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Abstract

We present SWIGS, a Swift and efficient Guided Sam-
pling method for robust model estimation from image fea-
ture correspondences. Our method leverages the accuracy
of our new confidence measure (MR-Rayleigh), which as-
signs a correctness-confidence to a putative correspon-
dence in an online fashion. MR-Rayleigh is inspired by
Meta-Recognition (MR), an algorithm that aims to predict
when a classifier’s outcome is correct. We demonstrate that
by using a Rayleigh distribution, the prediction accuracy of
MR can be improved considerably. Our experiments show
that MR-Rayleigh tends to predict better than the often-used
Lowe’s ratio, Brown’s ratio, and the standard MR under a
range of imaging conditions. Furthermore, our homogra-
phy estimation experiment demonstrates that SWIGS per-
forms similarly or better than other guided sampling meth-
ods while requiring fewer iterations, leading to fast and ac-
curate model estimates.

1. Introduction
Many computer vision tasks have to deal with incorrect

image feature correspondences to estimate various types

of models, such as homography, camera matrix, and oth-

ers. Estimating these models robustly and quickly is very

important for applications such as image registration [3],

image-based localization [12, 13, 16], and many others.

RANSAC [9] has been the method of choice for robustly es-

timating these models, and several improvements have been

developed to increase its efficiency and improve its accu-

racy, e.g., [2, 5, 6, 7, 10, 19, 20].

For many applications these estimates have to be com-

puted as quickly and efficiently as possible. With this ob-

jective in mind, many approaches exploit some prior in-

formation (e.g., geometrical and matching information) to

compute a set of confidences that are used to select im-

age feature correspondences for generating models. In this

work, we focus on exploiting the matching scores to com-

pute these confidences. In Fig. 1 we depict the general

pipeline of a “guided sampling” robust model estimation.
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Figure 1. A set of image feature correspondences are passed to

the robust model estimation process. For every correspondence,

a correctness-confidence is computed. Subsequently, these confi-

dences are used for sampling image correspondences to generate

a model hypothesis. Finally, the estimation process stops iterating

when a good model is found.

We introduce SWIGS, an efficient and fast method for

guiding the data selection process, also referred as global

search, that has only a single parameter. Our approach per-

forms as well as the aforementioned methods but requires

fewer iterations. SWIGS assumes that every feature corre-

spondence has its own pair of correct and incorrect match-

ing scores distributions, and it computes a confidence on the

fly using our proposed MR-Rayleigh confidence measure

for every correspondence by analyzing the closest matching

scores obtained by the feature matcher. Assigning a confi-

dence on the fly can be important for applications where en-

vironmental conditions can drastically change the matching

scores distributions for correct and incorrect image feature

correspondences, or when real-time performance is desired.

Moreover, we show that MR-Rayleigh can be used to

predict correct image feature correspondences more accu-

rately than Lowe’s ratio [14], Brown’s ratio [3], and Meta-

Recognition [18] under a variety of different imaging con-

ditions. Predicting when an image feature correspondence

is correct is used and can be extremely beneficial in im-

age based localization [12, 13, 16], where the prediction is

used to keep “good” matches, and other applications. MR-

Rayleigh can be easily applied to any recognition task as

well, such as biometrics, object recognition, and others.

Our contributions are:

1. MR-Rayleigh: A confidence metric that allows more

accurate predictions of correct matches and enables an
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efficient and quicker guided sampling, under the as-

sumption that every correspondence has its own cor-

rect and incorrect matching scores distributions.

2. SWIGS: A fast and efficient guided sampling process

for robust model estimation based on MR-Rayleigh

confidences that only has a single parameter to tune

and does not need an offline stage.

2. Previous work
There exists a rich literature about computing weights

or confidences to bias the selection of image feature corre-

spondences to generate models in a robust model estimation

process. These approaches in general exploit prior informa-

tion such as matching scores ([2, 11, 19]) or geometrical

cues ([5, 17]) to compute these weights. In Fig. 1 we show

an overview of the main loop in a robust model estimation,

where the confidences or weights are used to select feature

correspondences and generate hypotheses. We call “sam-

pling strategy” to the selection of image feature correspon-

dences using the computed confidences.

In this section, we review the approaches that use match-

ing scores as priors to compute a sampling strategy, as

well as methods for predicting correct correspondences.

