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Abstract

In this paper, we propose a new non-rigid robust reg-
istration method that registers a point distribution model
(PDM) of a surface to given 3D images. The contributions
of the paper are (1) a new hierarchical statistical shape
model (SSM) of the surface that has better generalization
ability is introduced, (2) the registration algorithm of the
hierarchical SSM that can estimate the marginal posterior
distribution of the surface location is proposed, and (3) the
registration performance is improved by (3-1) robustly reg-
istering each local shape of the surface with the sparsity
regularization and by (3-2) referring to the appearance be-
tween the neighboring model points in the likelihood com-
putation. The SSM of a liver was constructed from a set of
clinical CT images, and the performance of the proposed
method was evaluated. Experimental results demonstrated
that the proposed method outperformed some existing meth-
ods that use non-hierarchical SSMs.

1. Introduction

Statistical shape models (SSMs) of surfaces have proved

to be an important basis for 3D image segmentation[8].

Given an SSM of a target surface, one can segment the tar-

get regions in given 3D images by registering the SSM to

them. This paper assumes that 3D medical images are in-

put and that the objective of the registration is to segment

anatomical structures in the images. Medical image seg-

mentation is not an easy task because, in general, there exist

many nuisances[12], which impede identifying the bound-

ary of the target organ: Many false boundaries are often de-

tected from the organs other than the target one, and some

parts of the true boundary can be missed because of lesions

or of contacts with the neighboring organs. SSMs and their

robust registration techniques are both required for accu-

rately determining the boundaries of target organs against

those nuisances.

In this paper, a point distribution model (PDM) is em-

ployed: A set of N points represents the surface. Let the

3D coordinates of the i-th point be denoted by xi (i =
1, 2, · · · , N). Then, the surface is represented by a 3N -

vector, X = [xT
1 , xT

2 , · · · , xT
N ]T . Let a set of the train-

ing surfaces, of which locations and sizes are normalized

in advance, be denoted by Sl (l = 1, 2, · · · , M ), and a set

of N corresponding points generated on Sl be denoted by

xl
i (i = 1, 2, · · · , N , l = 1, 2, · · · , M ). Let a 3N -vector,

X l = [(xl
1)

T , (xl
2)

T , · · · , (xl
N )T ]T , denote the distribu-

tion of the points on Sl. The SSM for a PDM is constructed

from this training set, X = {X l|l = 1, 2, · · · , M}.

1.1. Generalization Ability of SSM

One of the problems in constructing SSMs for anatomi-

cal structures is that it is not easy to collect enough number

of training data. It should be reminded that each training

surface is obtained by labeling the boundary of the target

organ in a 3D medical image. Manual operation by an ex-

pert is required for this labeling. Davies et al. introduced

the following criteria for comparing SSMs[4]: (1)General-

ization ability, (2) Specificity, and (3) Compactness. The

generalization ability measures the ability to describe any

instance of the target shapes – not just those seen in the

training set. The specificity, on the other hand, measures

the restriction of the representation: The SSM should be

able to describe only valid instances of the target shapes.

These criteria are employed for the comparison of SSMs.

When the number of the training data is small, the general-

ization ability is more seriously required for the SSMs.

This paper concerns itself with linear SSMs of surfaces.

An active shape model (ASM)[2] is one of the most im-

portant linear SSMs used for nonrigid registration. The

original ASM represents the shape variety of a target sur-

face with a subspace, which is spanned by a set of princi-

pal eigenvectors of the covariance matrix, ΣX , of {X l|l =
1, 2, · · · , M}. The set of eigenvectors is obtained by ap-

plying PCA to ΣX , and those with smaller eigenvalues are
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excluded from the bases of the subspace. This exclusion

improves the specificity and the compactness of the ASM

but makes the generalization ability worse. When the num-

ber of the training data is small, this drawback of the lack

of the generalization ability is serious, hence many meth-

ods have been proposed for improving the generalization

ability[3][11][14].

