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Abstract

We introduce here an improved design of the Uniform
Marker Fields and an algorithm for their fast and reliable
detection. Our concept of the marker field is designed so
that it can be detected and recognized for camera pose esti-
mation: in various lighting conditions, under a severe per-
spective, while heavily occluded, and under a strong motion
blur.

Our marker field detection harnesses the fact that the
edges within the marker field meet at two vanishing points
and that the projected planar grid of squares can be defined
by a detectable mathematical formalism. The modules of
the grid are greyscale and the locations within the marker
field are defined by the edges between the modules.

The assumption that the marker field is planar allows
for a very cheap and reliable camera pose estimation in
the captured scene. The detection rates and accuracy are
slightly better compared to state-of-the-art marker-based
solutions. At the same time, and more importantly, our de-
tector of the marker field is several times faster and the re-
liable real-time detection can be thus achieved on mobile
and low-power devices. We show three targeted applica-
tions where the planarity is assured and where the presented
marker field design and detection algorithm provide a reli-
able and extremely fast solution.

1. Introduction

For augmented reality applications and other similar

problems in computer vision, camera localization within

a captured scene is crucial. Camera localization can be

done either by using fiduciary markers [6] or without them

(by using PTAM [10], keypoint template tracking [16],

homography-based [11], etc.). We are dealing with appli-

cations and scenes where fiduciary markers are acceptable

(see Sec. 5 for examples). At the same time, we require the

detection and localization algorithm to be extremely fast (to

work in real time on mid-level ultramobile devices) and to

Figure 1. The use of our Marker Field. left: MF with occlusion,

sharp shadows. right: MF with clutter, occlusion, varying light-

ing, strong blur. top: Original image – input to the recognizer.

bottom: Recognized camera location and augmented scene.

localize the camera from a single frame (i.e. without tem-

poral tracking and mapping).

The targeted applications (Sec. 5) allow for perfectly pla-

nar markers – placed on a tabletop, a wall, computer screen,

etc. The challenge is that the marker must cover a large pla-

nar area and, at the same time, it must be reliably detected

even from a small visible portion of the marker. Also, the

detection must be invariant to high degrees of perspective

distortion and to varying lighting conditions (direct light,

shadows, different lighting intensities). What marker de-

sign and corresponding detection algorithm can meet these

requirements and, at the same time, be aesthetically appeal-

ing? A step towards the solution of this problem was re-

cently sketched out by Szentandrási et al. [14]. Their Uni-

form Marker Fields are planar checkerboard fields of largely

overlapping markers, shaped as a 4-orientable n2-window

array [3]. This overlapping property allows the marker

fields to outperform arrays of conventional disjoint markers

such as the ARtag [5], ALVAR [1], or CALTag [2]. Marker-

based solutions such as ARtag and ALVAR (a number of

other similar solutions exists) are using square black-and-

white markers with their identity digitally encoded. One
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part of the marker’s design is used for the marker’s localiza-

tion (typically the outer black/white rim) and another part is

used for distinguishing between individual markers (typi-

cally inner content of the square). An array of such individ-

ual markers is used to cover a larger planar area. CALtag

[2] alters black-and-white with white-and-black (inverse)

markers and attaches the markers one to another.

Another approach to overlapping individual detectable

windows within a large marker are the Random Dot Mark-

ers [17] by Uchiyama et al. They are detecting and tracking

fields of randomly displaced dots on a solid background us-

ing geometric features. The field of random dots can be also

used as a deformable marker [15].

Our solution is based on the Uniform Marker Fields by

Szentandrási et al. [14]. In their short work, they used bi-

nary De Bruijn tori [3] in a checkerboard as the marker field.

In this paper, we propose to use a greyscale grid of squares

(instead of a binary one): it offers more edges in the marker

field to be detected and, at the same time, a smaller window

of the De Bruijn torus is necessary for identifying a unique

location. We present here an algorithm for the detection of

the greyscale grid of squares. Our algorithm detects the pla-

nar projected grid as a single compound object, instead of

detecting straight lines and then forming a grid from them.

A unique location in the marker field is identified by the

edges between the marker field modules. These edges need

to be reliably classified – Wald’s Sequential Probability Ra-

tio Test [18] is used in order to sample a minimal number of

pixels for discerning the edge.

Overall, the detection algorithm has a small data foot-

print – in the sense that a small fraction of the input image

pixels is visited (∼ 5% in our measurements). This allows

for the detection to be really fast (1080p frame in 8.8 ms on

a Intel Core i5-661 @3.33GHz) and we are presently work-

ing on a real-time implementation for ultramobile devices.