Note that we use the terms match and correspondence in-

terchangeably throughout the rest of the paper.

2.1. Prediction of correct matches

Lowe’s ratio [14] has been one of the most efficient and

widely used heuristics for predicting the correctness of a pu-

tative correspondence. The ratio compares the first nearest

neighbor matching score against the second nearest neigh-

bor matching score. This ratio exploits the fact that correct

matching scores tend to be distant from the incorrect match-

ing scores, consequently producing lower values (assuming

a distance-based matching score). Finally, a threshold on the

ratio is used for predicting correctness.

Brown et al. [3] extend Lowe’s ratio by comparing the

first nearest neighbor matching score against the average

of the second nearest neighbor matching scores of multi-

ple correspondences. Brown and colleagues report that this

extension improved prediction performance.

A more elaborate method for predicting correct matches

was introduced by Cech et al. [4]. This method uses a

sequential co-segmentation process to obtain more infor-

mation about the correctness of the correspondence. The

method stops co-segmenting when it has enough evidence

to declare a putative correspondence correct.

Our predictor uses only matching scores, as collecting

other cues as in [4] can take extra time. We show that using

the closest matching scores to the nearest-neighbor score

can reveal useful information about the correctness of a pu-

tative correspondence, which boosts the prediction perfor-

mance considerably. We will analyze and discuss this point

throughly in Sec. 3.

2.2. Guided sampling using matching scores

Tordoff and Murray [19] calculate the correctness-

confidence by considering the matching scores and the

number of correspondences to which a feature was matched.

Their method requires fitting appropriate curves to the em-

pirical correct/incorrect densities a priori. Then, the proba-

bility that a match is correct, given all the matching scores

of its potential matches, is calculated and used for biasing

the selection of matches that are more likely to be valid.

The BEEM’s global search mechanism [11] estimates

the correct and incorrect correspondence distributions for

a given pair of images by considering Lowe’s ratio as the

random variable. BEEM estimates these distributions by

using kernel density estimation after classifying each cor-

respondence as correct/incorrect using Lowe’s ratio. Sub-

sequently, BEEM estimates the mixing parameter between

the computed distributions, and calculates the correctness

confidences using the distributions and the mixing parame-

ter. BEEM then assumes that the statistics of the matching

scores are fixed for the given pair of images.

The BLOGS global search mechanism [2] computes the

confidences by considering the highest and the two clos-

est similarity scores. An important feature of this method,

which is similar to our approach, is that it computes the con-

fidences on the fly as it only requires the similarity scores of

every feature. Hence, BLOGS considers that the statistics

of the matching scores are defined per correspondence.

In contrast with most of the previous approaches, except

BLOGS, SWIGS assumes that every correspondence has its

own correct and incorrect matching scores distributions. To

compute the confidence for every match, we exploit infor-

mation from the tail of the incorrect matching score dis-

tribution. We will discuss in more depth these confidence

computations in the following section.

3. Swift guided sampling
In this section we describe the keypoint matching pro-

cess used in SWIGS. Given a query descriptor qi and a pool

of reference descriptors {r}nj=1, a feature matcher decides

the best putative correspondence following the nearest-

neighbor rule:

j� = argmin
j

‖qi − rj‖2, (1)

where si,j = ‖qi − rj‖2 is the matching score (or score

for short). Two descriptors are correctly matched when their

associated features correspond to the same location in the

scene. In practice, the minimum matching score can belong

to a correct or incorrect match due to several nuisances; e.g.,

a minimum matching score produced by an incorrect image
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correspondence can be obtained when the scene contains

repetitive structures.

We can consider the sequence of matching scores

{si,1, . . . , si,n} for a single query descriptor qi as a se-

quence composed by scores generated independently from

a correct matching-scores distribution Fc and an incorrect

matching-scores distribution Fc̄. The matcher selects the

minimum score from the sequence as the best match, which

can either correspond to a minimum score generated from

Fc or Fc̄. The correct score (if any) can be the second, third,

or other ranked score in the sequence, and hence we must

consider overlapping distributions.

