[2F×I]).

Each set of control trajectories is used to estimate the fam-

ily of 2D affine transformations {A1, . . . ,AF } between the

base frame and all other frames in the sequence, which are

then used to determine a complete set of model parameters

M = {B,σ,C, ω}. The matrix B ∈ {0, 1}[F×I] indicates

whether the i-th trajectory should be predicted by model

M at frame f (inlier, bfi = 1) or not (outlier, bfi = 0),

σ = {σ1, . . . , σF } are estimates of the magnitude of the

noise for each frame, and ω ∈ {2D, 3D} is the estimated

model type. The goal is to find the control points and the

associated parameters that minimize the objective function

O(Ŵ,M) =
∑
f∈F

∑
i∈I

bfi Lω

(
ŵf

i | Af , σf
)
+Ψ(ω) + Γ(B) (7)

across a number of RANSAC trials, where ŵf
i =

(xf
i , y

f
i ) = (ŵ2f−1i , ŵ2f

i ) are the coordinates of the i-th

trajectory from the support subset Ŵ at frame f . The neg-

ative log-likelihood term Lω(·) penalizes reconstruction er-

ror, while Ψ(·) and Γ(·) are regularizers. The three terms

are defined below.

Knowing that 2D and 3D affine models have 6 and 8 de-

grees of freedom respectively, Ψ(ω) regularizes over model

complexity using:

Ψ(ω) =

{
6(F − 1), if ω = 2D

8(F − 1), if ω = 3D.
(8)
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Γ(B) strongly penalizes models that describe too few

trajectories:

Γ(B) =

{
∞, if

∑
I

∑
F bfi < Fλi

0, otherwise
(9)

The control set C whose M minimizes Eq. 7 across a

number of RANSAC trials becomes part of the pool of can-

didatesM.

2D likelihoods. For the planar case (ω = 2D) the negative

log-likelihood term is evaluated with:

L2D(ŵ
f
i | Af , σf ) = − log

(
1

2π|Σ| 12
exp

{
−1
2
rf�i Σ−1rfi

})
,

(10)

which is a zero-mean 2D Normal distribution evaluated at

the residuals rfi . The spherical covariance matrix is Σ =

(σf )2I. The residuals rfi are determined by the differences

between the predictions made by a hypothesized model Af ,

and the observations at each frame[
rf

�1

]
=

[
w̃f

�1

]
−Af

[
w̃s

�1

]
. (11)

3D likelihoods. The negative log-likelihood term for the

3D case is based on the the 2DAPE decomposition. The

2D affinities Af and residuals rf are reused, but to account

for the effect of relative depth, an epipolar line segment ef

is robustly fit to the residual data at each frame (please see

supplementary material for details on the segment fitting al-

gorithm). The 2DAPE does not constrain relative depths to

remain constant across frames, but only requires trajectories

to be close to the epipolar line. So, if the unitary vector ef⊥
indicates the orthogonal direction to ef , then the negative

log-likelihood term for the 3D case is estimated with:

L3D(ŵ
f
i | Af , σf ) = −2 log

⎛
⎜⎝ 1√

2πσf
exp

⎧⎪⎨
⎪⎩−

(
rf�i ef⊥

)2
2(σf )2

⎫⎪⎬
⎪⎭
⎞
⎟⎠ ,

(12)

which is also a zero-mean 2D Normal distribution com-

puted as the product of two identical, separable, single-

variate, normal distributions, evaluated at the distance from

the residual to the epipolar line. The first one corresponds to

the actual deviation in the direction of ef⊥, which is analyti-

cally computed using rf�i ef⊥. The second one corresponds

to an estimate of the deviation in the perpendicular direc-

tion (ef ), which cannot be determined using the 2DAPE

decomposition model, but can be approximated to be equal

to rf�i ef⊥, which is a plausible estimate under the isotropic

noise assumption.

Note that Eq. 7 does not evaluate the quality of a model

using the number of inliers, as it is typical for RANSAC.

