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Abstract

We present a method for computing ambient occlusion
(AO) for a stack of images of a scene from a fixed viewpoint.
Ambient occlusion, a concept common in computer graph-
ics, characterizes the local visibility at a point: it approx-
imates how much light can reach that point from different
directions without getting blocked by other geometry. While
AO has received surprisingly little attention in vision, we
show that it can be approximated using simple, per-pixel
statistics over image stacks, based on a simplified image for-
mation model. We use our derived AO measure to compute
reflectance and illumination for objects without relying on
additional smoothness priors, and demonstrate state-of-the
art performance on the MIT Intrinsic Images benchmark.
We also demonstrate our method on several synthetic and
real scenes, including 3D printed objects with known ground
truth geometry.

1. Introduction
Many vision methods estimate physical properties of a

scene from images taken under varying illumination. Some
notable examples include recovering surface normals using
photometric stereo [6, 25, 2], recovering diffuse reflectance
and illumination as intrinsic images [27, 15], and comput-
ing low-dimensional models of appearance of objects and
scenes [26, 9]. However, these methods typically disregard
the effect of the local visibility of illumination in determining
shading. Further, many of these methods require calibrated
setups (e.g., known lighting directions), special priors (e.g.,
smoothness of surface reflectance), or limiting assumptions
(e.g., no cast shadows).

In our work, we revisit such estimation problems by pos-
ing the following question: what can we tell about a scene
point simply by observing its appearance under many differ-
ent, unknown illumination conditions? The appearance of
a point over such an image stack depends on many factors,
such as the point’s albedo and the distribution of illumina-
tions. However, a key observation is that the local visibility
of a point—i.e., its accessibility to light from different direc-
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Figure 1. Our method takes as input a stack of images captured
from varying, unknown illumination (a) and computes a per-pixel
statistic, κ, over this stack (b). We infer both per-pixel ambient
occlusion, a measure of local visibility (c), and albedo (d) for the
scene by relating κ to a simple image formation model.

tions, often modeled as ambient occlusion (AO) in computer
graphics—is also an important property in determining its ap-
pearance in images. We show that we can estimate ambient
occlusion directly from image observations, by introducing
a simple, aggregate statistic (κ in Fig. 1(b)), and relating
this statistic to ambient occlusion. To do so, we consider
a physical model of a point with a cone of visibility to the
hemisphere, lit by a moving point light and constant ambient
light over the image stack. We then combine this model with
our statistic to infer ambient occlusion for each scene point
(Fig. 1(c)). This kind of lighting visibility is often treated as
a nuisance in computer vision methods, and in many cases
is simply ignored. In contrast, we explicitly model such
visibility for each scene point, and use it to aid in estimating
other physical parameters, such as surface albedo (Fig. 1(d)).
The result is a photometric approach to estimating ambient
occlusion and albedo.

Our method has several key properties: we do not require
knowledge of light positions, explicit scene geometry, or sur-
face normals. The setup for acquisition is simple, requiring
a point light source and a camera. However, we do assume
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that light source positions vary uniformly over the full hemi-
sphere, although in practice we achieve good results even
when this assumption does not hold. Note that we use the
term image “stack” to refer to a set of images of the same
scene lit under varying illumination, but captured from the
same viewpoint. No frame-by-frame coherence or ordering
is implied. Our contributions are:

• A per-pixel, image-space approach to estimating ambi-
ent occlusion that does not require information about
the underlying geometry.
• A new method for intrinsic image decomposition using

our model of ambient occlusion, accounting for local
visibility at each point.

We demonstrate our method in experiments on several scenes.
These include artificially generated images from a physically
based renderer, as well as real objects captured in a labora-
tory environment. Our experiments on real objects include
a validation on 3D printed objects with known geometry,
including the TENTACLE dataset in Fig. 1. We also show
that our method—despite its simplicity and its per-pixel
analysis of a scene, without additional smoothness priors—
outperforms current approaches on the MIT intrinsic images
benchmark [10]. This demonstrates the utility of reasoning
about AO when measuring properties of scenes from images.

