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Abstract

This paper addresses the problem of learning over-
complete dictionaries for the coupled feature spaces, where
the learned dictionaries also reflect the relationship be-
tween the two spaces. A Bayesian method using a beta pro-
cess prior is applied to learn the over-complete dictionar-
ies. Compared to previous couple feature spaces dictionary
learning algorithms, our algorithm not only provides dic-
tionaries that customized to each feature space, but also
adds more consistent and accurate mapping between the
two feature spaces. This is due to the unique property of the
beta process model that the sparse representation can be
decomposed to values and dictionary atom indicators. The
proposed algorithm is able to learn sparse representations
that correspond to the same dictionary atoms with the same
sparsity but different values in coupled feature spaces, thus
bringing consistent and accurate mapping between coupled
feature spaces. Another advantage of the proposed method
is that the number of dictionary atoms and their relative im-
portance may be inferred non-parametrically. We compare
the proposed approach to several state-of-the-art dictionary
learning methods by applying this method to single image
super-resolution. The experimental results show that dic-
tionaries learned by our method produces the best super-
resolution results compared to other state-of-the-art meth-
ods.

1. Introduction

The use of over-complete dictionaries for sparse repre-

sentation has been the subject of extensive research over

the last decade. Research on signal processing [13] sug-

gests that over-complete bases offer the flexibility to rep-

resent much wider range of signals with more elementary

basis atoms than the signal dimension. Research on image

statistics [15, 16] suggests that image patches can be well

represented as a sparse linear combination of elements from

an appropriately chosen over-complete dictionary. There

have been numerous methods proposed to design such over-

complete dictionaries [1, 9, 12, 14, 17, 19, 21]. Dictionaries

learned by these methods yield sparse representations that

have higher recovery accuracy than do with conventional

representations, therefore attaining state-of-the-art perfor-

mances on denoising, in-painting, image abstraction and

super-resolution.

In many signal processing problems, we have coupled

feature spaces, e.g., the image patch space and sketch patch

space for photo-sketch abstraction, the original and com-

pressed signal spaces in compressive sensing, and the high-

resolution patch space and low-resolution patch space in

patch-based image super-resolution. The intuitive method

to learn dictionaries for coupled feature spaces is using sin-

gle sparse coding model to learn the coupled dictionaries

in concatenated spaces [25]. However, dictionaries learned

this way usually cannot capture the complex, spatial-variant

and nonlinear relationship between the two feature spaces.

Several algorithms have been proposed to solve this

problem [22, 24, 27]. Zeyde [27] et al. proposed a two-

step learning algorithm, where one dictionary is learned by

KSVD [1] and the other is generated via least-square. Al-

though the dictionaries are learned individually, same co-

efficients are still used for the two feature spaces, limit-

ing the dictionaries from being customized to both spaces.

Wang [22] proposed a semi-coupled training model to solve

the problem where a mapping matrix is used to capture the

relationship of the sparse representations between spaces.

Although the learned dictionaries can better minimize the

error in both spaces than those learned in concatenated

spaces, the corresponding relationship of dictionaries in the

two feature spaces are not captured during the learning pro-

cess. Yang [24] provided a bilevel optimization solution of

the problem. Instead of solving the two optimization prob-

lems in two feature spaces together [26], the bilevel method

moves one of the optimization problem to the regularization

term of the other problem. Although the learned sparse rep-

resentation of bilevel method has less learning errors, the

same sparse coding is still required for both feature spaces.

In this paper, a beta process joint dictionary learning
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(BP-JDL) algorithm is proposed for dictionary learning

problems in coupled feature spaces. Recent research on

using non-parametric Bayesian approach [6, 17] to learn

an over-complete dictionary offers several advantages not

found in earlier approaches and shows significant improve-

ment in applications such as image denoising, inpainting

and compressive sensing [28]. However, those approaches

are only suitable for dictionary learning in single feature

space. We propose a new beta process model which is cus-

tomized for the problem of learning dictionaries in coupled

feature spaces. Our model, together with [22, 24], provides

dictionary learning methods that customized to each fea-

ture space, however, our method adds more consistent and

accurate mapping between the two feature spaces. This is

due to the unique property of the beta process model [17]

that the sparse representations can be decomposed to values

and dictionary atom indicators. We use the same beta pro-

cess prior for dictionary atom indicators but different priors

for values in two feature spaces. In this way, the proposed

algorithm is able to learn sparse representations that corre-

spond to the same dictionary atoms with the same sparsity

but different values in coupled feature spaces, thus bringing

consistent and accurate mapping between coupled feature

spaces. In addition, in previous over-complete dictionary

learning methods, the dictionary size is an unknown param-

eter and a large-size dictionary is necessary to produce good

recovery accuracy. BP-JDL may infer dictionary size non-

parametrically and produce the same or better learning ac-

curacies with much smaller dictionary size.