One of the approaches for the improvement is to make

the ASM hierarchical[3][14]. Davatzikos et al. described

the goal of the hierarchical scheme as utilizing marginal dis-

tribution that can be estimated accurately[3]. As mentioned

above, the SSM of PDM represents the surface with 3N
variables. Among these variables, the hierarchical scheme

firstly examines smaller sets of highly correlated variables,

and then, the joint distribution of a large number of vari-

ables is considered after smoothing, which makes the distri-

bution more compact[3]. The proposed method follows this

scheme. Two strategies are proposed in [3] for the scheme.

One is to partition the surface into several segments, and the

other is to apply wavelet transformation to X . In the former

strategy, one PCA-based SSM is constructed for represent-

ing the shape of each segment, and one more PCA-based

SSM is constructed for representing the locations of all of

the segments. In this paper, we employ this partitioning

approach for making the SSM hierarchical, because this ap-

proach is appropriate for introducing a robust registration

technique described below.

Another approach for improving the generalization abil-

ity is to make the structure of the corresponding graphical

model sparse[11]. A linear SSM can be represented by a

Gaussian graphical model, and the marginal posterior prob-

ability distribution of X can be inferred on the graphical

model by means of, for example, a belief propagation or

of MCMC[10]. In the graph, each node represents xi, and

two nodes are linked by an edge if the two corresponding

points, xi and xj are conditionally dependent. It should

be reminded that the structure of the Gaussian graphical

model is determined by the precision matrix, which is the

inverse of the covariance: Two points, xi and xj are con-

ditionally dependent if and only if the (i, j) component of

the precision matrix is not zero. Let the empirical covari-

ance matrix obtained from the training data be denoted by

ΣX , and let the corresponding precision matrix be denoted

by ΛX = Σ−X . In many cases, all components of ΛX are

non-zero. As pointed out in [6], an empirical covariance

matrix, ΣX , can over-fit to the training data, when the num-

ber of the data is small. This is also one of the main reasons

why the generalization ability of ASM is poor. Friedman

et al. proposed a graphical lasso, which is a method for es-

timating a precision matrix from the empirical covariance

matrix using a sparsity regularization[6]. Using the graphi-

cal lasso, one can obtain a sparse Gaussian graphical model

from the training set. It has been reported that, one can im-

prove the registration accuracy by estimating the structure

of the Gaussian graphical model of the SSM by means of

the graphical lasso[11]. We represent the global SSM us-

ing a graphical model of which structure is determined by

means of the graphical lasso, in the proposed method.

1.2. Robust Registration

Robust registration methods are needed for accurately

registering SSMs to given medical images because of the

nuisances mentioned above. The nuisances are the out-

liers of the statistical models and should be excluded for

the accurate registration. Many robust registration meth-

ods have been proposed[7][9][10][15]. Among them, some

methods use a sparsity regularization techniques for the ro-

bust nonrigid registration[10][15]. Let a target point in a

given image corresponding to xi be denoted by yi, and

let Y = [yT
1 ,yT

2 , · · · , yT
N ]T . Assume that X is repre-

sented by a function of a set of parameters, θ: X = X(θ).
Then, the minus log likelihood functions in many non-

robust non-rigid registration methods can be simply repre-

sented as follows: E′(θ) = ‖Y − X(θ)‖2. The robust

registration methods based on the sparsity regularization in-

troduce a 3N -vector, E = [eT
1 , eT

2 , · · · , eT
N ]T , where the

three-vector, ei, becomes non-zero if yi is an outlier of the

SSM[10][15]. Those methods minimize the following cost

function: E(θ, E) = ‖Y −X(θ) − E‖2 + ρ|E|L1 with

respect to θ and E. If E is not penalized by the L1-norm

term, you can always make the value of ‖Y −X(θ)−E‖2
zero by setting E = Y −X(θ). Because E is penalized by

its L1-norm, the resultant vector, E, often becomes sparse

and ei become non-zero only when |yi − xi| are large. Let

Ω denote the outlier regions in which yi are the outliers.

Then, ‖Y −X(θ)−E‖2 =
∑

yi /∈Ω ‖yi − xi‖2, because

ei = yi − xi in Ω at the stationary point of E. In other

words, minimizing E(θ, E), one can detect outliers and can

exclude them to estimate the parameter, θ, accurately.