2. Ambient Occlusion
Ambient occlusion [16] is a measure of light accessibility

commonly used in computer graphics to properly account
for ambient illumination. Formally, for a single scene point
x, AO is the integral over the hemisphere

AO(x) =
1

π

∫
Ω

V (x, ~ω)〈~n, ~ω〉dω (1)

of the local visibility function V (x, ~ω) (i.e. V (x, ~ω) = 1 if
there are no occluders between point x and the environment
in direction ~ω, V (x, ~ω) = 0 otherwise) weighted by the dot
product 〈~n, ~ω〉 between direction ~ω and the point normal
~n. For an example, see Fig. 6. At points where most of
hemisphere is occluded, e.g., in a deep crevice, V is mostly
0 and so AO is close to 0, while for unoccluded points AO
is 1. If the albedo at x is ρ, the measured radiance due to
ambient illumination with intensity la can be expressed as:

Ia = ρπlaAO (2)

Note that this only considers the first bounce of light (direct
illumination), and does not account for inter-reflections.

Two properties of ambient occlusion that are useful in
computer vision are: (1) it is independent of surface albedo,
and so variation and discontinuities are due only to scene
geometry, and (2) it explains in a simple way why regions

with same albedo can have different intensities even when
lit with uniform illumination [17].

In computer graphics, the main focus is on computing
AO in 3D scenes to render images [20, 13, 19]. In contrast,
we are interested in estimating AO from a set of images
illuminated by a varying, unknown light source.

3. Related Work
Ambient occlusion has received relatively little attention

in computer vision. Some examples of its use include early
work in shape-from-shading [17], where it was used in mod-
els of images under diffuse illumination, as well as more
recent work that considers AO in various applications.

In the context of high-quality face capture, Beeler et
al. [7] and Aldrian & Smith [3] model AO by assuming
a uniform, constant, light source, and require an initial esti-
mate of the geometry. In the area of multi-view stereo, Wu et
al. assume that a scene consists of a single albedo, and so
the scene brightness under uniform area lighting is itself a
good approximation to AO (e.g., darker regions are more
occluded) [29]. For the problem of intrinsic image decom-
position from large photo collections, Laffont et al. require
accurate estimates of the albedo for a sparse set of 3D scene
points [14]. To account for points that are darker due to AO,
they compute AO explicitly by generating and analyzing a
3D scene reconstruction. In contrast to these methods, we do
not explicitly model geometry, instead reasoning about AO
purely from observed pixel values. This yields a very simple
approach that could be used as a pre-process to account for
light visibility in other vision algorithms.

Our work is also related to methods that analyze pixel
intensity variation in images under varying illumination.
Weiss proposed a method for intrinsic images from image
sequences [27], derived from a model of edge intensities. In
that work, a final step involves integrating a gradient field to
compute a reflectance image. In our experience, and in agree-
ment with other reports [10], this integration performs poorly
in the presence of soft and persistent shadows (exactly the
kind caused by AO), and we find that it can also propagate
noise across the image. In contrast, our method explicitly
models one cause of soft shadows (namely AO), and does
not require a final integration step, which we find makes
the algorithm more robust. For outdoor scenes illuminated
by the sun, Sunkavalli et al. recover albedo and normals by
directly tracking the intensity of pixel values over time [24].
While they use heuristics to determine whether a pixel is in
shadow, our method makes no such hard decisions, instead
reasoning about statistics over the entire image sequence. In
more recent work, Barron & Malik optimize for reflectance,
shape, and illumination from single images under strong
priors on illumination and color of natural scenes [5]. In
contrast, our method operates at a per-pixel level and does
not make assumptions about the texture in the scene.
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Photometric stereo techniques [28, 6] are similar to our
method in their setup and the fact that they estimate albedo,
but differ in that they recover different information about
shape (surface normals), compared to our work. Our ap-
proach is especially related to uncalibrated photometric
stereo, in which the light source directions are unknown. A
key challenge in photometric stereo is dealing with shadows,
either by detecting them in some manner [8, 25] (a non-
trivial problem with surfaces of varying albedo or complex
self-occlusions), or treating them as a source of noise [30].
Sunkavalli et al. reason about lighting visibility of surface
points, by clustering them into “visibility subspaces” that see
a common set of lights [25]. However, they use an implicit
model of lighting visibility that grows in complexity as the
number of lighting conditions increases. In contrast, our
method relies on a simple per-pixel measure of ambient oc-
clusion that becomes more robust as more images are added.
In addition, our model incorporates ambient illumination as
well as directional lighting.