In order to compare BP-JDL with state-of-the-art cou-

pled feature space dictionary learning methods, we tailor

BP-JDL to the dictionary learning problem of the patch-

based single image super-resolution. Experimental results

show that BP-JDL outperforms previous methods in terms

of both quality of super-resolution and recover accuracy.

The rest of the paper is organized as follows. Section 2

describes the related work. Section 3 describes the beta pro-

cess joint dictionary learning for coupled feature spaces.

Section 4 demonstrates results of the single image super-

resolution application. Section 5 concludes experiments

and discusses future work.

2. Related Works
Many image analysis problems use coupled feature

spaces [7,10,11,25]. In this paper, we focus on the problem

of patch-based single image super-resolution, since several

dictionary learning algorithms have been proposed for this

application.

Super-resolution is a technique that enhances the reso-

lution of an image or multiple images of the same scene.

The recently studied single image super-resolution (SISR)

problem attempts to enhance the resolution of a single im-

age via offline learned patch-based dictionaries. The low-

resolution (low-res) image is down-sampled from a blurred

high-resolution (high-res) image and often the blurring ker-

nel is unknown. Many methods [4, 20, 22, 24, 25, 27] have

been proposed trying to capture the concurrent prior be-

tween the low- and high-resolution patches using dictionary

learning techniques. In these methods, a high-res patch is

normally recovered using the high-res dictionary and sparse

coefficients calculated using the low-res feature patch and

low-res feature dictionary. Therefore, we need to learn these

two dictionaries in both high-res and low-res feature spaces.

This is a typical dictionary learning problem in coupled fea-

ture spaces.

The first approach that generated the state-of-the-art

SISR result concatenates the two feature spaces together,

thus converting the problem to dictionary learning in sin-

gle feature space. Since the learning of an over-complete

dictionary is often an NP-hard problem, many approxima-

tion algorithms have been proposed, such as RVM [21],

KSVD [1], online dictionary learning [12], efficient sparse

coding [9], and beta process [17]. All these methods are

able to generate the over-complete dictionary and sparse co-

efficients. Once the dictionaries are learned, we can use one

dictionary to calculate the sparse coefficients and the other

dictionary to recover the desired signal. However, because

the sparse coefficients are shared between the two dictio-

naries, the algorithm normally finds it difficult to fit the dic-

tionary and coefficients to both feature spaces. Therefore, a

further learning model is necessary to adapt the dictionary

learning algorithm to coupled feature spaces.

The second approach is to learn dictionary from one

space first then generate the other dictionary via least

square. Zeyde [27] used this approach for the SISR prob-

lem, where the low-res dictionary is learned and the high-

res dictionary is generated via least square. Although this

method largely decreases the computational cost because

only one dictionary is learned and the dictionary is well-

fitted in the low-res patch space, the same is not true in the

high-res patch space. A simultaneous dictionary learning

algorithm is thus essential to balance the learning errors in

both feature spaces.

The most recent approaches, also referred to as the semi-

coupled approaches [22, 24], seek to improve the learning

result by letting the dictionaries fit the two feature spaces

better. Yang [24] formulated the problem as a bilevel opti-

mization problem while Wang [22] used a mapping function

to characterize the relationship of the two feature spaces.

Yang’s method still shares the coefficients between the two

feature spaces and both methods did not enforce the corre-

sponding relationship between the learned dictionaries. We

resolve these two issues by taking advantage of the beta pro-

cess prior model.