With this performance (more than 3× faster than ALVAR),

our algorithm is still equal or better compared to available

solutions in terms of reliability and accuracy (Sec. 4).

We highlight three target applications of this marker field

design and detection algorithm (Sec. 5). All these applica-

tions (and others as well) can readily use our marker in the

scene and they can ensure that the marker is planar. Our

measurements show (Sec. 4) that our marker field design

and detection algorithm outperforms the existing solutions

for this class of camera pose estimation problems.

2. Shades of Grey – The Marker Field Design
Aperiodic 4-orientable binary n2-window arrays [14, 3]

are matrices A = (aij ∈ {0, 1}), where each square sub-

window Arc of dimensions n × n appears only once, in-

cluding all four rotations. If any of the windows appeared

more than once, we would be speaking of a conflict – either

a mutual conflict between two different windows (possibly

rotated) or a self-conflict, where a window is self-similar af-

ter rotation. Szentandrási et al. [14] interpret such an array

as a black-and-white checkerboard and propose to use it as a

marker field for augmented reality. The unique n2-windows

largely overlap. Thanks to this overlap, only a small fraction

of the marker field must be visible in order to be detected

and recognized.

Figure 2. A fragment of the marker field. left: Five shades of grey.

right: 8 different colors. Arrows across the edges illustrate the

observable gradient which describes an individual line. In color,

multiple gradients can be observed at one edge (e.g. RGB).

We work with grayscale or color k-ary marker fields

(aij ∈ {0, . . . , k − 1}, Fig. 2). However, in comparison

with binary marker fields the absolute greyscale or color

values of the grid modules cannot be reliably discerned un-

der varying lighting and camera conditions. That is why we

use the edge gradients between the modules for localization

within the marker field. Horizontal (1) and vertical (2) edge

gradients are defined as:

e→ij = ai,j+1 − aij , (1)

e↓ij = ai+1,j − aij . (2)

The absolute value of the edge gradient is also hard to rec-

ognize reliably and thus only the basic character of the edge

is used for recognition: sgn e∗ij ∈ {−1, 0,+1}. The n2-

window used for localization within the marker field then is

(Fig. 2):

Erc = (e→rc , . . . , e
→
(r+n−1,c+n−2), e

↓
rc, . . . , e

↓
(r+n−2,c+n−1))

(3)

Synthesis of the marker field is done in a manner similar

to the genetic algorithm sketched out by Szentandrási et al.

In our case, the fitness function must also reflect the quality

of edges between the modules – edges with higher absolute

value |eij | are preferred.

3. Small Footprint Detection & Recognition of
Planar Greyscale Grids of Squares

This section describes the algorithm for detection of the

greyscale checkerboard-like marker field. This algorithm

supposes that the grid of squares is planar and projected by

a perspective projection. The experiments (Sec. 4) show

that this condition is fulfilled enough in realistic scenes ob-

served by standard cameras. Thanks to this assumption, the
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A B C D
Figure 3. Detection of the greyscale grid of squares. A: The image is processed in sparse scanlines. On each scanline, edges are detected

(Red) and extended to edgels (Green) by iteratively finding further edge pixels in the direction perpendicular to the gradient. B: The

edgels are grouped into two dominant groups using RANSAC; two vanishing points are computed by hyperplane fitting. C: Based on the

vanishing points, the optimal grid is fitted to the set of the edgels (orange dots denote the estimated centers of grid modules). D: Edges

between the modules are classified (Sec. 3.2). Note that despite the blur, lighting and occlusion in the image, the camera is localized

correctly (Fig. 1).

algorithm is very efficient: the fraction of visited pixels (the

algorithm’s “pixel footprint”) within an average input image

is very small (Sec. 4.2).

3.1. Greyscale Grid Detection

Conventional marker detectors typically rely on first

detecting the bounding borders [9, 5] of the markers by

finding the contours in a thresholded image and choosing

shapes consisting of four straight-line contours. Our uni-

form marker field does not distinguish between marker de-

sign features intended for general marker detection and fea-

tures for marker identification. Grid modules serve simul-

taneously as the detection and identification features. The

motivation for this approach is to better use the marker

field’s surface: the localization features are much denser

in the field, while still preserving the identification capabil-

ities.