Finally, our work is also related to methods that recover
shape from AO [17, 21], and our algorithm could potentially
be used to generate inputs to such methods.

4. A Model for AO in Image Stacks
We now describe how to obtain a simple approximation

to ambient occlusion (AO) by observing pixel intensities
in multiple images under varying directional lighting. We
introduce an physically-based image formation model for
our measure of AO, then use this model to derive AO and
albedo from image sequences.

4.1. Inputs and image formation model

Our method takes as input a set of images, I1, I2, . . . , In,
captured from a fixed camera observing a static, Lambertian
scene. The scene is lit by an unknown, directional light
source that changes from image to image, together with a
constant ambient light source, both of which are of constant
intensity over time. We assume that the distribution of di-
rectional light sources is uniform over the hemisphere. The
images are radiometrically and pixel x, I(x) is proportional
to the radiance at a given scene point under a particular il-
lumination. Because the camera is static, the same pixel x
records radiance for the same scene point in each image. In
the following derivation the images are treated as monochro-
matic without loss of generality.

A key idea in our work is that for a given pixel x, the
measured radiances over all images are drawn from an un-
derlying distribution that we refer to as its pixel intensity
distribution (PID). This distribution of pixel intensities is re-
lated to the distribution of illuminations over the image stack,
as well as to the albedo of that point and to the surrounding
geometry. Fig. 2 shows an example of observed PIDs in an
image stack for two points. For example, a point in a deep
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Figure 2. Histogram of pixel intensities for two points of TENTACLE

over an image stack (only blue color channel). Notice that even
though the two points have very similar albedos their histograms
are quite different due to local visibility. Point A is mostly occluded,
so values are in general lower.

concavity will very often appear dark, because light rarely
reaches it (only when the light is shining straight down into
the hole). Such a point will have a PID with mostly low-
intensity values. (For example, consider point A in Fig. 2.)
The intuition then, is that the samples we record give us
information about a pixel’s PID, which in turns reveals infor-
mation about surface albedo and ambient occlusion. As we
capture images lit under more and more possible directions,
we begin to capture the actual underlying PID of a pixel.

As a useful summary of a PID, we introduce a statistic
for a single pixel x over time, which we denote κ:

κ(x) =
E [I(x)]2

E [I(x)2]
(3)

where E [·] is the expectation operator over the set of images.
That is, κ is the square of the expected (average) intensity
value for that pixel, divided by the expected squared pixel
intensity, and is related to the coefficient of variation, a nor-
malized measure of variance used in statistics. Fig. 1(b)
illustrates κ for an example image stack. We show that this
simple ratio of statistics over recorded intensities yields an
approximation to ambient occlusion; to understand this rela-
tionship between κ and ambient occlusion, we first describe
our image formation model, then relate this to a physical
model of local scene geometry.

For a Lambertian scene, an image formation model com-
monly used in intrinsic images literature is:

I(x) = ρ(x)L(x) (4)

where I(x) ∈ R+ is the observed radiance at point x in the
image, ρ(x) ∈ [0, 1) is the diffuse albedo, and L(x) ∈ R+

is a factor that depends on both light and geometry.
Over our sequence of images I , ρ(x) is constant and

greater than zero, while L(x) varies due to lighting. Un-
der these assumptions, we can substitute Eq. (4) into the
definition of our κ statistic in Eq. (3) to obtain

κ =
E [ρL]2

E [ρ2L2]
= ��ρ

2E [L]2

��ρ
2E [L2]

(5)
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(for simplicity, we do not explicitly write the dependence on
x, but as before κ is a statistic defined per-pixel across the
image stack). Thus, κ depends only on the lighting factors
L, and not on albedo.