Recent non-parametric Bayesian approaches such as

the Indian Buffet Process (IBP) [6] and the beta process
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(BP) [17] for latent factor analysis have been extensively

studied. BP is more suitable for dictionary learning com-

pared to IBP because it has more flexibility. However, BP

is developed to learn dictionary in single feature space and

may not be suitable to learn dictionaries in coupled feature

spaces. Nevertheless, the truncated beta process allows the

sparse coefficients to be expressed as an element-wise mul-

tiplication of a binary latent factor indicator and a normal
coefficient value. We can take advantage of this property in

the dictionary learning problem of coupled feature spaces

by restraining the coefficients in coupled feature spaces to

use the same dictionary atom indicator but different coeffi-

cient values.

In addition, the desired sparsity property of the dictio-

nary coefficients, used in previous over-complete dictionary

learning methods, can be naturally incorporated in the beta

process, thus allowing dictionary size to tend to infinity

while the training samples only use a small subset of dictio-

nary atoms via the sparse coefficients. Finally, in many ap-

plications, the dictionary size and the desired sparsity level

need to be manually set [1,26]. However, these two parame-

ters are better to be inferred automatically. There have been

recent interests in applying non-parametric Bayesian meth-

ods [8,18] to infer the number of dictionary atoms based on

the observed data. A Bayesian approach proposed in [17]

provided a solution for this problem.

3. Beta Process Joint Dictionary Learning for
Coupled Feature Space

Suppose we have two coupled feature spaces Y ∈ R
Py

and X ∈ R
Px , where the features are sparse in terms

of certain dictionaries. There exists a mapping function

F : Y → X that relates features in Y to the corresponding

features in X . Therefore, the relation of the dictionaries and

the observations and the relation of the two feature spaces

can be described as

xi = D(x)α
(x)
i + ε

(x)
i

yi = D(y)α
(y)
i + ε

(y)
i

Mα
(y)
i = α

(x)
i

(1)

where xi,yi, i = 1, . . . , N are training samples

with dimensions Px and Py , respectively. D(x) =

(d
(x)
1 ,d

(x)
2 , . . . ,d

(x)
K ) and D(y) = (d

(y)
1 ,d

(y)
2 , . . . ,d

(y)
K )

are dictionaries learned in each space and both dictionar-

ies have K atoms. α
(x)
i and α

(y)
i are coefficients of each

dictionary. ε
(x)
i and ε

(x)
i are the recovery errors. M is a

mapping matrix from sparse coding of yi to xi. In order

to learn two dictionaries at the same time, previous algo-

rithms [24, 26] use the same coefficients for both dictio-

naries, i.e., α
(x)
i = α

(y)
i . In this way, one might concate-

nate two feature spaces and convert the dictionary learning

problem of coupled feature spaces to the dictionary learn-

ing problem of single feature space. However, allowing

different coefficients in two feature spaces provides a bet-

ter fitting of learning and the learned dictionaries are more

customized to individual feature space. Beta process [17]

allows the decomposition of the coefficients to the element

multiplication of dictionary atom indicators and coefficient

values, providing the much needed flexibility to fit each fea-

ture space better while still maintaining the correspondence

between the two dictionaries.

We develop a new beta process based on [28] to tackle

the dictionary learning problem in coupled feature spaces.

The new two-parameter beta process with parameters a, b >
0 and base measure H0, is represented as BP (a, b,H0) and

may be written in set function form as

H =

K∑

k=1

πkδd(x)
k

=
K∑

k=1

πkδd(y)
k

πk ∼ Beta(a/K, b(K − 1)/K), d
(x)
k ,d

(y)
k ∼ H0

(2)

where δ
d

(x)
k

and δ
d

(y)
k

are unit point mass at d
(x)
k and d

(y)
k .

We use a single beta process prior and the same dictionary

atom indicator to connect the two feature spaces. πk repre-

sents a vector of K probabilities, each associated with the

respective atom d
(y)
k and the corresponding d

(x)
k . H is com-

posed by infinite number of d
(y)
k (as well as d

(x)
k ) sampled

from H0 and is a valid measure when K → ∞. A finite

approximation of H can be made by simply setting K to a

large, but finite number.

