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Abstract

We address the problem of recovering camera motion
from video data, which does not require the establishment
of feature correspondences or computation of optical flows
but from normal flows directly. We have designed an imag-
ing system that has a wide field of view by fixating a number
of cameras together to form an approximate spherical eye.
With a substantially widened visual field, we discover that
estimating the directions of translation and rotation com-
ponents of the motion separately are possible and particu-
larly efficient. In addition, the inherent ambiguities between
translation and rotation also disappear. Magnitude of rota-
tion is recovered subsequently. Experimental results on syn-
thetic and real image data are provided. The results show
that not only the accuracy of motion estimation is compa-
rable to those of the state-of-the-art methods that require
explicit feature correspondences or optical flows, but also a
faster computation time.

1. Introduction

Determination of the relative motion in space between

observer and surrounding environment is important to var-

ious applications including augmented reality, 3D recon-

struction, and visual control. The translation magnitude

of the motion is generally not determinable and left as an

overall arbitrary scale relative to object depth because of

the well-known ambiguity between object size-depth and

translation speed. This paper presents a direct method to

determine the five degrees of freedom (DoFs) – the direc-

tion of translation and the full rotation of a camera moving

in a static scene.

The existing works on motion determination are largely

about establishing explicit correspondences across images.

The correspondences might be in the form of optical flows

(also known as full flows) using monocular camera [14],

[26], [33], multiple cameras [17] and spherical camera

[24], [25], or correspondences over distinct features using

monocular camera [31], [23], [28], multiple cameras [32],

[20], [19] and spherical camera [21].

Optical flow induced by the spatial motion at any image

position is only partially observable in general due to the fa-

miliar aperture problem. The apparent flow, termed the nor-

mal flow, which is the component of the optical flow along

or opposite to the direction of the local intensity gradient

is fully observable. The partial observability of the flow is

what makes full flow computation and in turn motion deter-

mination a challenge. On the other hand, the feature-based

schemes require tracking of distinct feature points, which

might not be always present in the video. Ambiguity in es-

tablishing correspondences across multiple images exists if

the imaged scene contains repetitive patterns. This in turn

affects the accuracy in determining camera motion.

A few methods have been proposed to determine camera

motion from normal flows directly without ever requiring

the full flows to be recovered explicitly. They are collec-

tively known as the direct methods. Such methods arose

for natural reasons. Unlike optical flow, normal flow can be

obtained directly from image data, without involving min-

imization of certain cost functional [15], [6], [36] which is

often computationally demanding. Even though each nor-

mal flow represents only partial information, since the total

number of image positions where normal flow is observable

generally far exceeds the number of motion parameters, one

would expect that motion can be recovered directly from

normal flows without imposing additional assumptions like

smoothness onto the image flow field. The smoothness as-

sumption is bound to be invalid at many image positions if

the imaged scene is non-smooth. In addition, the invention

of normal flow measurement camera gives additional sup-

port to use normal flow [29].

Standard camera usually has limited field of view (FoV).

The video perceived under say a pure translation of the cam-

era in the x-direction would be similar to that under a pure

left-hand rotation about the y-axis, where the x and y axes

are the orthogonal coordinate axes of the image domain.
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In other words, there would be ambiguity in distinguishing

motion from the video information. In the biological world,

flying insects have wide FoV vision system. They can exe-

cute navigational tasks accurately relying on the visual clue

from optical flows [35].

In this paper, we present a direct method that uses an

approximate spherical eye to recover motion parameters in

a static scene. The approximate spherical eye comprises a

number of cameras that have optical centers placed near one

another without necessary having overlapped FoV. The ad-

vantage of having widened visual view is three-fold. First,

the translation’s direction and the rotation’s direction of the

motion can be recovered separately in an efficient manner.