The algorithm performs the following three main steps

(Fig. 3):

1. Extraction of edgels (edge element or edge pixel;

term borrowed from Martin Hirzer [8]) – typically, the algo-

rithm extracts around one hundred straight edge fragments

in the whole image. The image is processed in sparse hori-

zontal and vertical scanlines (Fig. 3A). When a video input

is being processed, the detected edgels are filtered based

on the previous detected position of the marker field. In

the tests we used a simple rectangular mask to filter out the

edges outside the area corresponding to the previously de-

tected marker field.

2. Determining two dominant vanishing points among

the edgels (Fig. 3B). Using homogeneous coordinates for

the vanishing point v and the pencil of lines li, all the lines

are supposed to be coincident with the vanishing point, i.e.

∀i : v · li = 0. (4)

The coordinates of the lines in the real projective plane form

a 3D vector space without an origin (with an equivalence re-

lation). Points of the real projective plane correspond to hy-

perplanes passing through the origin, so the vanishing point

can be found by fitting a hyperplane through all the lines

(extended edgels) observed in the pencil. The line vectors

li are scaled so that each one’s magnitude corresponds to

the edgel length. In this way, the longer and more reliable

edgels are favored. The hyperplane’s normal is found as the

direction of the least variance by eigendecomposition of the

correlation matrix

C = (l0 . . . lN )(l0 . . . lN )T . (5)

Since matrix C is 3× 3 and symmetric, decomposition can

be computed very efficiently.

3. Finding the grid of marker field edges as two groups

(pencils) of regularly repeated lines coincident with each

vanishing point. Two vanishing points v1,v2 define the

horizon (h = v1 × v2). Marker edges of one direction

can be computed using the horizon as (x̂ denotes normal-

ized vector)

li = l̂base + (ki+ q) ĥ, (6)

where lbase is an arbitrarily chosen base line through the

vanishing point, different from the horizon [13]. Parameter

k controls the line density and q determines the position of

the first line. A good simple choice for lbase is a line through

the center of the image (and through the vanishing point).

In order to find k and q, the value of (ki+q) is calculated

for every line (extended edgel) of the input group. These

values are clustered by simplified mean-shift and median

difference between cluster candidates. (The mean-shift box

kernel size with normalized image coordinates in our tests

was w = 0.05.) Each cluster is assigned an i and then over-

all optimal k and q are found by linear regression (Fig. 3C,

blue and green lines).

For simplicity, the algorithm description supposes that

a significant portion of the input image is covered by the

marker field. However, steps 2 and 3 of the algorithm

are conditionally applied on rectangular parts of the im-

age (quarters, ninths); in high-resolution images, the marker

field is thus found even if it covers an arbitrary fraction of

the camera input.
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3.2. Edge Classification

When only a small fraction of the marker field is visible,

it is crucial that the edge gradients (Eq. 1 and 2) are recog-

nized correctly. Their recognition can be challenging due to

motion blur, uneven lighting conditions, etc. (Fig. 4).

Figure 4. Examples of problematic edges within the pictures of the

marker field. The edges are classified by deterministically sam-

pling a varying number of pixels within the neighboring modules.

Wald’s SPRT is used to discern the edge by using a minimal num-

ber of such samples.

In order to correctly classify an edge, given the loca-

tions of the neighboring marker field modules, our algo-

rithm samples pixels from the edge’s vicinity. If a small

number of samples suffices to decide an edge either way

(−1,+1; see Sec. 2), the decision is made, otherwise more

pixels are sampled. If an edge cannot be confirmed, the lo-

cation between the modules is treated as a place without an

edge: e∗ij = 0. The stopping criterion is given by Wald’s

sequential probability ratio test [18], which is proven to be

the optimal sequential test for this purpose.

3.3. Localization Within the Marker Field

The sub-window described by edges Erc is formulated

as a vector of scalars in (3). This vector can be used as a key

to a hash table. Values in the table represent locations in the

marker field (two discrete coordinates in the terms of grid

modules; enumerated orientation 0◦/ 90◦/ 180◦/ 270◦). An

absent record in the hash table means a wrongly recognized

fragment of the marker field. Hash tables are implemented

fairly efficiently in today’s programming languages.