What range of values can κ take on? Because κ is the
quotient of non-negative numbers, it follows that κ ≥ 0. By
observing that Var(I) = E [L2] − E [L]2 ≥ 0 we can also
show that κ ≤ 1. For points that never receive light E [L] = 0
so κ = 0 (one can arrive at this via a limit analysis). For
points whose illumination term never changes we have that
Var[I] = E [L2]− E [L]2 = 0, which implies E [L2] = E [L]2
and therefore κ = 1. This behavior suggests that κ could be
useful as a measure of ambient occlusion at a point.

4.2. A physical image formation model for κ

So far we have shown that κ is independent of albedo and
is bounded. What does κ tell us about a scene point? As a
statistic, κ relates to the geometry and visibility at a point; to
show this, we introduce a simplified geometry and lighting
model to connect κ to a physical measure of local visibility.

Our model assumes that the visibility at a point can be
approximated by a cone of angle α (Fig. 3). A point x, on a
Lambertian surface, is observed by camera c while illumi-
nated by two light sources: a directional light with intensity
ld, and a background ambient illumination with constant
intensity la. One can think of these two components as
roughly similar to a “sun” and a “sky,” respectively. Surface
geometry around the point blocks all light outside the cone
with angle α from reaching x. We refer to this angle α(x)
as the local visibility angle for point x. Further, across our
input images, we assume that the directional light uniformly
samples the full hemisphere, so each measure of the radiance
of x captured by the camera corresponds to a different (un-
known) position for the light ld. Given these assumptions,
κ(x) only depends on the local visibility angle α(x).

We now derive the relationship between κ and α given our
model. To begin, each image I is the sum of the contributions
from both light sources:

I = Id + Ia (6)

The directional component Id varies from image to image
and depends on the angle θd(t) between the light source
direction ~ωd(t) and the point normal ~n, and whether the
light is blocked by other geometry. It is given by:

Id(t) = ρldVα(~n, ~ωd(t))〈~n, ~ωd(t)〉
= ρldVα(θ(t)) cos θd(t)

where Vα is the visibility term (i.e., Vα(θ) = 1 if θ ≤ α,
Vα(θ) = 0 otherwise). The ambient component is constant
and proportional to the projected solid angle of the local
visibility angle. From Eqs. (1) and (2) we integrate the

Figure 3. A point x on a Lambertian surface is observed by camera
c and illuminated by a distant, moving light source with intensity
ld, and a constant ambient term of intensity la. The local visibility
is approximated by a cone with angle α. If the light source angle
with the surface normal θ is larger than α, light is blocked and does
not reach point x at the bottom of the valley.

ambient illumination over the visible hemisphere at the point:

Ia = ρ

∫ 2π

ϕ=0

∫ α

θ=0

la cos(θ) sin(θ)dθdϕ = ρlaπ sin
2 α

(7)
Given this model for Id and Ia, to relate κ to our physical

parameter α, we compute the expectations in Eq. (5) over
light source positions:

E [I] = E [Id] + E [Ia] = E [Id] + Ia

E [I2] = E [(Id + Ia)
2] = E [I2

d ] + 2IaE [Id] + I2
a

where we use the linearity of expectation, E [·], and the as-
sumption that Ia does not change over the image stack.

For the direct component, we integrate over the visible
cone of angles at the point, assuming the point light is uni-
formly distributed over the hemisphere for the image stack:

E [Id] =
1

2π

∫ 2π

ϕ=0

∫ α

θ=0

Id sin θdθdϕ =
1

2
ρld sin

2(α) (8)

E [I2
d ] =

1

2π

∫ 2π

ϕ=0

∫ α

θ=0

I2
d sin θdθdϕ = −1

3
ρ2l2d

(
cos3(α)− 1

)
Given these equations, κ can be derived in terms of α as:

κ(α) =
E2[I]

E [I2]
=

(E [Id] + Ia)
2

E [I2
d ] + 2IaE [Id] + I2

a

(9)

=
3(2πf + 1)2 sin4(α)

4
(
3πf(πf + 1) sin4(α)− cos3(α) + 1

)
where f is the relative intensity of la with respect to ld,
i.e. la = fld. To get a better intuition for κ we consider
two special cases ld = 0 and la = 0, which correspond to
f →∞ and f = 0 respectively:

κ|ld=0 = 1 κ|la=0 =
3 sin4(α)

4− 4 cos3(α)
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Figure 4. κ(α) for different ratios of ambient to direct light f . Note
that as f → ∞ (ld = 0) we have a constant curve (κ(α) = 1) so
information about α cannot be recovered.