This avoids error propagation from the recovery of trans-

lation to that of rotation, and vice versa. Second, tighter

constraints on the motion solution (two pairs of special nor-

mal flows are enough to reduce the possible motion solution

by 3
4 of the motion space) are available to improve the re-

sult significantly and in turn the computation speed. Third,

large visual field could make motion estimation more accu-

rate [16], [10], [11]. This work does not attempt to claim

the novelty of advocating the concept that larger visual field

incurs better accuracy in motion estimation. The main con-

tribution is instead to provide a mechanism of how motion

ambiguity arisen from the use of normal flows could be

reduced by separating the translation and rotation motion

components through the use of three particular subsets of

normal flows. This has not been analyzed before. We do

not fuse multiple visual inputs from multiple cameras in a

loosely manner, but we consider the underlying geometrical

constraints in a coherent and effective way.

2. Related Works
Direct methods determine camera motion from normal

flows without prior computation of full flows. Most of the

direct methods in the literature use monocular camera with

limited FoV. Horn and Weldon required the camera under-

going pure translation, pure rotation, or general motion with

known rotation [16]. Aloimonos et al. extended the work of

Horn and Weldon to general motion by assuming a bounded

rotational magnitude [1]. Fermüller et al. proposed to select

special image points that form some global patterns [8]. The

boundary of each pattern is generally difficult to extract due

to the sparse normal flow field. Silva et al. proposed several

algorithms which search lines and curves to estimate the

motion parameters [34]. Yet only a limited number of nor-

mal flows participated in recovering egomotion. Brodský et
al. proposed to use minimization of variation of local depth

[5]. The scene in view is assumed to be piecewise smooth.

We proposed a two-stage iterative method which requires to

work in a high dimensional space [18].

There are a few direct methods in the literature that use

wide FoV. Nelson et al. turned the recovery of camera mo-

tion into three sub-problems, each involving one rotational

and two translational parameters (translation and rotation

are mixed up) [30]. This partial separation of motion com-

ponents is only possible when normal flows are located at

the three equators which are perpendicular to the three prin-

cipal axes of the camera’s coordinate frame respectively.

Fermüller et al. also presented the use of global patterns

[8] for the case of spherical eye [7]. Baker et al. extended

their previous work from planar eye [5] to spherical eye [2].

The scene in view is still assumed to be piecewise smooth.

Multiple solutions from individual cameras are fused to re-

duce the ambiguity of the solution.

Brodský et al. provided an analysis about the conditions

when apparent flows become ambiguous [4]. Fermüller and

Aloimonos characterized the structure of rigid motion fields

[9], ambiguity in structure from motion using planar and

spherical eyes [10], and also the observability of 3D motion

under different fields of view [11].

Our proposed method, being a direct one, provides an

alternative approach to recover camera motion without the

need of matching feature correspondences and recovery of

full optical flows as the current state-of-the-art methods.

Our work is related to [24] that both of us determine the

directions of translation and rotation from general motion

using merely the direction component of flow vectors. Un-

like their work, we utilize normal flows which are directly

observable instead of prior computation of full flows. Our

algorithm is developed for a multi-camera rig but not for a

perfectly spherical eye. Moreover, we do not demand each

pair of flow vectors located at opposite image positions on

the image sphere. Unlike the the rotation independent con-

straint in [21], we do not require prior knowledge about

scene depth to determine translation. In contrast to the work

of [30], the separation of motion components is not limited

to image positions at the equator of each principal axis of

the image sphere. Unlike the works of [2], [17], [25], our

strategy is to separate the directions of translation and rota-

tion from general motion. This avoids the problem of error

propagation from translation to rotation, and vice versa. In

contrast to [2], we use visual clues from all cameras simul-

taneously and without assuming piecewise-smooth scene.