Following the general structure of beta process described

in [28], the beta process joint dictionary learning model for

the coupled feature spaces may be expressed as

xi = D(x)α
(x)
i + ε

(x)
i , yi = D(y)α

(y)
i + ε

(y)
i

α
(x)
i = zi ◦ s(x)i , α

(y)
i = zi ◦ s(y)i

d
(x)
k ∼ N(0, P−1

x IPx
), d

(y)
k ∼ N(0, P−1

y IPy
)

s
(x)
i ∼ N(0, γ−1

s(x)IK), s
(y)
i ∼ N(0, γ−1

s(y)IK)

zi ∼
K∏

k=1

Bernoulli(πk), πk ∼ Beta(a/K, b(K − 1)/K)

ε
(x)
i ∼ N(0, γ−1

ε(x)IPx), ε
(y)
i ∼ N(0, γ−1

ε(y)IPy )

γs(x) , γs(y) ∼ Γ(c, d), γε(x) , γε(y) ∼ Γ(e, f)
(3)

In order to constrain that xi uses the same corresponding

dictionary atom as that used by yi, we choose the same dic-

tionary atom indicator zi for both d
(x)
k and d

(y)
k . At the

same time, in order to provide different coefficient values,

weights s
(x)
i and s

(y)
i are drawn from different distributions,

as part of the coefficients. Finally we have the coefficients
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α
(x)
i = zi ◦s(x)i and α

(y)
i = zi ◦s(y)i , where ◦ is an element-

wise multiplication. Because α(y) and α(x) use the same

dictionary atom indicator zi, they have the same number

of non-zero elements and the corresponding relationship of

dictionary atoms in the two feature spaces are enforced dur-

ing the learning process.

Specifically, N binary vectors zi ∈ {0, 1}K , i =
1, . . . , N are drawn from H and the kth component of zi
is drawn from zik ∼ Bernoulli(πk). These N binary col-

umn vectors are used to constitute the dictionary atom in-

dicator matrix Z ∈ {0, 1}K×N , with the ith column corre-

sponding to zi and the kth row associated with both d
(x)
k

and d
(y)
k . Next, weights s

(x)
i ∼ N(0, γ−1

s(x)IK) are drawn as

part of the coefficients. IK is an identity matrix indicating

that we use the same γ−1
s(x) for all (s

(x)
i1 . . . s

(x)
iK ). The ◦ in

α
(x)
i = zi ◦ s(x)i represents element-wise multiplication of

two vectors. Weights s
(y)
i are drawn in the similar way.

For the purpose of building a fully conjugate model,

the dictionary atoms d(x)
k are drawn from a multivari-

ate zero-mean Gaussian (H0) with variance P−1
x IPx and

the error vectors ε(x)i are drawn from a zero-mean Gaus-

sian with variance γ−1
ε(x)IP . In addition, because the in-

verse Gamma distribution is conjugate with the Gaussian

distribution, γs(x) are drawn from the Gamma distributions.

The non-informative Gamma hyper-prior is placed on γs(x) ,

where we initialize c = d = 10−6. We also apply the same

distribution to d
(y)
k , ε

(y)
i , γs(y) and γε(y) . In this model,

the expected sparsity level in a training sample xi or yi as

K → ∞ is drawn from Poisson(a/b). We set a = b = 1,

but one may change values of a and b. However, [28] proved

the sparsity level is not sensitive to different values of a and

b and is intrinsic to the data. Finally, after we learned α(y)

and α(x), the mapping matrix M can be calculated via the

least square:

M = [(α(y)α(y)T )−1α(y)α(x)T ]T (4)

Elements in Eq. 3 are in the conjugate exponential fam-

ily, and therefore the posterior inference may be imple-

mented via Gibbs-sampling method with analytic update

equations. The Gibbs sampling update equations can be

found in Appendix A.

4. Single Image Super-Resolution Application
The single image super-resolution (SISR) asks to recover

the high-res image (H) from a low-res image (L), with the

observation model expressed as: ↓ BH = L, where ↓ is

a downsample operator and B is a blur operator. With an

input low-res image, the SISR problem asks to recover the

high-res image by reversing the process of downsample and

blur. Instead of reversing the process directly, Yang [25]

suggested that we can use learned dictionaries of high-res

feature space and low-res feature space to reconstruct the

high-res image. The two feature spaces are constructed as:

xi = h;yi = [F1l;F2l;F3l;F4l] (5)

where h is a high-res patch and l is a low-res patch.