It should be noted that outliers can be appropriately de-

tected only when the model has enough specificity: Oth-

erwise, model cannot distinguish between the outliers and

inliers. We employ PCA-based SSM for representing the

shape of each segment because such the model has high

ability for the specificity, as mentioned above. Represent-

ing the local shape of each segment by a PCA-based SSM,

we introduce the sparsity regularization for registering each

segment robustly.

1.3. Likelihood of Point Location

A set of candidate points of the boundary of the target

organ should be firstly detected. Then, each target point,

yi, is located at some of those candidate points. The can-

didate points are detected based on the likelihood of xi:

The likelihood function, L(xi) = p(I|xi), is designed so

that the likelihood becomes high on the true boundary to be
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Figure 1. An example of registration error that exists even after all

model points are located on the true boundary

extracted from the image. For example, L(xi) = δ(ΔI)
for any i, if the candidate points are detected by applying

a zero-crossing detector to the Laplacian of the image. In

most of all methods of PDM registration, the likelihood of

xi is determined based only on the local appearance, Ii,

around xi: L(xi) = p(Ii|xi). This often causes large reg-

istration errors. Firstly, the target points can be located on

false boundaries in a given image, because one cannot dis-

tinguish between the true boundary and the false ones based

only on the local appearances. Secondly, the continuity of

the boundary in a given image is not evaluated, and hence

there can exist large residuals between the registered surface

and the true boundary in the image even when all points of

the model are located on the true boundary, as shown in

Fig.1. In order to reduce these residuals, you need to de-

termine the locations of the model points based not only on

the local appearance around each point but also on the ap-

pearance between neighboring points.

In this paper, we determine the likelihood based on the

appearance around a line segment, sij , that connects two

neighboring points, xi and xj . As the result, the likeli-

hood is represented by a two-variable function, L(xi, xj) =
p(Ii|xi)p(Ij |xj)p(Iij |xi, xj), where Iij is the local ap-

pearance around sij . The arguments of the likelihood are

the pairwise variables, and the computation of the likeli-

hood can be incorporated into the registration algorithms by

representing the SSM using a pairwise graphical model[5].

1.4. Contributions

The contributions presented in this paper are the follow-

ings. (1) A new hierarchical SSM that has better general-

ization ability is introduced, (2) the registration algorithm

of the hierarchical SSM that can estimate the marginal pos-

terior distribution is proposed, and (3) the registration per-

formance is improved by robustly registering each segment

with the sparsity regularization and by referring to the ap-

pearance between the neighboring points in the likelihood

computation.

2. Method

In this section, the proposed hierarchical SSM is firstly

described, and then the registration algorithm is explained.

2.1. Construction of Hierarchical SSM

In the proposed method, a target surface is partitioned

into K segments, a linear SSM is constructed for each

of the segments, and the relationship between the shapes

of the segments is represented by a Gaussian graphical

model. The models are constructed from a set of training

surfaces. Let a set of training 3D images be denoted by

{I l|l = 1, 2, · · · , M}, where M is the number of the im-

ages. Assume that the location, size and the shape of the

bodies in the images are normalized based on a set of land-

marks around the target organ. Let the surface of a target

organ manually labeled in I l be denoted by Sl. A set of N
corresponding points is generated on Sl. Let the i-th corre-

sponding point on Sl be denoted by xl
i, and let x̄i denote

the average of {xl
i|l = 1, 2, · · · , M}.

2.1.1 Statistical Shape Model for Each Segment

The surface is partitioned into K segments by applying,

e.g., K-means method to {x̄i|i = 1, 2, · · · , N}. Let a set of

the indexes of the points included in the k-th segment be de-

noted by Lk = {ik1 , ik2 , · · · , ikn(k)}, where n(k) is the num-

ber of points included in the segment. Let Pk = {xl
i|i ∈

Lk, l = 1, 2, · · · , M}.
We employ a probabilistic PCA (PPCA)[13] for the

model construction, because PPCA is derived from a proba-

bilistic model explicitly including a model for observation,

and because the number of free parameters to be estimated

in PPCA is smaller than that in PCA. The former charac-

teristic is needed for representing the statistical relationship

between the model points and the shape parameters, and the

latter one is a strength when the number of training samples

is small. Let Xk = [xT
ik
1
, xT

ik
2
, · · · , xT

ik
n(k)

]T . The PPCA

assumes the following linear model:

Xk = W kθk + X̄
k + ε, (1)

where W k is a 3n(k)× qk matrix (3n(k) > qk), X̄
k

is the

mean vector, and ε denotes an isotropic zero-mean Gaussian

noise:

ε ∼ N (0, (σk)2I), (2)

where I is an identity matrix and (σk)2 is the variance. In

PPCA, one estimates W k, X̄
k
, and (σk)2 by using the EM

algorithm. The conditional probability distribution of θk is

represented by a Gaussian as follows:

p(θk|Xk) = N ((Mk)−1(W k)T (Xk−X̄
k), (σk)2(Mk)−1),

(3)

where Mk = (W k)T (W k) + (σk)2I . Exactly speaking, in

our settings, θk represents not only the shape but also the

location and the orientation of the k-th segment. θk obeys

a Gaussian:

p(θk) = N (0, I), (4)
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and Xk obeys a Gaussian as follows:

p(Xk|θk) = N (W kθk + X̄
k
, (σk)2I). (5)

Given a data, Y k, one can obtain the maximum likelihood

estimate of the shape parameter, θk, by minimizing

Δk(θk) = ‖Y k −W kθk − X̄
k‖2. (6)

The dimension of θk is qk, and is much smaller than the

number of parameters needed to describe the locations of

all n(k) points in the segment. Each component of θk cor-

responds to some deformation mode represented by each

column of W k.

2.1.2 Statistical Model for All Segments

A statistical model that represents the relationship between

the shapes of the segments is then constructed. The model

is represented by a Gaussian graphical model of {θk|k =
1, 2, · · · , K}, and its structure is estimated by using a

graphical lasso[6]. Let Θ = [θ1T ,θ2T , · · · , θKT ]T rep-

resents the shape parameters of all segments. Let θk,l

denote the ML estimate of the shape parameter obtained

from Xk,l = [xlT
ik
1
, xlT

ik
2
, · · · , xlT

ik
n(k)

]T , and let Θl =

[(θ1,l)T , (θ2,l)T , · · · , (θK,l)T ]T , which is used as the train-

ing sample obtained from Sl. Let an empirical covariance

matrix of {Θl|l = 1, 2, · · · , M}, be denoted by ΣΘ. The

number of the training samples, M , can be smaller than

the dimension of Θ, though the dimension of Θ is much

smaller than 3N . We introduce the graphical lasso for han-

dling the problem of the over-fitting of empirical covariance

matrix.

In the graphical lasso, the precision matrix, Λ, is esti-

mated as follows:

Λ̂ = arg min
Λ
{− log det Λ + tr (ΣΘ)Λ) + λ‖Λ‖L1}, (7)

where λ is a positive coefficient for the regularization. In

the proposed model, Θ is assumed to obey a Gaussian with

its mean is zero and its precision matrix is Λ̂ as follows:

p(Θ) = N (0, Λ̂−). (8)

The mean of Θ is zero because of (4). This Gaussian dis-

tribution is represented with a graphical model, of which

edges correspond to the non-zero off diagonal components

of Λ̂. It should be noted that this graphical model repre-

sents the conditional dependencies between the deforma-

tion modes of different segments, and that the structure of

the graph should be sparse, if the shape parameters of two

distantly-located segments are conditionally independent.

The SSM of the proposed method is now represented as fol-

lows:

p({Xk}, {θk}) =
∏
k

p(Xk|θk)p(Θ). (9)

2.2. Likelihood of Target Point Location

For registering k-th segment, a target point is detected

from the given image based on the likelihood, Lk(Xk) =
Lk({xi|i ∈ Lk}). It is defined as follows in the method:

Lk(Xk) =
∏

i∈Lk

p(Ii|xi)
∏

i, j ∈ Lk,
(i, j) ∈ ED

p(Iij |xi,xj), (10)

where ED is a set of edges of a Delaunay triangulation of

x̄i ∈ Pk on the surface. Here, let Ii is a L3-vector, which

denotes the appearance in a L×L×L cube of which center

is at xi. Analogously, let I l
i is a L3-vector, which denotes

the local appearance around xl
i in I l.