3. Background

Consider a camera undergoes a general motion with an

instantaneous translational velocity t (a 3-vector represent-

ing the translation direction and magnitude) and instanta-

neous angular velocity w (a 3-vector representing the rota-

tion axis and magnitude) in a stationary environment, as de-

picted in Figure 1a. Let the camera’s focal length be f. Sup-

pose all spatial quantities are with reference to the camera-

centered coordinate system C (XC-YC-ZC). The instanta-

neous velocity of any 3D object point X = (X, Y, Z)T of the

226622662268



scene relative to frame C is:

Ẋ = −t− w× X. (1)

The 3D point X projects under perspective projection to

the camera’s image plane at the image position x = (x, y)T

with respect to the origin O of the image plane. The 3D

point X and the image position x are related by:

X ∼= x̃, (2)

where∼= denotes equality up to arbitrary nonzero scale, and

x̃ = (x/f, y/f, 1)T represents the projective coordinates of x.

The optical flow ẋ at the image position x is given by:

ẋ =
[
I2 0

]
(f (k× (x̃× t)) /Z + f (k× ((x̃× w)× x̃))) ,

(3)

where k = (0, 0, 1)T is a unit vector in the direction of the

optical axis of the camera and the matrix
[
I2 0

]
transforms

optical flow from 3-vector (in projective coordinates relative

to the camera center) to 2-vector (relative to the origin of

image plane).

If the image plane is warped to a spherical imaging sur-

face with focal length f (as shown in Figure 1b), image po-

sition becomes xs = fX/||X||. The optical flow ẋs which is

tangential to the imaging spherical surface at xs is given by:

ẋs = (xs × (xs × t)) / ‖X‖ f + xs × w. (4)

It can be seen from (4) that the magnitude ||t|| of translation

cannot be decoupled from the scene depth ||X|| from visual

information alone (in the sense that a closer and smaller ob-

ject observed under a slower translation could appear the

same in the video data as a farther and bigger object ob-

served under a faster translation), yet the rotational compo-

nent of the motion is independent of scene depth.

In general, optical flow at any image position is not di-

rectly observable from the image because of the well-known

aperture problem. Only the projected component of the flow

to the spatial intensity gradient n (normalized to a unit vec-

tor) at the position, in the name of normal flow, is directly

observable. By using the Brightness Constancy Constraint

Equation (BCCE) [15], we can relate optical flow ẋ and spa-

tial intensity gradient ∇I in planar image as:

∇I · ẋ + It = 0. (5)

Normal flow can be expressed as:

ẋn = (ẋ · n) n = −It∇I/ ‖∇I‖2 , (6)

where ∇I and It denote the spatial gradient and temporal

gradient of the video data I(x, t) at frame t respectively.

Similar expressions for normal flows induced on the spher-

ical imaging surface can also be derived.

Figure 1. Image formation on (a) an image plane and (b) an image

sphere. The camera moves with a translation t and a rotation w. A

3D scene point X projects onto the image plane at x and induces

optical flow ẋ and normal flow ẋn there. Similarly, optical flow ẋs

and normal flow ẋs
n are induced at xs on the spherical surface.

4. Approximation of Spherical Eye by Multiple
Cameras

There is practical difficulty in realizing an ideal spherical

eye. One way of constructing a spherical eye is to stitch two

omnidirectional cameras together in a back-to-back config-

uration. However, the acquired image has non-uniform res-

olution over the image domain. In this work, we explore

the use of multiple standard cameras to approximate the

spherical eye. We bundle the cameras together with their

optical centers close to one another and with their visual

fields distinct. If the optical centers of the cameras can be

made exactly concurrent, the multi-camera system mimics

a spherical eye.

In practice it is not possible to bundle the cameras as

exactly, and there are bound to be certain nonzero baseline

distances between the cameras. There is evidence indicating

that even with such an imperfect imaging system, the gain

(in having a wider FoV) generally outweighs the loss (from

the non-concurrency of the optical centers), and substantial

improvement in recovering motion is possible [19].

With a number of cameras stitched together, we seek to

recover the 5 DoFs of the rigid motion of the camera rig

directly from the normal flows observed in the various cam-

eras. Below we first outline how normal flows in the multi-

ple cameras are related to the camera rig motion when the

baseline distances between the cameras are small compared

with the overall scene depth from the camera rig.