If there is no directional illumination component (i.e.,
ld = 0) then κ(α) is always 1, and α cannot be recovered
from pixel measurements alone.

If there is no ambient component (i.e., la = 0) then
κ increases monotonically in the valid range for α and is
independent of ld (as long as ld > 0). In Fig. 4 we show
κ(α) for a few different values of f .

In summary, we have derived a relation between the statis-
tic κ, and the ambient occlusion at a point, using a physical
model of a crevice (with a cone of visibility characterized by
α) lit by a varying directional light, and a constant ambient
light over a stack of images. No assumptions of smoothness
or geometric reconstruction are required to derive this param-
eter. As we show later, this physical model, though simple
and an approximation of real scenarios, works surprisingly
well in characterizing the visibility at points in a scene.

5. Algorithm
In this section we use our model to compute a per-pixel

local visibility angle α(x) and albedo ρ(x) given a stack of
images of the same scene under varying illumination. While
our derivation has assumed grayscale images, our algorithm
also uses additional constraints from color images.

We first compute κ using Eq. (3) by assuming f0 = 0
(i.e., ambient lighting is negligible) to derive an initial α0

using Eq. (10). We then refine α(x) (one value per pixel) and
f (one value per color channel, but constant across pixels)
by minimizing the objective function:

α1, f1 ← min
α,f

∑
‖κobs − κ(α0, f0)‖2 (10)

where the subscript obs stands for “observed”. In other
words, we compute α and f so as to best explain the observed
statistic κ. In total we have nc × np equations, where nc is
the number of color channels and np the number of pixels,
and np + nc variables, one α per pixel and nc variables
corresponding to the direct to ambient illumination ratios f .
Eq. 10 defines a non-linear least squares problem, which we
minimize using Matlab’s lsqnonlin function.

Given our final estimates α1 and f1, we compute esti-
mates for the albedo ρ(x) at each point from Eqs. (8) and (7).

We express albedo as a function of the expected pixel value,
the ratio f , the local visibility angle α, and the intensity ld
of the direct component:

ρ =
2E [I]

ld sin
2(α) (1 + 2fπ)

(11)

Note that there is an inherent ambiguity between light source
intensity ld and the scene albedo, so we can only estimate
albedo up to a scale factor. Therefore, we assume that ld = 1
to obtain ρ1, our estimate of the albedo.

6. Results
We begin by demonstrating results of our algorithm on

various datasets (Section 6.1) and exploring the different
measures the algorithm produces. In Section 6.2 we use
an object with known geometry to measure the error in our
estimate of ambient occlusion. In Section 6.3 we evaluate our
estimate of albedo by comparing our algorithm with others
using the MIT Intrinsic Images benchmark [11]. Finally, in
Section 6.4 we examine how the number of images affects
our estimate of α.

6.1. Image Decomposition

Fig. 5 shows results on several datasets, including images
used in prior work. For each dataset we show κ, ambient
occlusion, ρ, and the illumination. More results can be found
on our project webpage [1].

Datasets. The first dataset, TENTACLE, contains 350 images
of a 3D printed object with known geometry. The light
source position in TENTACLE was precisely controlled by a
mechanical gantry allowing us to sample uniformly random
positions over the full hemisphere. The known geometry lets
us compare against ground truth.