Assuming p(Ii|xi) is a Gaussian, we represent it as fol-

lows:

p(Ii|xi) = N (Īi, ΣIi), (11)

where the mean vector, Īi, and the variance matrix, ΣIi ,

are both estimated based on the training set, {I l
i |l =

1, 2, · · · , M}. It should be reminded that the likelihood

distribution is not necessarily a Gaussian, even though the

conditional probability distribution is a Gaussian.

p(Iij |xi, xj) is introduced for evaluating the appearance

between two model points. For efficient computation, we

define it with the internally dividing points of sij as follows:

p(Iij |xi,xj) =
T−1∏
t=1

p(Iij,t|xij,t). (12)

Here, T = �‖xi − xj‖/Δ�, where Δ is a constant deter-

mined in advance. The dividing points, xij,t = (txi +
(T − t)x)/T (t = 1, 2, · · · , T − 1), are located at regu-

lar intervals, Δ, on the segment, sij . Iij,t is also a L3-

vector, which denotes the local appearance around xij,t.

p(Iij,t|xij,t) is assumed to obey a Gaussian, and its mean

and covariance are estimated based on a set of the train-

ing data, {I l
ij,t|l = 1, 2, · · · , M}, which are the local ap-

pearance around xl
ij,t. It should be noted that incorporating

the internally dividing points xij,t, is different from just in-

creasing the number of the model points, M . You cannot

eliminate the residuals indicated in Fig.1 only by increasing

M .

Incorporating the SSM in (9), we represent the simul-

taneous posterior distribution of the model points and the

shape parameters as follows:

p({Xk}, {θk}|I) ∝
∏
k

L(Xk)p(Xk|θk)p(Θ). (13)

2.3. Hierarchical Registration Algorithm

In the proposed method, the marginal posterior distri-

bution of the shape parameters, p(θk|I), is estimated for

each segment. Then, the marginal distribution of the model
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points, Xk, can be obtained by using (5). The proposed

method estimates p(θk|I) iteratively as follows:

1. Set p0(θk|I) = p(θk) = N (0, I) as shown in (4).

2. For τ = 1, 2, · · · , T

(a) Estimate the temporal posterior distribution,

pτ
k(θk|I), for each segment by registering the lo-

cal SSM of each segment to the given image.

The robust registration technique with the spar-

sity regularization is used at this step.

(b) Update the posterior distribution to obtain

pτ (θk|I) based on pτ
k(θk|I) and on p(Θ) in (8).

The details of (a) and (b) are described in the followings.

2.3.1 Robust Registration of Local Segment Model

For estimating the temporal posterior distribution,

pτ
k(θk|I), for each segment, the target points, Y k, is firstly

detected in the image, and then, the SSM is registered to

the target points by estimating the posterior distribution.

The target points are sampled from the given image based

on the conditional probability distribution, p(Xk|I), which

can be obtained by marginalizing p(Xk|I, θk) with respect

to θk.

If an image and the shape parameter, θk, is given, the

conditional distribution of the model points, Xk is given as

follows:

p(Xk|I, θk) ∝ Lk(Xk)p(Xk|θk), (14)

where Lk(·) is shown in (10) and p(Xk|θk) is a Gaussian as

shown in (5). Assume that the posterior distribution of the

shape parameter, pτ−1(θk|I) is given. Then, the posterior

distribution of the model points is obtained by marginaliz-

ing p(Xk|I, θk) in (14) with respect to θk as follows:

pτ−1(Xk|I)

∝ Lk(Xk)
∫

p(Xk|θk)pτ−1(θk|I)dθk. (15)

In the method, pτ−1(θk|I) is represented non-

parametrically with a set of samples, {θk,τ−1
u |u =

1, 2, · · · , U}, because its distribution is highly non-linear

in many cases. Using this non-parametric representation,

we approximate the integration in (15) as follows:

pτ−1(Xk|I) � 1
Z

Lk(Xk)
∑

u

p(Xk|θk,τ−1
u ). (16)

The method for making the non-parametric representation

of pτ−1(θk|I) will be described later.