Suppose the image point xi in the ith camera is projected

by a 3D point Xi with depth Zi (with respect to the camera

coordinate frame Ci), and at the image position xi the local

camera motion (ti, wi) induces a full flow ẋi. By projecting

the full flow ẋi to the spatial gradient ni (a unit vector) at

the image position xi, we have the normal flow magnitude:

|ẋi · ni| =
∣∣∣∣fiti · ((ni × ki)× x̃i) /Zi

+fiwi · (x̃i × ((ni × ki)× x̃i))

∣∣∣∣.
(7)

We can then relate the rigid motion (t, w) of the camera
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rig in the global coordinate system C0 (which we take as

the center of the camera rig) to the motion (ti, wi) of the ith

camera in its own local coordinate system Ci, as:

ti = RT
i (w× bi + t) , (8)

wi = RT
i w, (9)

where bi and Ri are the position (baseline) and rotation of

the ith camera with respect to the global frame C0.

By a few algebraic manipulations over (6), (7), (8), and

(9), normal flow ẋni in the ith camera can be related to the

desired motion parameters t and w by:

di =
‖ẋni‖
fi

= − 1

Zi
t·(Riati)+w·

(
Riawi − 1

Zi
bi × Riati

)

(10)

where

ati = x̃i × (sin θi,− cos θi, 0)
T
, (11)

awi = ati × x̃i, (12)

are terms related to the normal flow with orientation θi at

the image position xi of the ith camera. Equation (10) ex-

tends a variant of the brightness change equation [16] from

the case of single camera [18] to the case of multiple cam-

eras.

The two vector entities ati, awi, and the image po-

sition vector x̃i are mutually perpendicular to one an-

other. The distribution of ati lies on the surface of a

cylinder in 3-space. In particular, ati is orthogonal to

(sin θi,− cos θi, 0)
T

which is the direction vector of the

normal flow (ẋni, 0)
T

(in projective coordinates) rotated

about the camera’s optical axis by 90◦. This means that ati,

the image position vector x̃i, and the normal flow (ẋni, 0)
T

(in projective coordinates) lie on the plane (Πi), and ati

points in the direction governed by (11). While awi is or-

thogonal to that plane and points in the direction governed

by (12). This important observation is used to derive the

proposed direction constraint in section 5.

In practice, the norm of the baseline vector b is small

compared with the scene depth Z. Moreover, ‖aw‖ =
‖at‖ ‖x̃‖ ≥ ‖at‖. Equation (10) can thus well be approxi-

mated to:

di ≈ −ρit̂ · (Riati) + w · (Riawi) , (13)

where ρi is the ‖t‖-scaled inverse scene depth and t̂ is the

unit vector of t. The two terms Riati and Riawi indicate

that every normal flow data point from each camera is trans-

formed from its local camera system Ci to the global coor-

dinate system C0 through the rotation matrix Ri. Equation

(13) reveals how distinct cameras work together as a single

imaging system. Dropping the camera index for simplicity

of notations, and combining terms, we express (13) as:

d = −ρ̂t · a′t + w · a′
w. (14)

Figure 2. A pair of normal flows (ẋ′
n1, ẋ′

n2) at the image positions

x̃′
1 and x̃′

2 is classified as (a) an α-vector pair, (b) a β-vector pair,

and (c) a γ-vector pair, if they meet certain conditions.

5. Recovery of Motion Parameters
In our recent work about a direct method [18], a 4D

search method was proposed to recover both directions of

translation and rotation. Our experimental results show that

for some scenes, the constraint could only restrict the mo-

tion parameters to a rather large set of possible solutions.

This work contributes two improvements. One is to use a

wide FoV imaging system to reduce the ambiguity in mo-

tion estimation. In addition, we separate the translation and

rotation components in the motion recovery process, and

treat them one by one. This makes motion estimation far

simpler.