3.1. Meta-Recognition

In this section, we briefly review Meta-Recognition

(MR) [18] and discuss some of its challenges in the con-

text of feature matching. The objective of MR is to predict

the correctness of a classifier; in our context we are inter-

ested in knowing whether a putative match is likely to be

correct or incorrect. To achieve this objective, MR consid-

ers a ranked sequence of scores for a given query and selects

the best ranked k scores s1:k (the k lowest scores). Subse-

quently, MR fits a Weibull distribution (W ) to the selection

discarding the lowest score s1; i.e., it uses s2:k for model-

ing the tail of Fc̄. Finally, MR tests if s1 is an outlier of the

tail model in order to classify it as correct. The MR-Weibull

prediction process can be summarized as follows:

Prediction(s1) =

{
Correct if W (s1;λ, η) > δ
Incorrect otherwise

(2)

where W (s1;λ, η) is the Complementary Cumulative Dis-

tribution Function (CCDF); λ and η are the scale and shape

parameters; and δ is a threshold.

W (s;λ, η) = e−(
s
λ )

η

(3)

As discussed earlier the lowest (best) matching score s1
was generated either by Fc̄ or Fc (depicted in Fig. 2a).

Meta-Recognition’s goal is to classify s1 as correct or in-

correct, and a threshold α corresponding to the crossover of

Fc and Fc̄ suffices for the task. However, we do not have

enough information to determine exactly Fc or Fc̄. MR-

Weibull takes a different approach to achieve this goal by

leveraging the fact that we have more samples from Fc̄, and

models its tail with a Weibull distribution W (depicted in

Fig. 2b). Under the assumption that Fc is predominantly to

the left of Fc̄, MR-Weibull uses W (the CCDF of the tail

model) for testing whether s1 is an outlier, in which case

it is classified as a correct match (see Fig. 2d). Neverthe-

less, the tail-fitting process in MR-Weibull can be affected

by correct matching scores that are present in s2:k causing a

bad model of the tail W and affecting the prediction. In par-

ticular, this scenario can happen when dealing with scenes

that contain repetitive textures.

3.2. MR-Rayleigh

We have found that the accuracy and robustness of Meta-

Recognition (MR) can be improved in the context of fea-

ture matching by using a Rayleigh distribution. Rayleigh’s

CCDF,

R(s;σ) = e−
s2

2σ2 , (4)

has a single parameter to estimate and can reduce sensitiv-

ity. We estimate σ from the closest scores s2:k using the

maximum-likelihood formula:

σ̂ =

√√√√ 1

2 (k − 1)

k∑
j=2

s2j (5)

where sj is the j-th ranked matching score. An advantage of

this new MR-Rayleigh approach is that σ̂ can be computed

efficiently, which is a desired property for applications that

demand (near) real-time.

Intuitively, MR-Rayleigh finds a CCDF (R) that sets

most of its mass over the support of Fc; the support is as-

sumed to be predominantly to the left of Fc̄ (depicted in

Fig. 2c). Moreover, R decays gradually as soon as the

matching score approaches the region of the tail of Fc̄.

Hence, MR-Rayleigh assigns a higher confidence to those

matching scores that fall to the left of Fc̄ and a lower con-

fidence to those that fall near Fc̄, in contrast with MR-

Weibull, which assigns the confidence of one over the sup-

port of Fc (illustrated Fig. 2d), and abruptly falls near Fc̄.

Hence, MR-Weibull can assign a high confidence to scores

corresponding to incorrect matches that fall near the distri-

bution’s crossover, yielding false-alarms.

3.3. Guided Sampling using MR-Rayleigh

The main idea of guided sampling for model fitting from

feature correspondences is to use the computed confidences

{cl}Nl=1 of being a correct match, where l indicates the index

of a putative correspondence. Several approaches estimate

cl by using the following relationship

cl = p(c|xl) =
p(xl|c)p(c)

p(xl|c)p(c) + p(xl|c̄) (1− p(c))
(6)

where xl (the random variable) can be either matching

scores [19] or Lowe’s ratios [11], p(x|c) and p(x|c̄) are

the likelihoods of being correct and incorrect matches re-

spectively, and p(c) is the probability that a correct corre-

spondence is selected. To estimate these confidences with

this relationship, we therefore need to know the likelihoods

p(x|c) and p(x|c̄), and the prior p(c). Several approaches

spend time in estimating these data either offline [19] or on-

line [11], where the former requires a representative dataset

of matching scores, and the latter uses only the matching
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Figure 2. Illustration of densities involved in a keypoint matching process per query feature1. (a) The lowest matching score is produced

either by fc (the matching scores distribution of correct matches) or fc̄ (the matching scores distribution of incorrect matches). The goal

of this work is to estimate which distribution produced the minimum score. (b) Meta-Recognition models the tail of fc̄ with a Weibull

distribution w to then calculate a confidence using the CCDF and predict correctness (d). MR-Rayleigh approximates the support of fc by

computing a Rayleigh distribution r from data taken from the tail to calculate a confidence using the CCDF and predict correctness (d).