F1 . . . F4 are four (linear) feature extraction opera-

tors which are used to penalize visually salient high-

frequency errors: F1 = [−1, 0, 1], F2 = FT
1 , F3 =

[1, 0,−2, 0, 1], F4 = FT
3 .

We use the proposed BP-JDL method to learn D(x),

D(y) and the mapping matrix M for the two feature spaces.

Once the dictionaries are learned, we can use them for

super-resolution reconstruction. The single image super-

resolution reconstruction can be carried out in four steps.

The first step calculates the sparse coding of observed low-

res feature using learned low-res feature dictionary. In

order to compare our dictionary with dictionaries learned

by [22,24,26], we use the standard �1 sparse coding method

for step 1 [9]. The second step maps the sparse coding of

the low-res feature to sparse coding of the high-res feature

using the learned matrix M. The third step recovers the

high-res patch using the learned high-res feature dictionary.

Because we do not directly use the low-res patch in Eq. 5,

the reconstructed high-res image H0 may not satisfy the

constraint ↓ BH = L, thus the last step enforces a global

constraint to eliminate this inconsistency by projecting H0

onto the solution space of ↓ BH = L. In addition, because

the recently introduced non-local redundancies in image are

useful for image restoration [2, 5], we also incorporate the

non-local self-similarities in step 4. The four steps are sum-

marized in Algorithm 1.

Eq. 9 can be solved by back projection method intro-

duced in [3].

4.1. Experimental Design

We evaluate the performance of the proposed BP-JDL

method when applied to single image super-resolution from

perspectives of both the quality and the fidelity of the high-

resolution image.

Dictionaries for factors of 2 and 3 magnification are

learned and used for generating super-resolution images.

The low-resolution patches are upsampled to the same size

as the high-resolution patches. All dictionaries are trained

from 100,000 patch pairs sampled from 10 category repre-

sentative and texture rich images. The patch pairs are only

sampled from the luminance channel of the training im-

ages because human eyes are more sensitive to luminance

changes. We set the initial dictionary size K of BP-JDL as

1024, 2048 and 4096 to test the capability of BP-JDL’s K
inference. We use 10000 Gibbs samples for BP-JDL, where

the burn-in is 9500 samples and the dictionary is averaged

using the rest 500 samples.
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Algorithm 1 Single Image Super Resolution

Input: Low-res image L, learned D(x), D(y) and M
Output: High-res image H∗

Step 1 Sample low-res patch li from the input image L
with overlap ω. Construct yi using the four feature ex-

traction operators. Learn α
(y)
i using the �1 sparse coding:

α
(y)
i = argmin

α
(y)
i

‖D(y)α
(y)
i − yi‖22 + λ‖α(y)

i ‖1 (6)

Step 2 Map the sparse coefficients α(y) to α(x) using the

learned M:

α
(x)
i = ziMα

(y)
i (7)

where zi is a binary vector that zik = 1 if α
(y)
ik 	= 0.

Step 3 Recover the high-res patch hi using α(x) and

learned D(x):

hi = D(x)α
(x)
i (8)

After the recovery of all high-res patches, the initial high-

res image H0 can be reconstructed with overlap ω.

Step 4 A global constraint and a non-local similarity con-

strain are enforced to further improve the reconstruction

accuracy:

H∗ = argmin
H
‖H−H0‖2

s.t. ↓ BH = L, ‖hi −
M∑

m=1

bmhm
i(0)‖22 ≤ ε

(9)

where hi and hi(0) are patches in H and H0, respectively.

hm
i(0) is the mth most similar patch to hi(0) and bm is the

non-local weight defined in [2].

For the super-resolution reconstruction, high-resolution

test images are blurred and down-sampled to 1/4 and 1/9
of the original size to produce the input low-resolution im-

ages. The high-resolution images are reconstructed using

Algorithm 1 with λ set to 0.15 and the overlap set to its max

value (i.e., patch size−1). In addition, images reconstructed

using the Bicubic interpolation are compared as well.