Here, a set of target points, Yk,τ−1 = {Y k,τ−1
u |u =

1, 2, · · · , U} is drawn from the distribution, pτ−1(Xk|I)

in (16). It should be noted that p(Xk|I, θk) in (14) can

be represented by a pairwise Markov random field, and that

one can draw the samples from p(Xk|I, θk) by using some

sampling technique, for example, a MCMC or a belief prop-

agation. For each of the target points, Y k,τ−1
u , the maxi-

mum likelihood estimate of the shape parameter is robustly

computed based on the model shown in (5) with a sparsity

regularization[10][15]. The cost function to be minimized

is as follows:

E(θk, e) = ‖Y k,τ−1
u −W kθk−X̄

k−e‖2 +ρ‖e‖1, (17)

where ρ is a positive coefficient for the regularization, and

e denotes the residuals corresponding to the outliers. The

cost function in (17) is convex with respect to θ and e,

hence you can obtain the unique solution if the target point,

Y k,τ−1
u is fixed. Let the solution of θk be denoted by

θ̂
k,τ−1

u . A set of the solutions, {θ̂k,τ−1

u |u = 1, 2, · · · , U}
is obtained from the set of the targets, Yk,τ−1. The resul-

tant set of the solutions, {θ̂k,τ−1

u |u = 1, 2, · · · , U}, well

approximate the marginal posterior distribution, pτ
k(θk|I),

non-parametrically.

2.3.2 Inference on Graphical Model for All Segments

The conditional dependencies between the segments are

then considered for updating the marginal distributions,

pτ
k(θk|I). Let EΛ denote a set of edges of the graphical

model, of which structure is determined by Λ̂ in (7). Then

the simultaneous posterior distribution of θk is represented

as follows:

pτ ({θk}|I) ∝
∏
k

pτ
k(θk|I)

∏
(k1,k2)∈EΛ

pk1,k2(θ
k1,θk2),

(18)

where pk1,k2(·, ·) is obtained by marginalizing p(Θ) in (8)

with respect to all θk except θk1 and θk2 . The simultane-

ous distribution, pτ ({θk}|I), can also be represented by a

pairwise Markov random field, and we estimate the distri-

bution of pτ (θk|I) by inferring it on the graphical model

by means of the sampling technique, for example, MCMC.

The final output, pT (xi|I), is obtained by marginalizing

pT (Xk|I) with respect to all variables, xi′ ∈ Pk other

than xi. pT (Xk|I) is obtained from pτ ({θk}|I) in (18)

by using (16).

2.4. Experimental Method

We selected the liver as the target organ. For the ex-

periments, we used 36 CT images, of which size was

512 × 512 × 512. Some of the livers in those images

have some tumors near the surfaces. The voxel size was

0.625× 0.625× 1[mm3]. The location, orientation and the

shape of the bodies in the images were normalized based

on a set of landmarks detected on the costal bones. The

297929792981



 60  80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

 120 140 160 180 200 220 240 260 280 300 320 340 360

 20

 40

 60

 80

 100

 120

 140

 160

 180

Figure 2. Examples of the corresponding points generated on two

different livers, and an example of the segments (K = 5).

boundary of the liver in each of the images was manually

labeled by an expert for constructing the SSM and for the

performance evaluation.

We applied two-fold cross validation for the evaluation:

The SSM was constructed from M = 18 surfaces and it

was registered to the other 18 images for the evaluation of

the accuracy of the registration. The liver surface was rep-

resented by a set of N = 1498 points. For constructing the

SSM, we generated a set of N = 1498 corresponding points

on each of the surfaces by means of the generalized multi-

dimensional scaling (GMDS)[1], which determines the lo-

cations of corresponding points based on the geodesic dis-

tances between the points. Figure 2 shows examples of the

generated corresponding points and the segments partioned

by K-means method. The local appearance, Ii and Iij,t

were determined in a cube whose side length L = 7, and

the means and the variances of p(Ii|xi) and p(Iij,t|xi,xj)
were estimated based on the training images.