scores obtained from the query and reference images to cal-

culate the required Lowe’s ratios. Other approaches, e.g.,

BLOGS [2], define their own confidence using the best and

closest similarity scores:

cl =
(
1− e−ml

)2 (
1− mlr

ml

)(
1− mlc

ml

)
(7)

where cl is the confidence assigned to the l-th correspon-

dence, ml is the best similarity score, and mlr and mlc are

the two closest similarity scores obtained from a similar-

ity matrix. BLOGS assigns a higher confidence when the

greatest similarity score is high and is distant from its clos-

est scores, and the confidence is severely penalized when its

closest scores are near the greatest similarity score.

We calculate the confidence of being a correct match us-

ing MR-Rayleigh (see Sec. 3.2):

cl = R(s
(l)
1 ; σ̂) (8)

where s
(l)
1 is the best matching score of the l-th correspon-

dence, and σ̂ is calculated with its k−1 closest scores (s
(l)
2:k).

SWIGS avoids any density estimation and/or an offline

stage; instead, it calculates a confidence on the fly. It re-

quires a single parameter to tune k (discussed in Sec. 4),

and avoids other complicated parameters such as a kernel

to be used and its bandwidth, or distributions/curves to fit.

SWIGS requires only the calculation of σ̂, which can be

calculated quickly and efficiently via Eq. (5).

4. Experiments
To assess the performance of SWIGS, we present two

experiments: correct matches prediction accuracy, and a

guided sampling experiment for estimating homography

from image feature correspondences.

1We drew S = 1000 samples from Fc̄ = N (128, 30) to compute W
with k = 5% of S and R with k = 0.1% of S.

4.1. Datasets

In all the experiments we used the publicly available

Affine Covariant Features Dataset used in [15]. This dataset

contains eight sub-datasets (graf, wall, bark, boat, bikes,

trees, leuven, and ubc), each with systematic variations of

a single imaging condition: viewpoint (graf, wall), scale

(bark, boat), image blur (bikes, trees), illumination (leu-

ven), or jpeg compression (ubc). Every sub-dataset contains

six images: a reference image and five query images of the

same scene varying a single imaging condition. In addition,

every sub-dataset provides five homographies that relate the

reference image with each of the query images in the sub-

dataset.

We used OpenCV’s Hessian keypoint detector for find-

ing approximately 2000 interest points per image. We used

OpenCV’s implementation of SIFT [14] and SURF [1] for

describing the keypoints and we included (non-optimized)

C++ code to calculate MR-Rayleigh, MR-Weibull, Brown’s

ratio, and Lowe’s ratio into the brute-force feature matcher

in OpenCV. With these modifications, the matcher returns

either a confidence (MR-Rayleigh or MR-Weibull) or a ra-

tio (Lowe’s or Brown’s) for every putative correspondence.

We matched the reference keypoints (found in the reference

image) against the query keypoints (detected per query im-

age) for every sub-dataset. We then identified the correct

matches by evaluating the following statement

‖xq −Hxr‖2 < ε (9)

where xq and xr are the query and reference keypoints, H
is the homography transformation provided in the dataset

that relates the reference and the query image, and ε = 5
pixels is a threshold. Those matches that did not comply

were labeled as incorrect matches. These identified cor-

rect correspondences were verified manually and used as

our ground truth in our experiments.

We generated a tuning dataset for determining the val-

ues of k and δ for MR-Rayleigh and MR-Weibull, and
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the threshold τBR for Brown’s ratio. For every sub-dataset

we generated eight different random affine transformations.

Then, we use these generated transformations to obtain

eight images from the reference image of each sub-dataset.

We then detected approximately 1000 interest points on

every image, we calculated their descriptors (SIFT and

SURF), and computed the correspondences between the ref-

erence image and each generated image per descriptor. Sub-

sequently, we then identified the correct correspondences in

a similar manner as described earlier but using the affine

transformations instead of the homographies in Eq. (9).