Instead, we found that better motion models resulted from

Algorithm 1: Motion model instantiation
Input: Trajectory data W[2F×P ], number of RANSAC trials K, arbitrary

base frame b
Output: Parameters of the motion model M = {B,σn, ω}
// determine the training set Ŵ
c← rand(1, P ); r ← rand(rmin, rmax) // random center and radius
Ŵ[2F×I] ← trajectoriesWithinDisk(W, r, c) // support subset
X← homoCoords(Ŵb) // points at base frame

for K RANSAC trials do
c← rand3(1, I) // three random control trajectory indices

for f ∈ {1, . . . , F} − {b} do
Y ← homoCoords(Ŵf ) // points at frame f

A← YcX
−1
c // 2D affine model

R← AX−Y // residuals

[Bf
2D
, σf

2D
]← compute2DInliers(R)

Lf
2D
← compute2DLikelihoods(R, σf

2D
)

[U, S, V ] = svd(weightedCov(R,B2D) // s1 ≥ s2
if s1

s2
> 1 + λ3D then
[Bf

3D
, σf

3D
]← compute3DInliers(R)

Lf
3D
← compute3DLikelihoods(R, σf

3D
)

// complete penalized neg-loglikleihoods
l2D ←

∑
f

∑
i B2D(f, i)L2D(f, i) + Ψ(2D) + Γ(B2D)

l3D ←
∑

f

∑
i B3D(f, i)L3D(f, i) + Ψ(3D) + Γ(B3D)

// keep the best model overall
if (min(l2D, l3D) < l�) then

if (l2D < l3D) then
l� ← l2D;σ

�
n ← σ2D;ω

� ← 2;B� ← B2D

else
l� ← l3D;σ

�
n ← σ3D;ω

� ← 3;B� ← B3D

return M = {B�,σ�
n, ω

�}

optimizing over the accuracy of the model predictions for an

(estimated) inlier subset, which also means that the effect of

outliers is explicitly uncounted.

Figure 1.b shows an example of class-labeled trajectory

data, 1.c shows a typical spatially-local support subset. Fig-

ures 1.d and 1.e show a model’s control points and its corre-

sponding (class-labeled) residuals, respectively. A pseudo-

code description of the motion instantiation algorithm is

provided in Algorithm 1. Details on how to determine Ŵ,

as well as B, σ, and ω follow.

3.1. Local Coherence

The subset of trajectories Ŵ given to RANSAC to gen-

erate a model M is constrained to a spatially local region.

The probability of choosing an uncontaminated set of 3 con-

trol trajectories, necessary to compute a 2D affine model,

from a dataset with a ratio r of inliers, after k trials is:

p = 1 − (1 − r3)k. This means that the number of trials

needed to find a subset of 3 inliers with probability p is

k =
log(1− p)

log(1− r3)
. (13)

A common assumption is that trajectories from the same

underlying motion are locally coherent. Hence, a com-

pact region is likely to increase r, exponentially reducing
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Figure 2: Predictions (red) from a 2D affine model with

standard Gaussian noise (green) on one of the control points

(black). Noiseless model predictions in blue. All four sce-

narios have identical noise. The magnitude of the extrapo-

lation error changes with the distance between the control

points.

k, and with it, RANSAC’s computation time by a propor-

tional amount.

The trade-off that results from drawing model control

points from a small region, however, is extrapolation er-

ror. A motion model is extrapolated when utilized to make

predictions for trajectories outside the region defined by

the control points. The magnitude of modeling error de-

pends on the magnitude of the noise affecting the control

points, and although hard to characterize in general, extrap-

olation error can be expected to grow with the distance from

the prediction to the control points, and inversely with the

distance between the control points themselves. Figure 2

shows a series of synthetic scenarios where one of the con-

trol points is affected by zero mean Gaussian noise of small

magnitude. Identical noise is added to the same trajectory

in all four scenarios. The figure illustrates the relation be-

tween the distance between the control points and the mag-

nitude of the extrapolation errors. Our goal is to maximize

the region size while limiting the number of outliers.

Without any prior knowledge regarding the scale of the

objects in the scene, determining a fixed size for the support

region is unlikely to work in general. Instead, the issue is

avoided by randomly sampling disk-shaped regions of vary-

ing sizes and locations to construct a diverse set of support

subsets. Each support subset is then determined by

Ŵ = {wi | (xb
i − ox)

2 + (ybi − oy)
2 < r2}, (14)

where (ox, oy) are the coordinates of the center of a disk

of radius r. To promote uniform image coverage, the disk

is centered at a randomly chosen trajectory (ox, oy) =
(xb

i , y
b
i ) with uniformly distributed i ∼ U(1, P ) and base

frame b ∼ U(1, F ). To allow for different region sizes,

the radius r is chosen from a uniform distribution r ∼
U(rmin, rmax). If there are I trajectories within the sup-

port region, then Ŵ ∈ R
2F×I . It is worth noting that the

construction of the support region does not incorporate any

knowledge about the motion of objects in the scene, and in

consequence Ŵ will likely contain trajectories that origi-

nate from more than one independently moving object (Fig-

ure 3).