Instead of using a readymade hash table, we prefer to

create a decision tree. When a compact piece of the marker

field is detected in an input image, the edges are classified

and used for traversing the tree. A central edge in the de-

tected cluster of edges decides the root node, and surround-

ing edges follow in a predefined order (Fig. 5). Any cluster

of neighboring edges is recognized by the tree – the leaf

node would either define the cluster’s location and orien-

tation within the marker field or reject the cluster of edges

as invalid (due to misdetection). Constructing a deeper tree

implies that a larger cluster of edges is used for localization

within the field. This allows for larger marker field resolu-

tions. By using a larger number of deciding edges, the tree

can also be constructed fault-tolerant – the tree nodes can

tolerate one or more falsely classified edges.
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2
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1
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3
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Figure 5. The decision tree used for localization in the marker

field. left: A compact cluster of edges detected in the image.

Edges are numbered in a predefined order relative to a selected

“root” edge (0). right: Decision tree – the leaves are either invalid
or contain a location + orientation to the marker field.

3.4. Corner Search and Iterative Refinement

For a precise camera pose estimation we find all possi-

ble corners in the marker field (with a sub-pixel precision).

The corners of the grid of squares are projected from the

detected overall position and iteratively searched for in the

neighborhood. Based on the marker field layout, the algo-

rithm knows each corner’s appearance including its rotation

and searches for such a particular pattern. This helps mostly

in cases when the image is motion blurred, the marker is not

perfectly planar, or noise in the edgel data cause the grid

not to fit the edges precisely. Another way of improving the

precision of the pose estimation accuracy is to iteratively

search for correct corners in the marker field in the image

space using back-projection. In the tests we use both of the

aforementioned improvements.

4. Experimental Results

We compare our solution to ALVAR [1] as the most ma-

ture available ARToolKit follower (ARtag is no longer pub-

licly available) supporting arrays of disjointed square mark-

ers. The other baseline is the Random Dot Markers (RDM)

[17] as an alternative “marker field” solution, where individ-

ual localization markers overlap in the field. We performed

identical experiments with CALtag [2] as well, but its re-

sults were always worse than ALVAR and it is much slower

(written in Matlab), so we omit CALtag’s results from this

paper.

For comparing our solution with the alternatives, we shot

videos of side-by-side markers (Fig. 6). The marker fields

have comparable (as much the same as possible) dimensions

and resolution of the individual markers (n2-windows vs.

ALVAR individual markers vs. RDM’s sub-markers) and

the movement is simple and well-defined to ensure fairness

in the comparison (see supplementary material for examples

of the videos).

4.1. Success Rate and Precision

Fig. 7 shows the estimated camera pose in graphs for dif-

ferent videos for ALVAR and UMF. In order to evaluate the
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Figure 7. Graphs of estimated camera rotation (RX, RY, RZ) and translation (TX, TY, TZ) for representative videos. Smooth curves mean

an error-free pose estimation; noise and “dents” in the curves indicate inaccuracies. 1st row UMF, 2nd row ALVAR. From left to right:

perspective, occlusion, zig-zag, near-far. Major steps in the graph are caused by the gimbal lock and an angular over/underflow at −π, π.

Figure 6. Illustrative frames of the side-by-side comparison video.

left: Greyscale UMF vs. ALVAR. right: UMF vs. RDM. top:
Motion blur tests. bottom: Occlusion tests. Videos were recorded

in 1080p, capturing different classes of movement: zig-zag move-

ment, upright rotation, rotation with severe perspective distortion,

near/far movement, variable lighting conditions with fixed camera

and general movement with occlusion.

precision of our algorithm we used the local variance (in

time domain) of the estimated camera pose (position and

rotation) – see Tab. 1. Low local variance means that the

results of camera localization are smooth. We did not in-

clude RDM, since its stability was notably worse (Tab. 2)

and ALVAR thus serves as a good reference for precision

evaluation. Our method gave smoother results thanks to the

good spatial distribution of matched points between 2D and

3D and ALVAR’s inability to find the corners of the indi-

vidual markers precisely in blurred images and for partially

occluded corners. The number of detected corners used for

the camera pose estimation is shown in Fig. 8.

Apart from the precision we also show in Table 2 the

success rate for each method in every category of videos.