5.1. Classification of a Pair of Normal Flows

Consider the spherical imaging surface approximated by

the images planes of several standard cameras (with cam-

era centers possibly mildly non-concurrent). Here, we just

use two cameras with centers C1 and C2 to illustrate the

classification of normal flow pairs in Figure 2. Suppose we

have two observable normal flows ẋn1 and ẋn2 at the im-

age positions x̃1 and x̃2 (3-vectors expressed in projective

coordinates) with respect to their local camera coordinates

respectively. For the spherical approximation of multiple

cameras, the two camera centers C1 and C2 coincide to the

camera rig’s center C0. All the measured entities are trans-

formed from their local camera coordinates to the camera

rig’s coordinate system (i.e. a′ti = Riati, a′
wi = Riawi, x̃′

i =

Rix̃i,
(
ẋ′
ni, 0

)T
= Ri (ẋni, 0)

T
).

The two position vectors x̃′1 and x̃′
2 span a plane P in 3-

space. The two image planes intersect the plane P in lines
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l1 and l2 respectively. We classify a pair of normal flows(
ẋ′n1, ẋ′n2

)
into three groups according to their orientations

with respect to the lines l1 and l2. If ẋ′ni is parallel to li
and ẋn1 · ẋn2 > 0, then we classify the normal flow pair

as an α-vector pair (Figure 2a). If ẋ′
ni is parallel to li and

ẋn1 · ẋn2 < 0, then we classify the vector pair as a β-vector

pair (Figure 2b). If ẋ′ni is orthogonal to li and ẋn1 · ẋn2 < 0,

then the vector pair is defined as a γ-vector pair (Figure 2c).

From the observations concluded in section 4, the vec-

tor entity a′
ti, the projective image coordinates x̃′i, and the

normal flow
(
ẋ′
ni, 0

)T
(in projective coordinates) lie on the

plane Πi. This means that a′t1 and a′
t2 lie on P (i.e. Π1, Π2,

and P are coplanar) when the normal flows are α- or β-pair.

They are orthogonal to P (i.e. Π1, Π2 are orthogonal to P)

when the normal flows are γ-pair. The vector entity a′
wi is

always orthogonal to the associated Πi.

5.2. Apparent Flow Separation (AFS) Constraint

Suppose we have an α-vector pair at the image positions

x̃′
1 and x̃′2 of the approximate spherical eye as shown in Fig-

ure 2a. Since the planes Π1, Π2, and P are coplanar, a′
t1

and a′
t2 lie on P, and a′

w1 and a′
w2 are orthogonal to P. Ac-

cording to (12), a′
w1 and a′

w2 point in opposite directions.

Their vector sum can be eliminated if each a′
wi is normal-

ized. Summing the two ‖a′
w‖-normalized Equations (14)

over the image positions x̃′1 and x̃′
2, we can reduce the gen-

eral motion to the case of pure translation, as:

AFSα(̂t; x, θ) : t̂ · â′
t1 < 0 or t̂ · â′t2 < 0, (15)

where t̂ and â′ti are unit vectors of t and a′
ti respectively

for i = 1, 2. The locus is in the form of a compound linear

inequality that binds the direction of t.
Suppose we have a β-vector pair. Similar to the deriva-

tion for the case of α-vector pair, a′
w1 and a′

w2 are orthogo-

nal to P and point in the same direction as shown in Figure

2b. Their vector subtraction can be eliminated if each a′
wi

is normalized. Subtracting the two ‖a′w‖-normalized Equa-

tions (14) at the image positions x̃′1 and x̃′2, it can be shown

that the rotation component in (14) can be eliminated. We

can reach the following:

AFSβ (̂t; x, θ, d) : t̂ · λâ′t1 < 0 or t̂ · λâ′t2 > 0, (16)

where λ = sign (d1/ ‖a′w1‖ − d2/ ‖a′w2‖). The locus is

again in the form of a compound linear inequality that binds

the direction of t.
Consider we have a γ-vector pair at the image positions

x̃′
1 and x̃′2 of the approximate spherical eye. The planes Π1

and Π2 are orthogonal to P as shown in Figure 2c. In addi-

tion, a′w1 and a′w2 lie on P. According to (12), a′t1 and a′t2
point in opposite directions. Their vector sum can be elim-

inated if each a′
ti is normalized. Summing the two ‖a′t‖-

normalized Equations (14) at the image positions x̃′1 and

x̃′
2, it can be shown that the translation component in (14)

can be eliminated. We can reach the following:

AFSγ(ŵ; x, θ) : ŵ · â′
w1 > 0 or ŵ · â′w2 > 0, (17)

where ŵ and â′wi are unit vectors of w and a′wi respectively

for i = 1, 2. In essence, AFSγ(ŵ; x, θ) is a compound linear

inequality on the direction of w.