Figure 3: Two randomly drawn local support sets. Left:
A mixed set with some trajectories from the blue and green

classes. Right: Another mixed set with all of the trajectories

in the red class and some from the blue class.

4. Characterizing the Residual Distribution
At each RANSAC iteration, residuals rf are computed

using the 2D affine model Af that results from the con-

straints provided by the control trajectories C. Character-

izing the distribution of rf has three initial goals. The first

one is to determine 2D model inliers bf
2D (§4.1), the second

one is to compute estimates of the magnitude of the noise

at every frame σf
2D (§4.2), and the third one is to determine

whether the residual distribution originates from a planar or

a 3D object (§4.3). If the object is suspected 3D, then two

more goals need to be achieved. The first one is to deter-

mine 3D model inliers bf
3D (§4.4), and the second one is to

estimate the magnitude of the noise (σf
3D) to reflect the use

of a 3D model (§4.5).

4.1. 2D Inlier Detection

Suppose the matrix Ŵ contains trajectories Ŵ1 ∈
R
2F×I and Ŵ2 ∈ R

2F×J from two independently mov-

ing objects, and that these trajectories are contaminated

with zero-mean Gaussian noise of spherical covariance

η ∼ N (0, (σf )2I):

Ŵ =
[
Ŵ1|Ŵ2

]
+ η. (15)

Now, assume we know the true affine transformations Af
1

and Af
2 that describe the motion of trajectories for the sub-

sets Ŵ1 and Ŵ2, respectively. If Af
1 is used to com-

pute predictions for all of Ŵ (at frame f ), the expected

value (denoted by 〈·〉) of the magnitude of the residuals (rf

from Eq. 11) for trajectories in Ŵ1 will be in the order

of the magnitude of the underlying noise 〈|rfi |〉 = σf for

each i ∈ {1, . . . , I}. But in this scenario, trajectories in Ŵ2

will be predicted using the wrong model, resulting in resid-

uals with magnitudes determined by the motion differential∣∣∣rfi ∣∣∣ = ∣∣∣(Af
1 −Af

2 )ŵ
b
i

∣∣∣. If we can assume that the motion

differential is bigger than the displacement due to noise:∣∣∣(Af
1 −Af

2 )w
b
i

∣∣∣ > σf , (16)
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then the model inliers can be determined by thresholding

|rfi | with the magnitude of the noise, scaled by a constant

(τ = λσσ
f ):

bfi =

{
1, |rfi | ≤ τ

0, otherwise.
(17)

But because σf is generally unknown, the threshold (τ ) is

estimated from the residual data. To do so, let r̂ be the

vector of residual magnitudes where r̂i ≤ r̂i+1. Now, let

r̃ = median (r̂i+1 − r̂i). The threshold is then defined as

τ = min{r̂i | (ri+1 − ri) > λr r̃}, (18)

which corresponds to the smallest residual magnitude be-

fore a salient magnitude gap. Our experiments showed this

test to be efficient and effective. Figure 1.e shows class-

labeled residuals. Notice the presence of a (low density)

gap between the residuals from the trajectories explained

by the correct model (in red, close to the origin), and the

rest.

4.2. Magnitude of the Noise, 2D Model

Let r̂f2D contain only the residuals of the inlier trajecto-

ries (those where bfi = 1), and let USV � be the singular

value decomposition of the covariance matrix of r̂f2D:

USV � = svd

(
1∑
bfp
(r̂f2D)

�r̂f2D

)
. (19)

Then the magnitude of the noise corresponds to the largest

singular value σ2 = s1, because if the underlying geometry

is in fact planar, then the only unaccounted displacements

captured by the residuals are due to noise. Model capacity

can also be determined from S, as explained next.

4.3. Model Capacity

The ratio of largest over smallest singular values (s1/s2)

determines when upgrading to a 3D model is beneficial.

When the underlying geometry is actually non-planar, the

residuals from a planar model should distribute along a

line (the epipolar line), reflecting that their relative depth

is being unaccounted for. This produces a covariance ma-

trix with a large ratio s1/s2 � 1. If on the other hand,

if s1/s2 ≈ 1, then there is no indication of unexplained

relative depth, in which case, fitting a line to spherically

distributed residuals will only increase the model complex-

ity without explaining the residual variance much better. A

small spherical residual covariance strongly suggests a pla-

nar underlying geometry.

4.4. 3D Inlier Detection

When the residual distribution is elongated (s1/s2 � 1),

a line segment is robustly fit to the (potentially contami-

nated) set of residuals. The segment must go through the

origin and its parameters are computed using a Hough trans-

form. Further details about this algorithm can be found in

the supplementary material.