4.2. Result

4.2.1 Dictionary Learning

Firstly, dictionaries in coupled feature spaces are learned

using the proposed BP-JDL algorithm. Compared to the

dictionaries learned in concatenated spaces [26], the dictio-

naries learned by BP-JDL are able to reduce the learning

root-mean-square (RMS) errors of high-res feature space X
and low-res feature space Y by 27.5% and 40.5%, respec-

tively. This result confirms that BP-JDL is capable to learn

dictionaries that fit the data better by allowing the different

Figure 1. BP-JDL infers dictionary size non-parametrically.

coefficients values for the two spaces.

Secondly, the dictionary size inferred by BP-JDL is

shown in Figure 1. During the Gibbs sampling process, we

search the unused dictionary atoms and delete them. Be-

cause BP-JDL has the non-parametric advantage, with dif-

ferent initial Ks, the dictionary size decreases rapidly dur-

ing the first 1000 samples and gradually converges to sim-

ilar values, confirming that BP-JDL can infer appropriate

dictionary size no matter what the initial value is. With the

initial size of 1024, the BP-JDL inferred that K = 771
is an appropriate dictionary size. If we fix the dictionary

size to 1024 for BP-JDL, the learning RMS errors and spar-

sity level of the 1024-size dictionaries stay the same as the

771-size dictionaries, indicating that 771 is the appropriate

dictionary size for the training data. If the dictionary size

is unknown, normally we need exhaustively search for the

optimal size. Yang [26] found that the the 1024-size dic-

tionary is optimal, however, the 771-size dictionary may

have the same super-resolution performance as the 1024-

size dictionary. Besides, since super-resolution using a

smaller size dictionary needs less computational power, it

may significantly affect the speed and energy consumption

of super-resolution applications in resource-constrained en-

vironments.

4.2.2 Single Image Super-Resolution

We evaluate the super-resolution (SR) results via peak

signal-to-noise ratio (PSNR) and structural similarity

(SSIM) [23]. Higher SSIM indicates more similar struc-

ture between the recovered image and the original image.

Factors of 2 and 3 SR results are shown in Tables 1 and 2,

respectively. In addition, the visual comparison example of

factors of 2 and 3 SR results are shown in Fig. 3 and Fig. 4,

respectively.

From the PSNR and SSIM comparison results, firstly we

notice that sparse representation based SR methods gen-

erally perform better than the interpolation based method

(e.g., bicubic), because the over-complete dictionaries can

recover high-frequency details of images more accurately.
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Image Measures Bicubic ScSR [26] Zeyde [27] SCDL [22] Bilevel [24] Proposed

Lena PSNR(dB) 32.7947 34.6874 34.2640 35.1311 35.0680 35.3308
SSIM 0.8872 0.9120 0.9044 0.9140 0.9130 0.9160

Mountain PSNR(dB) 29.6999 31.2343 31.0867 31.4010 31.3757 31.5459
SSIM 0.8430 0.8909 0.8874 0.8937 0.8918 0.8969

House PSNR(dB) 26.3549 27.4334 27.3055 27.6055 27.6115 27.7919
SSIM 0.8048 0.8456 0.8450 0.8510 0.8482 0.8525

Lion PSNR(dB) 30.9312 32.5090 32.4216 32.6028 32.5993 32.8818
SSIM 0.8439 0.8941 0.8926 0.8940 0.8929 0.8979

Car PSNR(dB) 30.5383 32.5275 32.3576 32.5904 32.8914 33.1157
SSIM 0.9138 0.9381 0.9370 0.9396 0.9419 0.9436

Table 1. Comparison of factor of 2 magnification super-resolution results.

Image Measures Bicubic ScSR [26] Zeyde [27] SCDL [22] Bilevel [24] Proposed

Lena PSNR(dB) 30.0986 31.5125 30.9077 31.5900 31.5808 31.6818
SSIM 0.8019 0.8354 0.8156 0.8347 0.8344 0.8377

Mountain PSNR(dB) 27.0522 28.0436 27.8258 28.0490 28.0606 28.1259
SSIM 0.7000 0.7596 0.7520 0.7607 0.7561 0.7636

House PSNR(dB) 24.4172 25.0136 24.7198 25.0100 25.0277 25.0592
SSIM 0.6881 0.7230 0.7234 0.7236 0.7235 0.7248

Lion PSNR(dB) 28.3921 29.0637 29.0455 29.0483 29.1161 29.2190
SSIM 0.7058 0.7496 0.7498 0.7512 0.7473 0.7537

Car PSNR(dB) 27.4234 28.6083 28.5011 28.4892 28.7231 28.8557
SSIM 0.8259 0.8630 0.8573 0.8635 0.8652 0.8673

Table 2. Comparison of factor of 3 magnification super-resolution results.