Random dot markers were the least successful, mostly due

to their high sensitivity to the motion blur. But even for a

Method: RDM ALVAR UMF
Average position variance: 8.5 cm 3.48 cm 3.28 cm
Average rotation variance: 0.049 0.035 0.024

Table 1. The average variance in position and rotation change us-

ing 10 frames for averaging in a 1080p 50FPS video. The rotation

variance is expressed as variance of quaternions, since the euler

angles are unstable due to the gimbal lock. (Note: RDM gave

highly unstable results and the low average variance in rotation is

caused mainly by the low detection rate. For the rotation test video

it gave 0.080 variance.)
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Figure 8. Number of correspondences used by ALVAR (red) and

UMF (green) for the camera pose estimation. left: near-far video,

right: perspective (refer to Fig. 7). More points naturally mean

a more stable and precise camera pose estimation and better toler-

ance to wrongly detected points (caused by a motion blur, partial

occlusion, etc.).

fixed camera or rotation with minimal blurring it gave the

worst results. ALVAR and UMF were both very success-

ful and gave very similar results. The only major difference

was for zooming and occlusion. Figure 6 shows the clear

advantage of our continuous marker field over ALVAR. AL-

VAR only detected two completely visible markers and one

which had one edge slightly occluded. On the contrary, our

method was able to detect sub-markers and corner points

even between the cups.
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Method RDM ALVAR UMF
Lighting 89.7 100.0 100.0
Perspective 42.7 100.0 100.0
Near/Far 75.8 91.3 93.4, 94.6
Rotate 94.7 100.0 100.0
Zig-Zag 29.6 98.3 97.5, 97.4
Occlusion 38.5 93.0 94.0, 96.5
Overall 61.8 97.1 97.8

Table 2. Marker field detection success rates in %. For UMF, rates

from comparison videos with RDM and ALVAR are given sepa-

rately. Success rate is the fraction of video frames where at least

one of the markers was correctly detected in all the video frames.

4.2. Pixel Footprint and Computation Complexity

Table 3 shows the speed of the three tested algorithms

and the breakdown of speed of our marker detection algo-

rithm. Our algorithm was more than 3× faster than ALVAR

and visited on average about 5.3% of all pixel points. A

small memory footprint is an important property for ultra-

mobile processors where the memory accesses are slow due

to limited caching, etc.

RDM ALVAR UMF (edge grid match cam sref)
164.4 30.1 8.8 (3.8 1.1 0.3 0.7 2.9)

Table 3. Breakdown of speed in milliseconds for 1080p videos us-

ing a mid-range Intel(R) Core(TM) i5 CPU 661 (3.33GHz) CPU.

edge: edgel detection in scanlines (Sec. 3.1.1); grid: recon-

structing the grid using RANSAC and vanishing point detection

(Sec. 3.1.2 and 3); match: edge direction detection and position

decision making (Sec. 3.2 and 3.3); cam: camera pose estima-

tion based on the found matches; sref: processing in subwindows

and position refinement by iterative search for more corner points

(Sec. 3.4).

5. Targeted Applications

Here we give three targeted applications that guided us

towards the development of the marker-based camera lo-

calization. While camera localization in natural scenes

(SLAM/PTAM) is already achieving very good results and

some applications do not require markers anymore, these

sample applications deal with scenes where presence of re-

liable natural keypoints is impossible or undesirable.

5.1. Screen-to-Screen Task Migration

Along with cloud computing, a direct visual interaction

between desktop and ultramobile devices is of interest [4],

[19]. When the screen does not contain enough unique

keypoints (often!), our marker field ensures the localization

(Fig. 9). We are experimenting with possibilities of mixing

the marker field in an unobtrusive way into any – static or

dynamic – on-screen situation.

Figure 9. On a large desktop screen, a marker is mixed into the

image for short periods of time so that a mobile device can reli-

ably capture the exact location within the screen. Once the mo-

bile device knows the location, the marker is displayed only in the

vicinity of the mobile’s view frustum so that it is as unobtrusive as

possible. If enough distinct and stable keypoints are present, the

marker is completely hidden and camera the pose is tracked.

5.2. Effortless Chromakeying

Chroma keying [7] is one of the widely used techniques

in film production which is used to replace constant color

with another scene reflecting the camera movement. The

Figure 10. Matchmoving by the Uniform Marker Field. left: Im-

age captured by the camera. middle: Alpha matte. right: Com-

posite image with 3D scene rendered to match the camera pose.

camera pose can be determined by using sensors mounted to

the camera (e.g. Insight VCS11) or by camera rigs that can

be programmed to follow a pre-defined track (e.g. Cyclops

or Milo control rigs from Mark Roberts Motion Control2 or

TechnoDolly3). Camera movement recovery is a technique

which estimates the movement using markers or keypoints

placed and detected on the mating plate4. This process, also

called matchmoving, often involves a considerable amount

of manual work in order to match and annotate the markers.

The marker field presented in this work can be used for the

camera pose estimation without any human effort involved

in the tracking (Fig. 10).