Inlier detection The resulting line segment is used to de-

termine 3D model inliers. Trajectory i becomes an inlier

at frame f if it satisfies two conditions. First, the projec-

tion of rfi onto the line must lie within the segment limits

(β ≤ rf�i ef ≤ γ). Second, the normalized distance to the

line must be below a threshold (ef�⊥ rfi ≤ σ2λd). Notice

that the threshold depends on the smallest singular value

from Eq. 19 to (roughly) account for the presence of noise

in the direction perpendicular to the epipolar (ef⊥).

4.5. Magnitude of the Noise, 3D Model

Similarly to the 2D case, let r̂f3D contain the residual data

from the corresponding 3D inlier trajectories. An estimate

for the magnitude of the noise that reflects the use of a 3D

model can be obtained from the singular value decomposi-

tion of the covariance matrix of r̂f3D (as in Eq. 19). In this

case, the largest singular value s1 captures the spread of

residuals along the epipolar line, so its magnitude is mainly

related to the magnitude of the displacements due to rela-

tive depth. However, s2 captures deviations from the epipo-

lar line, which in a rigid 3D object can only be attributed to

noise, making σ2 = s2 a reasonable estimate for its magni-

tude.

Optimal model parameters When both 2D and 3D mod-

els are instantiated, the one with the smallest penalized neg-

ative log-likelihood (7) becomes the winning model for the

current RANSAC run. The same penalized negative log-

likelihood metric is used to determine the better model from

across all RANSAC iterations. The winning model is added

to the pool M, and the process is repeated M times, form-

ing the poolM = {M1, . . . ,MM}.

5. Optimal Model Subset

The next step is to find the model combination M� ⊂
M that maximizes prediction accuracy for the whole

trajectory data W, while minimizing model complexity

and modelling overlap. For this purpose, let Mj =
{Mj,1, . . . ,Mj,N} be the j-th model combination, and let

{Mj} be the set of all MCN = M !
N !(M−N)!) combinations

of N -sized models than can be drawn from M. The model

selection problem is then formulated as

M� = argmin
{Mj}

OS(Mj), (20)
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where the objective is

OS(Mj) =
N∑

n=1

P∑

p=1

πp,nE (wp,Mj,n)

+ λΦ

P∑

i=1

Φ(wp,Mj,n) + λΨ

N∑

n=1

Ψ(Mj,n).

(21)

The first term accounts for prediction accuracy, the other

two are regularization terms. Details follow.

Prediction Accuracy In order to determine how well a

model M predicts an arbitrary trajectory w, the affine trans-

formations estimated by RANSAC could be re-used. How-

ever, the inherent noise in the control points, and the po-

tentially short distance between them, often render this ap-

proach impractical, particularly when w is spatially distant

from the control points (see §3.1). Instead, model parame-

ters are computed with a factorization based [10] method.

Given the inlier labeling B in M, let WB be the subset of

trajectories where bfi = 1 for at least half of the frames. The

orthonormal basis S of a ω = 2D (or 3D) motion model can

be determined by the 2 (or 3) left singular vectors of WB.

Using S as the model’s motion matrices, prediction accu-

racy can be computed using:

E(w,M) =
∣∣SS�w −w

∣∣2 , (22)

which is the sum of squared Euclidean deviations from the

predictions (SS�w), to the observed data (w). Our exper-

iments indicated that, although sensitive to outliers, these

model predictions are much more robust to noise.

Ownership variables Π ∈ {0, 1}[P×N ] indicate whether

trajectory p is explained by the n-th model (πp,n = 1) or

not (πp,n = 0), and are determined by maximum prediction

accuracy (i.e. minimum Euclidean deviation):

πp,n =

⎧⎨
⎩
1, if Mj,n = argmin

M∈Mj

E(wp,M)

0, otherwise.
(23)

Regularization terms The second term from Eq. 21 pe-

nalizes situations where multiple models explain a trajec-

tory (w) with relatively small residuals. For brevity, let

Ê(w,M) = exp{−E(w,M)}, then:

Φ(w,Mj) = − log
max

M∈Mj

Ê(w,M)∑
M∈Mj

Ê(w,M)
. (24)

The third term regularizes over the number of model param-

eters, and is evaluated using Eq. 8. The constants λΦ and

λΨ modulate the effect of the corresponding regularizer.

Table 1: Accuracy and run-time for the H155 dataset. Naive

RANSAC included as a baseline with overall accuracy and

total computation time estimated using data from [12].