Next, Zeyde’s [27] two-step learned dictionaries have the

similar performance as the coupled learned dictionaries

(ScSR) [26], while the most recent semi-coupled dictionary

learning methods SCDL [22] and Bilevel [24] outperform

the coupled dictionary learning algorithm in both PSNR

and SSIM. Finally, the proposed BP-JDL method further

pushes the limit by providing a flexible and consistent learn-

ing model, and is able to provide high-res images with the

best recover accuracy.

From the visual comparison results, we also notice that

generally sparse representation based SR methods produce

sharper image than bicubic interpolation. Next, we no-

tice the improvement of SCDL and Bilevel methods com-

pared to the ScSR method in terms of artifacts on the edges.

Among the results of all sparse representation based meth-

ods, images produced by the proposed BP-JDL algorithm

have the least artifacts, indicating that the proposed method

can better restore the high-res images from low-res images.

During the SR reconstruction process, theoretically the

more overlap of patches, the better the SR results. SR re-

sults of different overlap values are shown in Fig. 2. The

results demonstrate the positive relationship between the

overlap size and PSNR (SSIM), confirming using maximum

overlap (patchsize - 1) can generate the best SR results.

The average factor of 2 SR reconstruction time of

ScSR, Zeyde, SCDL, Bilevel and BP-JDL are 217.9s, 1.9s,

1837.8s, 218.7s and 213.5s, respectively. Results were pro-

duced on a Dell T3500 with 2.66G CPU and 12GB RAM

running Matlab V7.12.0. Among these methods, the Zeyde

method is the fastest. Although BP-JDL benefits from us-

ing a smaller dictionary compared to ScSR, the extra oper-

ation of Eq. 7 consumes extra time. However, BP-JDL is

Figure 2. Effect of the overlap parameter on PSNR and SSIM of

test image Lion.

still faster than ScSR, SCDL and Bilevel methods. SCDL is

the slowest method because it needs 32 dictionaries (clus-

ters) for each feature space instead of single dictionary, thus

consuming much more time than other methods.

5. Conclusion
In this paper, a beta process joint dictionary learning

(BP-JDL) method was proposed for solving the dictionary

learning problem in coupled feature spaces. The proposed

method could have wide applications in the field of sig-

nal processing because many problems in this area require

the mapping between two feature spaces. We applied this

method to solve the single image super resolution (SISR)

problem. Four state-of-the-art dictionary learning based

SISR methods were compared with BP-JDL in terms of the

quality of dictionary generated and the quality of the super-

resolution images. The experimental results showed that the

BP-JDL method is able to learn dictionaries that fit the cou-

pled feature spaces better than previous methods. The SISR

results showed that the images reconstruction using BP-JDL

have the best overall quality compared to other four meth-
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Figure 3. Visual comparison of factor of 2 super-resolution results. The upper row shows the SR results of the image Lena. The lower row

shows the SR results of the image House.

Figure 4. Visual comparison of factor of 3 super-resolution results. The upper row shows the SR results of the image Lion. The lower row

shows the SR results of the image Car.

ods. In addition, BP-JDL was able to infer an appropriate

dictionary size non-parametrically. In the future, a varia-

tional Bayesian inference could be used for the BP-JDL in-

ference, which may have a faster convergence speed than

Gibbs sampler.
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Appendices
A. Gibbs Sampling Inference

The Gibbs sampling update equations for BP-JDL are

given below.

• Sample d
(x)
k from p(d

(x)
k |−) ∼ N (μ

d
(x)
k

,Σ
d

(x)
k

)

Σ
d

(x)
k

= (PxI+ γ(x)
ε

N∑

i=1

z2iks
(x)2

ik )−1

μ
d

(x)
k

= γ(x)
ε

N∑

i=1

ziks
(x)
ik x−k

i

(10)

where x−k
i = xi −D(s

(x)
i ◦ zi) + d

(x)
k (s

(x)
ik ◦ zik).