4.2. Correct match prediction experiment

In this experiment we are interested in measuring the

performance of MR-Rayleigh on detecting correct matches;

and we use the labeled correct correspondences as our

ground truth. We considered a True-Positive when the

predictor accurately detects a correct match, and a False-

Positive when the predictor inaccurately detected a positive

match, i.e., a false alarm. We used the False-Positive rate

(FPR) and True-Positive rate (TPR) to determine the values

of k and δ for MR-Rayleigh and MR-Weibull (see [8] for

FPR and TPR calculation). We ran large series of predic-

tions using the tuning dataset mentioned earlier and selected

k and δ for MR-Rayleigh and MR-Weibull per descriptor

such that the operation point op = (FPR,TPR) was as

close as possible to the ideal operation point op� = (0, 1),
i.e., the lowest FPR and the maximum TPR. We found that

kMR-Rayleigh = 0.5% of n and kMR-Weibull = 2% of n worked the

best for SIFT and SURF matches, where n is the number of

reference features. We also tuned Brown’s ratio (BR) on the

same dataset and in the same manner and found τBR = 0.73
and τBR = 0.709 were good thresholds for SIFT and SURF

matches respectively, while for Lowe’s ratio (LWR) we

used the recommended threshold of τLWR = 0.8 for both

SIFT and SURF matches.

We present five different receiver operating characteris-

tics (ROC) curves per descriptor in Fig. 3. The top row

corresponds to SIFT matches and the bottom row to SURF

matches, and each column presents results for a different

imaging condition; with the exception of the first column,

which presents the results over all imaging conditions. We

used the best values found for k where n ≈ 2000 refer-

ence features (i.e., kMR-Weibull ≈ 40 and kMR-Rayleigh ≈ 10). For

Lowe’s ratio and Brown’s ratio we predict a correct match

when such a ratio is lower than a threshold τ . We varied

every threshold of each predictor in the range of 0 to 1 with

steps of size 10−4.

We can observe in the first column of Fig. 3 that

MR-Rayleigh (MRR) outperformed MR-Weibull (MRW),

Lowe’s ratio (LWR), and Brown’s ratio (BR) over all imag-

ing conditions for SIFT and SURF matches. From the sub-

sequent columns we can conclude that MR-Rayleigh tends

Table 1. Optimal operation points for predictors.

SIFT

Predictor Thld. FPR TPR F

Lowe’s ratio 0.8000 0.07 0.76 0.78

Brown’s ratio 0.7300 0.10 0.80 0.78

MR-Weibull 0.9999 0.21 0.90 0.74

MR-Rayleigh 0.6000 0.11 0.85 0.80
SURF

Lowe’s ratio 0.8000 0.04 0.64 0.73

Brown’s ratio 0.7090 0.05 0.61 0.68

MR-Weibull 0.9999 0.06 0.69 0.72

MR-Rayleigh 0.6000 0.06 0.71 0.75

to perform better in most cases: the rate of true-positives

overall tends to be higher than for MR-Weibull, Lowe’s ra-

tio and Brown’s ratio. A problem we observed with MR-

Weibull is the sensitivity of its threshold: the effective range

is between 0.9 and 1 to be discriminative; in fact, this is

the reason for choosing a small step size for the thresh-

olds. This threshold sensitivity explains the abrupt “jumps”

in the ROC curves for SIFT matches in the first, second,

fourth, and fifth columns, as a tiny variation in the thresh-

old can affect drastically the prediction accuracy of MR-

Weibull; the True-Positive rate drastically drops when the

False-Positive rate is low. Consequently, MR-Weibull can

struggle in detecting correct matches when a low False-

Positive rate is required. In contrast, MR-Rayleigh does

not suffer this threshold sensitivity and it can be used when

a low False-Positive rate is required. Lowe’s ratio in gen-

eral performs competitively for SIFT and SURF matches,

whereas, Brown’s ratio tends to perform competitively for

SIFT matches but tends to fall short for SURF matches.