The other datasets are public datasets that violate the
assumptions of our model in various ways. FROG and
SCHOLAR, from [25], contain 47–48 images lit under vary-
ing directional lights that do not cover the full hemisphere.
FACE from the Yale Face Database B+ [18], contains 64 im-
ages with light positions over a range of angles. This scene
violates our assumptions in that skin is not Lambertian, and
exhibits significant subsurface scattering. Nevertheless we
see from the images for AO and L in Fig. 5 that our tech-
nique can qualitatively separate geometry and reflectance
quite well. In particular, one can see from the area on the
neck close to the chin that our AO image does not contain
texture due to facial hair. Finally, we show results for TUR-
TLE and SQUIRREL, from the MIT Intrinsic Image Dataset.
Here the main challenge is that there are only 10 images of
each object lit by a point light source.

Discussion. Figure 5 shows that the recovered AO seem to
match our expectation of local visibility for these scenes.

251725172519



Sa
m

p
le

 Im
ag

e
A

O
FaceFrog TurtleTentacle Scholar Squirrel

Figure 5. Results of our algorithm. Each column shows results from a different dataset. The rows show 1) sample images from the original
dataset, 2) our estimated AO, 3) albedo, and 4) the illumination in the sample image.

The recovered albedos are mostly free of shading and the
ambient occlusion map is mostly free of albedo (e.g., the
frog’s nose and the neck in FACE). It is also interesting that
the pupil in the FACE dataset is black in the AO image and a
light gray in the albedo.

For color images we estimate κ independently for each
color channel. For a white directional light source, color
casts in κ reveal the color of the ambient term, since f has
a different value per channel. Observe that in Fig. 4, for a
fixed α, κ increases if f increases. The same mechanism
might explain local color shifts in Fig. 1, where one can see
red tints on the ray gun and green casts along the mouth.
The cause is likely to be subsurface scattering, where light
arriving after multiple subsurface scattering events can be
thought of as acting like a local ambient light term.

6.2. Estimated Ambient Occlusion

We validated our estimate of AO using two objects of
known geometry. In addition to TENTACLE, we 3D printed
another object with a more regular shape, which we refer to
as LIGHTWELL. This object is a solid block of material with
a series of cylindrical holes of varying but known depth [1].
We printed this object in four colors: white (original ma-
terial color), red, green, and blue to evaluate the impact of
different albedos on our estimate. The acquisition setup
for LIGHTWELL is the same as for TENTACLE (see Section

6.1). It is worth mentioning that although 3D printing offers
good control over the geometry, material properties cannot
be fully specified. The selected material (sandstone) was the
most diffuse of the available materials, but was not perfectly
diffuse, and exhibited a fair amount of subsurface scattering
(see the red ray gun of TENTACLE).

Figure 6 compares our AO result for TENTACLE to the
ground truth. We can see qualitatively that both are very
similar. One difference is that our estimate appears smoother;
we believe that this is caused in part by subsurface scattering,
as the effect is most noticeable in the thin areas of the gun.
Another difference is that our estimate is in general darker,
meaning that our algorithm is predicting that locally the
geometry is more occluded. We attribute this in part to
the material roughness from the 3D printing process. At a
mesolevel the structure can be thought of as being composed
of many small crevices, and a single pixel in our κ image is
an average of all these contributions.

For a quantitative measure of error we report in Fig. 9 (a)
the average error for α at the center of the crevice for
LIGHTWELL compared to ground truth, as a function of
the local visibility angle α. We show four curves, one for
each color of LIGHTWELL. In the plot we see two trends.
First, the error is larger for brighter albedos (red and white).
We suspect that this is caused by the increase in light inter-
reflections for higher albedos. Since our model does not

251825182520



Ground Truth Our Estimate

Figure 6. A comparison of ground truth (computer generated)
with our estimated AO (from actual images) for TENTACLE. The
background clutter is masked.

account for this effect, a patch at the bottom of a deeper hole
looks brighter than our model would predict. A second trend
is that deeper holes have larger errors. This can be explained
by remembering that κ is the quotient of two expectations
and that for these regions we expect these averages to stabi-
lize more slowly (as we will show in Section 6.4).

6.3. Estimated Albedo

We ran our algorithm on the MIT Intrinsic Images bench-
mark [11] to measure the quality of our albedo estimates.
This benchmark consists of 16 objects each with 11 im-
ages, and uses the local mean squared error (LMSE) defined
in [11] to evaluate performance. Some methods evaluated
by the benchmark (e.g., Retinex) operate on a single image,
usually by imposing priors on the illumination and albedo
images. However, the best-performing reported prior method
combines Retinex [15] with Weiss’s method [27] which, like
our own, requires a stack of images.