5.3. Tabletop Scene Interaction

One strong application of near-eye see-through glasses

(recently becoming generally available) is augmenting in-

teraction in tabletop scenarios [12]. Tracking of keypoints

1http://www.naturalpoint.com/optitrack/products/insight-vcs/
2http://www.mrmoco.com
3http://www.supertechno.com/product/technodolly.html
4http://www.fxguide.com/ – Art of Tracking
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can be used for the camera pose estimation (e.g. [10]),

but the presence of a visually unobtrusive and cheaply de-

tectable marker field can provide a reliable starting point for

the tracking and offload some of the expensive computation

(Fig. 11). p

Figure 11. Tabletop interaction example. The marker field covers

the whole table surface and fosters the camera pose estimation.

6. Conclusions
We presented a new design of marker fields whose

square modules are greyscale and the location within the

field is determined by the edges’ gradients. Then, we pro-

posed an efficient and reliable algorithm for detection of the

marker field. We discussed three representative target appli-

cations where planar marker fields are desirable.

The results confirm that marker fields based on edges be-

tween the greyscale modules outperform the existing com-

parable solutions: arrays of black-and-white markers and

random dot fields. The detection algorithm is efficient and

reliable – because the grid of squares is being detected as

a whole and the edgels thus can be detected roughly and

sparsely. The detection rates and accuracy are about the

same as for state-of-the-art algorithms (represented by AL-

VAR) or better. However, our detector is more than 3×
faster and it visits only a small fraction of image pixels

(∼ 5%). This opens space for implementation for ultra-

mobile devices and specialized embedded sensors.

We are working on an altered algorithm that will not re-

quire the marker to be planar – on the contrary, the marker

could be strongly deformed as on a cloth or wrinkled pa-

per. The omnipresence of the detectable edges in the marker

field will allow for real-time and precise detection of a de-

formed marker field. We will further experiment with the

color marker fields where shades of grey are replaced by

different tones of color. The abundance of localization in-

formation will allow for introducing further constraints into

the marker field design – namely similarity to a given raster

image. We expect these markers to be found even more aes-

thetically pleasing to the user.

Please, refer to the supplementary video for sample

videos and more detailed comparison of the evaluated al-

gorithms.

Acknowledgements
This research was supported by the research project CEZMSMT,

MSM0021630528, by the CEZMSMT project IT4I - CZ

1.05/1.1.00/02.0070, and by project V3C, TE01020415.

References
[1] ALVAR tracking subroutines library web page.

http://www.vtt.fi/multimedia/alvar.html.

[2] B. Atcheson, F. Heide, and W. Heidrich. CALTag: High

precision fiducial markers for camera calibration. In Proc.
VMV, 2010.

[3] J. Burns and C. J. Mitchell. Coding schemes for two-

dimensional position sensing. Institute of Mathematics and
Its Applications Conference Series, 45:31, 1993.

[4] T.-H. Chang and Y. Li. Deep shot: a framework for migrating

tasks across devices using mobile phone cameras. In Proc.
SIGCHI, 2011.

[5] M. Fiala. ARTag, a fiducial marker system using digital tech-

niques. In Proc. CVPR, 2005.

[6] M. Fiala. Designing highly reliable fiducial markers. IEEE
T. Pattern Anal. Mach. Intell., 32:1317–1324, July 2010.

[7] J. Foster. The Green Screen Handbook: Real-World Produc-
tion Techniques. Number v. 978, nos. 0-52106 in The Green

Screen Handbook: Real-world Production Techniques. John

Wiley & Sons, 2010.

[8] M. Hirzer. Marker detection for augmented reality applica-

tions. Technical report, Inst. for Comp. Graphics and Vision,

Graz Univ. of Tech., AT, 2008.

[9] H. Kato and M. Billinghurst. Marker tracking and HMD cal-

ibration for a video-based ar conferencing system. In Proc.
IWAR, 1999.

[10] G. Klein and D. Murray. Parallel tracking and mapping for

small AR workspaces. In Proc. ISMAR, 2007.

[11] C. Pirchheim and G. Reitmayr. Homography-based planar

mapping and tracking for mobile phones. In ISMAR, 2011.

[12] O. B. R. Raskar. Spatial Augmented Reality: Merging Real
and Virtual Worlds. A K Peters/CRC Press, 2005.

[13] F. Schaffalitzky and A. Zisserman. Planar grouping for au-

tomatic detection of vanishing lines and points. Image and
Vision Computing, 18:647–658, 2000.

[14] I. Szentandrási, M. Zachariáš, J. Havel, A. Herout,
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