We also conducted an experiment on detecting correct

matches per descriptor on the entire testing dataset using

the thresholds found during our tuning stage. The goal of

the experiment is to assess the performance of these predic-

tors using the best parameters found in our tuning stage. We

present False-Positive rate (FPR), True-Positive rate (TPR),

and the F-score per descriptor (see [8] for F-score calcula-

tion) as the results of this experiment in Table 1. We cal-

culated the F-score to assess performance in a unified man-

ner. From the results of this experiment we can conclude

that Lowe’s ratio returned the lowest False-Positive rate

(FPR) regardless of the descriptor. MR-Weibull produced

the highest True-Positive rate for SIFT matches but with the

highest False-Positive rate, while MR-Rayleigh produced a

high True-Positive rate and a low False-Positive rate. For

SURF matches MR-Rayleigh produced the highest True-

Positive rate and a low False-Positive rate. MR-Rayleigh

has the highest F-score for SIFT and SURF matches, which

suggests that MR-Rayleigh is a good detector of correct im-

age feature correspondences.

277227722774



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positives rate

Tr
u

e
 P

o
sit

iv
e

s 
ra

te

ALL

 

 

LWR
BR
MRR
MRW

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positives rate

Tr
u

e
 P

o
sit

iv
e

s 
ra

te

BIKES

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positives rate

Tr
u

e
 P

o
sit

iv
e

s 
ra

te

BOAT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positives rate

Tr
u

e
 P

o
sit

iv
e

s 
ra

te

LEUVEN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positives rate

Tr
u

e
 P

o
sit

iv
e

s 
ra

te

WALL

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positives rate

Tr
u

e
 P

o
sit

iv
e

s 
ra

te

 

 

LWR
BR
MRR
MRW

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positives rate

Tr
u

e
 P

o
sit

iv
e

s 
ra

te

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positives rate

Tr
u

e
 P

o
sit

iv
e

s 
ra

te

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positives rate

Tr
u

e
 P

o
sit

iv
e

s 
ra

te

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positives rate

Tr
u

e
 P

o
sit

iv
e

s 
ra

te

Figure 3. ROC curves for evaluating correct matches predictions by using MR-Weibull (MRW), MR-Rayleigh (MRR), Lowe’s ratio (LRW),

and Brown’s ratio (BR). The top row presents the results for SIFT matches and bottom row for SURF matches. The first column presents

the results over all sub-datasets while the second-to-fourth columns show the results on bikes, boat, leuven, and wall sub-datasets.

4.3. Homography estimation experiment

In this experiment we aim to evaluate the performance

of SWIGS for homography estimation in a dense matching

scenario, and compare it with several other sampling meth-

ods: BEEM [11]; a Guided-Sampling [19] with a general

distribution considering all the imaging conditions (GEN);

a Guided-Sampling [19] that considers only the distribution

for a specific imaging condition (SPEC); BLOGS [2] where

ml = 1/s1, and mlr = mlc = 1/s2 as our approach consid-

ers a different matching procedure; and a classical random

sampling (uniform distribution) for a baseline.

Each of these methods was plugged in to our own MLE-

SAC [21] implementation, where the standard deviation of

the residuals distribution was set to σ̄ = 5 pixels, and

w = 20 as the parameter for the mismatched residuals dis-

tribution. Matlab was used to obtain the distributions re-

quired for the two Guided-Sampling [19] methods and to

fit Weibull and Generalized Extreme Value distributions for

correct and incorrect matches respectively (see Fig. 4). We

implemented only the prior estimation stage of BEEM and

BLOGS’ global search mechanism, as we aim at comparing

the confidence mechanism used for data sampling in a ro-

bust estimation. We used OpenCV’s findHomography func-

tion (without the RANSAC option) and the correct matches

identified by each method to estimate the homography.

We executed the experiment 5000 times with a stopping

criterion of 100% of correct matches found and a maxi-

mum of 1000 iterations, since we are interested in appli-

cations that have a limited budget of iterations; an iteration

is a completion of the loop in Fig. 1. We report the me-

dian of the number of iterations a method took to find the

best model within the required number of iterations and the

median of the percentage of correct matches that the best

model found considered as a correct match. We used the

Figure 4. Fitted distributions for SIFT matches (left) and SURF

matches (right) used in GEN. Similar distributions were obtained

per sub-dataset for SPEC.

same ground truth as in the previous experiment.

The results are shown in Fig. 5 (see supp. material for

more detailed plots), where the first two rows show the re-

sults obtained for SIFT, and the rest for SURF matches. The

percentage of correct matches are presented in the first and

third rows, while the iterations are in the second and fourth

rows. The x-axis indicates the index of the images con-

tained in the considered sub-datasets (omitting the refer-

ence image, which is index 1); an increasing index repre-

sents increasing variation with respect to the reference im-

age. Each column presents the results for a different sub-

dataset: bikes, boat, graf, trees, and wall, from left-to-right.