Algorithm Average Accuracy [%] Computation time [s]

SSC [3] 98.76 14500

CPA [14] 98.75 147600

RANSAC 89.15 30

Ours 96.19 217

6. Refinement
The optimal model subset M� yields ownership vari-

ables Π� which can already be interpreted as a segmenta-

tion result. However, we found that segmentation accuracy

can be improved by incorporating the labellings Πt from

the top T subsets {M�
t | 1 ≤ t ≤ T} closest to optimal.

Multiple labellings are incorporated into an affinity ma-

trix F, where the fi,j entry indicates the frequency with

which trajectory i is given the same label as trajectory j
across all T labellings, weighted by the relative objective

function Õt = exp
{
−OS(W|M�

t )
OS(W|M�)

}
for such a labelling:

fi,j =
1∑T

t=1 Õt

T∑
t=1

(
πt

i,:π
t�
j,:

) Õt (25)

Note that the inner product between the label vectors

(πi,:π
�
j,:) is equal to one only when the labels are the same.

A spectral clustering method is applied on F to produce

the method’s final segmentation result.

7. Experiments
Evaluation was made through three experimental setups.

Hopkins 155 The Hopkins 155 (H155) dataset has been

the standard evaluation metric for the problem of motion

segmentation of trajectory data since 2007. It consists of

checkerboard, traffic and articulated sequences with either 2

or 3 motions. Data was automatically tracked, but tracking

errors were manually corrected; further details are available

in [12]. The use of a standard dataset enables direct compar-

ison of accuracy and run-time performance. Table 1 shows

the relevant figures for the two most competitive algorithms

that we are aware of. The data indicates that our algorithm

has run-times that are close to 2 or 3 orders of magnitude

faster than the state of the art methods, with minimal ac-

curacy loss. Computation times are measured in the same

(or very similar) hardware architectures. Like in CPA, our

implementation uses a single set of parameters for all the

experiments, but as others had pointed out [14], it remains

unclear whether the same is true for the results reported in

the original SSC paper.
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Figure 4: Accuracy error-bars across artificial H155

datasets with controlled levels of Gaussian noise.

Artificial Noise The second experimental setup comple-

ments an unexplored dimension in the H155 dataset: noise.

The goal is to determine the effects of noise of differ-

ent magnitudes towards the segmentation accuracy of our

method, in comparison with the state of the art.

We noted that H155 contains structured long-tailed

noise, but for the purpose of this experiment we required a

noise-free dataset as a baseline. To generate such a dataset,

ground-truth labels were used to compute a rank 3 re-

construction of (mean-subtracted) trajectories for each seg-

ment. Then, multiple versions of H155 were computed by

contaminating the noise-free dataset with Gaussian noise of

magnitudes σn ∈ {0.01, 0.25, 0.5, 1, 2, 4, 8}. Our method,

as well as SSC and CPA were run on these noise-controlled

datasets; results are shown in Figure 4. The error bars on

SSC and Ours indicate one standard deviation, computed

over 20 runs. The plot for CPA is generated with only one

run for each dataset (running time: 11.95 days). The graph

indicates that our method only compromises accuracy for

large levels of noise, while still being around 2 or 3 orders

of magnitude faster than the most competitive algorithms.

KLT Tracking The last experimental setup evaluates the

applicability of the algorithm in real world conditions us-

ing raw tracks from an off-the-shelf implementation [1] of

the Kanade-Lucas-Tomasi algorithm. Several sequences

were tracked and the resulting trajectories classified by our

method. Figure 5 shows qualitatively good motion segmen-

tation results for four sequences. Challenges include very

small relative motions, tracking noise, and a large presence

of outliers.

8. Conclusions
We introduced a computationally efficient motion seg-

mentation algorithm for trajectory data. Efficiency comes

from the use of a simple but powerful representation of mo-

tion that explicitly incorporates mechanisms to deal with

noise, outliers and motion degeneracies. Run-time compar-

isons indicate that our method is 2 or 3 orders of magnitude

faster than the state of the art, with only a small loss in ac-

curacy. The robustness of our method to Gaussian noise

Figure 5: Segmentation results from raw KLT automatic

tracks from four Formula 1 sequences. Italian Grand Prix
c©2012 Formula 1. In this figure, all trajectories are given a

motion label, including outliers.

of different magnitudes was found competitive with state

of the art, while retaining the inherent computational effi-

ciency. The method was also found to be useful for motion

segmentation of real-world, raw trajectory data.
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