The above AFS constraints, with the exception of the

AFSβ (̂t; x, θ, d) constraint, depend only on the direction of

the normal flows. A proper threshold value can be used to

determine the sign of the scalar λ. All the constraints are

in the form of system of linear inequalities, which we can

solve them efficiently using Hough-like voting.

Each pair of normal flows that belong to either the α-,

β-, or γ-group can trim away the associated motion space

(α- and β-vectors for t̂-space, γ-vector for ŵ-space) up to

half of the motion space, i.e. three-quarter of the 4-D pa-

rameter space
(̂
t, ŵ

)
when combined together. The amount

of solution trimming depends upon the angle subtended

by the two constraint vectors (i.e.,
(−â′

t1,−â′
t2

)
in AFSα,(−λâ′

t1, λâ′t2
)

in AFSβ , and
(
â′
w1, â′

w2

)
in AFSγ). Indeed,

this angle depends on the angle θx which is subtended by

the two associated image position x̃′1 and x̃′
2. If we define

the two constraint vectors as v1, v2, and their angular sepa-

ration as θv , it is possible to show that:

v1 · v2 = cos θv = − cos θx, (18)

i.e., θv = π − θx. This means the wider is the angular

separation between the two image positions x̃′
1 and x̃′2, the

larger would be the trimming. We call the above constraints

as the Apparent Flow Separation (AFS) constraints.

5.3. Apparent Flow Magnitude (AFM) Constraint

The AFS constraints return two probability maps that

indicate the the direction of translation and the direction

of rotation separately. The solution set can be further re-

fined by going through a second stage which involves nor-

mal flow’s magnitude by the use of partial detranslation and

complete derotation similar to that described in [8]. Here,

we combine both partial detranslation and complete dero-

tation techniques together. The magnitude component of

normal flows could be more erroneous than its direction

component because the temporal resolution of a video is

generally lower than its spatial resolution. The approach

that uses AFS and AFM in a two-stage manner makes the

solution more robust to noise.

In partial detranslation, we need to search for the vector

set V = {at : t̂·at = 0} for each t̂. A reduced set of hypoth-

esized t̂ can be generated from the AFS constraint before-

hand. An optimal full w is returned as the least-square-error

(LSE) solution of the system of linear equations:

[
aTw

]
w = [d] , (19)
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for each hypothesized t̂. A score sDeT which can be given

to each t̂ depends on the median of square residues. The

smaller is the median value, the higher would be the score.

A solution ŵ from (19) which is outside the spherical con-

vex hull of {ŵ} resulted from AFSγ is considered to be a

degenerate solution. Such a t̂ and also ŵ are removed from

the solution set.

In complete derotation, we need to remove rotational

component in normal flows by using {w} which is obtained

from partial detranslation. The w which fulfils better the

system of linear inequality:[
σâT

t

]
t̂ < 0, (20)

where σ = sign (d− w · aw), will have a higher score

sDeW which equals the number of satisfied inequalities. In

particular, only those data points that have non-zero t̂·at are

used. Our complete derotation differs from [8] in the way

that we express the constraint in terms of a system of linear

inequalities which is more computationally efficient. We do

not require to generate a set of derotated normal flows, and

to consider whether they are constrained to lie in half-planes

that are related to the hypothesized focus of expansion (or

focus of contraction).