• Sample zik

p(zik = 1|−)

∝ πk exp[−γ
(x)
ε

2
(s(x)2

ik d(x)T

k d
(x)
k − 2s

(x)
ik d(x)T

k x−k
i )

− γ
(y)
ε

2
(s(y)2

ik d(y)T

k d
(y)
k − 2s

(y)
ik d(y)T

k y−k
i )]

p(zik = 0|−) = 1− πk

(11)
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• Sample s
(x)
ik from p(s

(x)
ik |−) ∼ N (μs

(x)
ik

,Σ
s
(x)
ik

) where

Σ
s
(x)
ik

= (γ(x)
s + γ(x)

ε z2ikd
(x)T

k d
(x)
k )−1

μ
s
(x)
ik

= γ(x)
ε Σ

s
(x)
ik

(zikd
(x)T

k x−k
i )

(12)

• Sample πk from p(πk|−) ∼ Beta(πk; a, b) where

a = a0

K +
∑N

i=1 zik and b = b0(K−1)
K +N−∑N

i=1 zik.

• Sample γ
(x)
s from a Gamma distribution as

p(γ(x)
s |−) ∼ Γ(c0 +

1

2
KN, d0 +

1

2

N∑

i=1

‖s(x)T

i s
(x)
i ‖)

(13)

• Sample γ
(x)
ε from a Gamma distribution as

p(γ(x)
ε |−) ∼ Γ(e0 +

1

2
N, f0 +

1

2

N∑

i=1

‖x−k
i ‖2) (14)

The d
(y)
k , s

(y)
ik , γ

(y)
s and γ

(y)
ε can be sampled in similar

way of d
(x)
k , s

(x)
ik , γ

(x)
s and γ

(x)
ε , respectively.

References
[1] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An al-

gorithm for designing overcomplete dictionaries for sparse

representation. IEEE Trans. on Signal Processing, 54(11),

2006. 1, 2, 3

[2] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm

for image denoising. In Proc. of CVPR, volume 2, pages 60

– 65 vol. 2, 2005. 4, 5

[3] D. Capel. Image mosaicing and super-resolution. Ph.D. The-
sis, University of Oxford, 2001. 4

[4] H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution

through neighbor embedding. In Proc. of CVPR, volume 1,

2004. 2

[5] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image

denoising by sparse 3-d transform-domain collaborative fil-

tering. IEEE Trans. on Image Processing, 16(8):2080 –2095,

aug. 2007. 4

[6] T. L. Griffiths and Z. Ghahramani. Infinite latent feature

models and the indian buffet process. In Proc. of NIPS, 2005.

2

[7] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H.

Salesin. Image analogies. In Proc. of SIGGRAPH, pages

327–340, 2001. 2

[8] D. Knowles and Z. Ghahramani. Infinite sparse factor anal-

ysis and infinite independent components analysis. In Inde-
pendent Component Analysis and Signal Separation, volume

4666. 2007. 3

[9] H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse

coding algorithms. In Proc. of NIPS, 2007. 1, 2, 4

[10] Z. Lei and S. Li. Coupled spectral regression for matching

heterogeneous faces. In Proc. of CVPR, pages 1123 –1128,

2009. 2

[11] D. Lin and X. Tang. Coupled space learning of image style

transformation. In Proc. of ICCV, volume 2, pages 1699 –

1706 Vol. 2, 2005. 2

[12] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary

learning for sparse coding. In Proc. of the ICML, 2009. 1, 2

[13] S. Mallat and Z. Zhang. Matching pursuits with time-

frequency dictionaries. IEEE Trans. on Signal Processing,

41(12):3397 –3415, 1993. 1

[14] J. F. Murray and K. Kreutz-Delgado. Learning sparse over-

complete codes for images. J. VLSI Signal Process. Syst., 46,

2007. 1

[15] B. A. Olshausen and D. J. Fieldt. Natural image statistics

and efficient coding. Network Bristol England, 7(2), 1996. 1

[16] B. A. Olshausen and D. J. Fieldt. Sparse coding with an

overcomplete basis set: a strategy employed by v1. Vision
Research, 37, 1997. 1

[17] J. Paisley and L. Carin. Nonparametric factor analysis with

beta process priors. In Proc. of ICML, 2009. 1, 2, 3
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