Then, concatenating the vectors in the k-th segment,

{xl
i|i ∈ Lk}, we constructed a training set of M = 18

samples of Xk. Let the training sample of Xk obtained

from the l-th surface, Sl, be denoted by Xk,l. We esti-

mated X̄
k
, W , and (σk)2 in (5) for each segment by ap-

plying PPCA to the training set, {Xk,l|l = 1, 2, · · · , 18}.
The resultant SSM represents the location, orientation, and

the shape of the segment. The global SSM that represents

the conditional dependencies between the shapes of the seg-

ments was constructed from the set, {Θl|l = 1, 2, · · · , 18},
where Θl = [(θ1,l)T , (θ2,l)T , · · · , (θK,l)T ]T . Here, θk,l

was the ML estimate of the shape parameter that minimizes

Δ′(θk) = ‖Xk,l−W kθk−X̄
k‖. The precision matrix, Λ̂,

was obtained by the graphical lasso, and Θ was represented

by a Gaussian: Θ ∝ exp(−ΘT Λ̂Θ).
We firstly evaluated the generalization ability and the

specificity of the constructed SSM. Let a 3N -vector, X =
[(X1)T , (X2)T , · · · , (XK)T ]T , represent the locations of

all model points. The generalization ability of a model, G,

is defined as follows[4]:

G =
1
ng

ng∑
i=1

|X ′
i −Xi|2, (19)

where X ′
i is the model reconstruction of shape Xi using

the model built excluding Xi. Smaller value of G indicates

higher generalization ability. In the experiments, ng = 18,

and Xi were the ng = 18 data that were not used for con-

structing the SSM. The specificity, S, is defined as follows:

S =
1
ns

ns∑
j=1

|Xj −X ′
j |2, (20)

where Xj are shape examples generated by the model and

X ′
j is the nearest member of the training set to Xj . Smaller

value of S indicates higher specificity. We evaluated the

change of G and S with respect to the number of the seg-

ments, K. While evaluating these criteria, the values of the

other parameters, e.g. λ in (7) and ρ in (17), were fixed.

Then, the registration accuracy was evaluated. Let the

expectation of xi computed from the resultant posterior,

pτ (xi|Ij) be denoted by x̂j
i . Let dj

i denote the distance

between x̂i and its nearest point on the surface, Sj , which

was labeled manually for the gold standard. The registration

error was evaluated with

E =
1

Mt

Mt∑
j=1

Ej , and Ej =
1
N

∑
i

dj
i , (21)

where Mt = 18 is the number of images used for the eval-

uation. We evaluated the change of E with respect to the

number of the segments, K. In addition, we compared

the performances between the proposed method and the

method[11] that represents the SSM with a non-hierarchical

graphical model of which structure is estimated by the

graphical lasso.

In the method, not only the local appearance around

each point but also the appearance between two neighbor-

ing points are used for computing the likelihood, as shown

in (10). The effect of p(Iij |xi,xj) in (10) on the registra-

tion performance was evaluated by exchanging the likeli-

hood function, L, with the following one:

L′k(Xk) =
∏

i∈Lk

p(Ii|xi). (22)

The effect of the sparsity regularization used in the registra-

tion of each segment was also evaluated by exchanging the

cost function E(θk, e) in (17) with

E′(θk) = ‖Y k,τ1

u −W kθk − X̄
k‖. (23)

In the method, the structure of the graphical model of θk

is estimated by using the graphical lasso. The effect of

this structure estimation was evaluated by using two other

registration results: One was obtained when no edges ex-

isted in the graph. In this case, each segment was regis-

tered independently, and no relationship between segments

was used. The other was obtained when the empirical co-

variance, ΣΘ, was used for representing the relationships

between the shape parameters. In this case, the graphical

model was represented by a complete graph.

298029802982



Generalization ability

 5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50  60  70  80  90  100

The number of cluster

G

Specificity

 65

 70

 75

 80

 85

 90

 95

 100

 105

 110

 0  10  20  30  40  50  60  70  80  90  100

The number of cluster

S

Figure 3. Change of the generalization ability (G) and of the speci-

ficity (S) with respect to K
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Figure 4. The change of the registration error with respect to the

number of segments, K

Figure 5. Two examples of the registration results. The red parti-

cles represent pτ (xi|I), non-parametrically.

3. Experimental Results

3.1. Generalization Ability and Specificity

The graphs in Fig.3 show the change of the generaliza-

tion ability and the specificity with respect to the number of

the segments, K. In the graphs, x-axis indicates the num-

ber of K, and the y-axis indicates the generalization abil-

ity (left) and the speficity (right). As shown in the graphs,

the generalization ability became higher (the value of G de-

creased) and the specificity became poorer (the value of S
increased ) monotonically with respect to the increase of

K. This results show that the generalization ability was im-

proved by making the SSM hierarchical. This improvement

is important especially when the number of training data is

small.