We can observe that SWIGS tends to require in general

fewer iterations than the other methods (second and fourth

rows) to find models that consider a comparable or higher

percentage of correct matches within the allowed number of

iterations (first and third row). We note that SWIGS, SPEC,

and BEEM tend to find models that consider approximately

the same number of matches. The GEN method struggles

more to find models that consider a high percentage of cor-

rect matches in scenes with repetitive textures, e.g., wall,

and trees sub-datasets; repetitive textures can cause a con-

siderable overlap between correct and incorrect matching
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Figure 5. Performance evaluation across several sub-datasets (bikes, boat, graf, trees, wall from left-to-right). Of all the 5000 repetitions of

the experiment, the first and third rows present the median of the percentage of correct matches found by the best computed models within

the allowed number of iterations, while the second and fourth rows present the median number of iterations at which the best model was

found. The first and second rows present the results for SIFT, and the third and fourth for SURF.

scores distributions (see Fig. 4). BLOGS and a random

sampling (Uniform) method perform similarly in finding

models that consider a high portion of the correct matches.

The experimental results presented in this section

demonstrate that SWIGS can perform similarly or better

in finding models that consider a good portion of correct

matches in a dense matching scenario. The experiments

also show that SWIGS tends to require fewer iterations

than the other guiding sampling methods without sacrificing

the number of correct matches found. Moreover, this con-

firms that MR-Rayleigh confidences tend to identify good

matches, and these confidences yield an efficient and ac-

curate sampling strategy. In Fig. 6 we show two different

sets of correct image feature correspondences found with

SWIGS and MLESAC.

5. Conclusions and future directions
We have introduced MR-Rayleigh, a confidence measure

based on Meta-Recognition (MR) [18] for predicting cor-

rect image feature correspondences more accurately. MR-

Rayleigh computes the confidence considering the k clos-

Figure 6. Correct SIFT matches found between the reference im-

age (top-right) and query image (top-left) of the Graf dataset and

correct SURF matches between reference image (bottom-right)

and query image (bottom-left) of the Boat dataset using SWIGS

and MLESAC.
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est matching scores produced by the matcher when com-

paring the query descriptor against the reference descrip-

tors. MR-Rayleigh assigns a higher confidence when the

lowest matching score is closer to zero and gradually de-

cays as it gets closer to the tail of the incorrect matching

scores distribution. Moreover, MR-Rayleigh estimates a

single parameter which is more efficient to compute and can

be more robust to the data used for its estimation than the

two Weibull’s parameters required in MR-Weibull [18].

Our experiments showed that MR-Rayleigh outper-

formed Lowe’s ratio, Brown’s ratio, and MR-Weibull in

predicting correct matches across several image correspon-

dences obtained in different imaging conditions. This pre-

diction is efficient to compute and can be useful in many

applications such as image-based localization where only

good matches are kept; in estimating the inlier-ratio, which

can be used to estimate the maximum number of iterations

in RANSAC, and others.

We also presented SWIGS, an efficient method to sam-

ple data in a guided manner for robust model fitting that

exploits the confidence delivered by MR-Rayleigh. In com-

parison with other guided sampling methods (e.g., BEEM

[11] and Guided-MLESAC [19]) that assume a correct or

incorrect matching score distribution for a pair of images

or for an entire dataset, SWIGS considers that every query

feature has a correct and incorrect matching scores distribu-

tions. SWIGS then computes the confidence of every cor-

respondence on the fly and uses these confidences for sam-

pling matches to estimate a model such as a homography.

Our homography estimation experiment suggests that

SWIGS achieves competitive or better results than BEEM’s

and BLOGS’s [2] guided sampling mechanisms, and Tord-

off and Murray’s guided MLESAC [19]. We believe that

SWIGS can help applications that have no prior information

of the environment where they will be used, such as image

registration, feature-based tracking, SLAM, and other ap-

plications that use putative correspondences for estimating

different models.

For future work, we plan to evaluate MR-Rayleigh’s per-

formance on other applications, such as object recognition,

image retrieval, and others. In addition, we plan to extend

MR-Rayleigh for similarity metrics.
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