We obtain the shading image for each of the input im-
ages by simply dividing the input image by our estimated
albedo (see Eq. (4)). Fig. 7 shows our method’s performance
compared to others included in the benchmark. In Fig. 8
we show a subset of results against the best algorithm in the
benchmark. First, we note that our approach outperforms the
competing methods. Interestingly, our initial estimate (i.e.,
f = 0) performs better than the refined one. We believe that
this is a result of the setup, which indeed does not contain
ambient illumination, and the fact that most objects have a
very high albedo, resulting in a larger contribution due to
inter reflections, which is not modeled by our algorithm. Our
results also compare favorably to recent single-image algo-
rithms [4, 22, 23] which reports results on different subsets
of the benchmark datasets (a full comparison can be found
on our project webpage [1]).

6.4. Rate of convergence

We now consider the impact of the number of images
and the visibility angle in estimating ambient occlusion. Fig-
ure 9 (b) shows the root mean squared error (RMSE) of our
ambient occlusion estimate as a function of the number of
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Figure 7. Comparison of LMSE error on the MIT intrinsic image
dataset [11] (shorter bars are better). Compared algorithms are:
Grayscale Retinex (GR-RET), Color Retinex (COL-RET), Weiss
(W), Weiss+Retinex (W+RET), ours with only direct term (κ-D)
and our second estimate containing direct and ambient terms (κ-
DA).
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Image

Figure 8. Comparison of our method with W+Ret from the MIT
benchmark. Results are for our first estimate of the albedo (i.e.,
ambient illumination is assumed to be zero) as this gave us the best
results on the benchmark.
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Figure 9. (a) Error in the estimated local visibility angle α vs.
the true local visibility angle for the LIGHTWELL object printed in
different colors (shown in the left). (b) Average Root Mean Square
Error (RMSE) for our estimate of ambient occlusion vs. number of
images used in the estimate. Different curves represent different
crevice depths and their corresponding angles (α).

input images for different hole depths. For each hole depth,
we estimate AO at the center of the hole using rendered im-
ages of the blue LIGHTWELL (generated using a physically
based renderer [12]). We compare our estimate to the ground
truth AO in that hole using MSE, and repeat this process
100 times to compute an average RMSE. We observe that
rate of convergence is strongly dependent on the depth of
the crevice, but our method performs well even with a small
number of images on scenes where α ≥ 40◦.

251925192521



7. Conclusions
Ambient occlusion, a measure of local visibility at a point,

plays an important role in the shading of surfaces. We intro-
duce an image-space approach to estimating ambient occlu-
sion from a set of images under varying, unknown illumina-
tion. Our method analyzes the scene in terms of a physical
model of a visibility cone, lit by a varying point light over
the image stack. We propose a simple, per-pixel statistic, κ,
based on observed intensities over the set of images; from
κ, we recover per-pixel ambient occlusion and albedo val-
ues by relating our physical model to this measured statistic.
Despite its simplicity, we show that this statistical approach
works well in practice for a range of real-world image stacks.
In the future, it would be worth considering other statistics
that might correlate to other physical properties.

Our approach makes a few assumptions that we would
like to generalize. We assume that input images are illu-
minated by a point light source that moves over the entire
hemisphere visible to any given point. For outdoor scenes,
where the directional light is from the sun, this assumption
is violated; we need improved models to account for more
general distributions of lighting directions.

Our assumption of diffuse materials with no inter-
reflections is surprisingly effective. However, in the presence
of specularities, subsurface scattering, or significant inter-
reflections, our albedo estimates are less accurate. While
our per-pixel statistic does not propagate errors, it would be
interesting to couple our approach with sparsity or smooth-
ness priors, or to incorporate models of inter-reflection. Our
crevice model assumes a conical visibility model; in the
future, we could extend this to include anisotropy so as to
better match more general visibility scenarios.
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