The proposed method was applied to the test images.

The marginal posterior probability distribution, pτ (xi|I)
was computed for each point in each image. Figure 5 shows

some examples of the registration results. Those figures

Table 1. Registration error of each method

Error [mm] min average max

(a) Proposed method 1.08 1.75 3.31

(b) Non-hierarchical model[11] 1.49 2.16 3.68

(c) L′ (local appearance) 2.64 4.46 6.67

(d) E′ (non-robust) 1.16 2.75 5.58

(e) No edges 1.09 1.84 3.33

(f) Complete graph (ΣΘ) 1.08 1.80 3.32

show that the values of pτ (xi|I) were high along the true

surfaces, successfully. We evaluated the registration error,

E, in (21), for each K. Figure 4 shows the results. The er-

ror was minimum when K = 10 in the experiments, hence

we fixed K = 10 in the following experiments. It should

be noted that the proposed SSM becomes a non-hierarchical

PPCA-based model when K = 1 and that, in case K = N ,

the proposed SSM can be represented by a non-hierarchical

sparse graphical model proposed in [11]. Table 1 shows the

comparison of the errors, E, between the proposed method

and the sparse graphical model based method proposed in

[11]. In the implementation of the latter method, the value

of the coefficient of the sparsity regularization, which cor-

responds to λ in (7), was determined so that the registration

error became minimum. In the table, the minimum value,

average, and the maximum value of {Ej} are shown. The

proposed method outperformed the non-hierarchical graph-

ical model based approach, as shown at the row (a) in the

table. Making the SSM hierarchical, we improved the reg-

istration performance.

Two likelihood functions, L in (10) and L′ in (22) were

compared based on the registration accuracy. The row (a)

in Table1 shows the result obtained when L was used. The

row (c) corresponds to the results obtained when L′ was

used. As shown, the performance was largely improved by

referring to Iij in the computation of the likelihood. Figure

6 demonstrates the effect of the likelihood function, L. Fig-

ure 6 (A) and (B) show the original images. Figure 6 (C)

shows the results obtained when L′ was used. Some model

points were located on false boundaries of neighboring or-

gans. On the other hand, the results were improved when L
was used for the likelihood function, as shown in (D) in the

figure.

The effect of the robust registration was also evaluated.

The row (d) in Table 1 shows the results obtained without

using the sparsity regularization for the segment registra-

tion. Comparing the rows (a) and (d), we found that we

could improve the registration accuracy by using the spar-

sity regularization for the segment registration. The rows

(e) and (f) in Table 1 show the results obtained when the

graphical model of {θk} had no edges (e) and when the
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(A) (B)

(C) (D)

Figure 6. Comparison of registration results with respect to the

difference of the likelihood. (A) and (B) show the original images.

(C) and (D) were obtained when L′ and L were used, respectively

graphical model was complete graph (f). As shown in the

table, the registration results were the most accurate when

the structure of the graphical model of θk was estimated by

the graphical lasso (a).

4. Conclusion

In this paper, we proposed a new non-rigid robust regis-

tration method that registers a PDM to given 3D images.

The contributions of the paper were (1) the hierarchical

SSM that has better generalization ability was introduced,

(2) the registration algorithm of the hierarchical SSM that

can estimate the marginal posterior distribution was pro-

posed, and (3) the registration performance was improved

by (3-1) robustly registering each segment with the sparsity

regularization and by (3-2) referring to the appearance be-

tween the neighboring points in the likelihood computation.

The SSM of a liver was constructed from a set of clinical CT

images, and the performance of the proposed method was

evaluated. Experimental results demonstrated that the per-

formance was improved by using the proposed likelihood

function, L, and by using the robust registration technique

that uses the sparsity regularization.

Future works include to develop some efficient methods

for determining the values of the parameters, λ in (7), ρ in

(17), and the number of segments, K. In the experiments,

we determined those values based on the registration per-

formance evaluated with the cross-validation. This scheme

is, currently, time-consuming.
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