The requirements of at for the partial detranslation and

for complete derotation are actually complementary to each

other. One requires at orthogonal to t̂ and the other one

requires at not orthogonal to t̂. Therefore, we use a scor-

ing scheme such that the score of a candidate of t̂ is the

weighted sum of sDeT and sDeW . The weights are the num-

ber of at satisfying t̂ · at = 0 and t̂ · at �= 0 respectively.

The solution for t̂ will be the one having the highest score.

The optimal full w will be the associated w for that t̂ from

the partial detranslation.

6. Experiments and Results
6.1. Simulation

We evaluated the performance of our proposed method

(AFS+AFM) and a 5-point method (spher-5-pt RANSAC)

[19]. Both works require to use an approximate spherical

camera. For spher-5-pt RANSAC, we skipped 3 image

frames for every motion estimate as the result was not stable

if the baseline was too short. The simulation environment

was conducted as close to the real situation as possible.

The spherical imaging system consisted of 4 cameras which

were positioned in a cross-shaped configuration as shown

in Figure 4b. Each camera had a resolution 640 × 480, and

focal length was set to 350 pixels. A virtual scene having

depth randomly varied from 75cm to 125cm was used. Each

camera in the rig was placed 2cm away from the global co-

ordinate frame C0. All the cameras lay on the same plane

nominally. In order to simulate errors introduced from cam-

eras’ placement discrepancy, a position vector with random

Figure 3. Performance of our proposed method under different lev-

els of Gaussian noise.

orientation and magnitude equals to 1mm was added to each

baseline vector bi. A random rotation matrix which was

equivalent to a rotation of 1.5◦ magnitude about a random

axial direction was also multiplied to each rotation matrix

Ri. To simulate a sparse flow field, we randomly chose only

5% of the flow vectors. To simulate flow extraction error,

full flows were corrupted by Gaussian noise. The standard

deviation of the noise equals to the noise coefficient times

the median of full flows’ magnitudes. The camera rig un-

derwent general motion that included both translation and

rotation motions randomly generated over all possible di-

rections. The magnitudes of translation and rotation were

fixed to 6.67mm/frame and 0.4◦/frame respectively. Results

were averaged over 100 trials for each level of noise.

We randomly picked up 2000 pairs of normal flows for

each of the α- and β-groups, and another 4000 pairs of nor-

mal flows for the γ-group. This means that the estimation

of the directions of translation and rotation used the same

amount of normal flows. The angular separation θx between

the two image positions x̃′
1 and x̃′

2 in the pair was required

to be greater than 150◦. We conducted voting for AFS in

a coarse-to-fine manner on a unit sphere which was uni-

formly sampled by the icosahedral best packing [12]. The

sampling resolutions were increased from 19.32◦ to 1.181◦.

Candidates which reached 98% of the maximum votes or

above were considered to be the solutions. The final single

solution was defined as the vote-weighted average of this

set of candidates.

Figure 3 shows the simulation results. Our method

AFS+AFM achieved better accuracy in estimating the di-

rection of translation than spher-5-pt RANSAC even we

just used the AFS constraint. For the recovery of rotation,

we achieved a very low estimation error when AFS and

AFM constraints are used together. In particular, the angu-

lar errors are still within acceptable level even if there exists
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more than 30% outliers (noise coefficient = 1.4), 5.183◦ for

translation and 1.764◦ for rotation with 4.917% magnitude

error. The overall result shows that the proposed method has

acceptable level of error and is robust against noise even the

system is not a perfect spherical eye.

6.2. Real Video

Real image sequences (resolution 640 × 360) were cap-

tured using a custom-made imaging system (Fig. 4a) that

consists of four Microsoft HD-5000 cameras positioned in

a cross-shaped configuration (Fig. 4b). The cameras were

intrinsically and extrinsically calibrated using the calibra-

tion toolbox [3] and the grid calibration [2] respectively.

The baseline vector bi for each camera was about 3cm from

the rig center C0. The camera system was placed on a

computer-controlled xy-table with a manually tunable rota-

tion stage (Fig. 4c). This means that the camera system can

be translated in x0z0-plane and rotated along y0-axis (per-

pendicular to the ground). The method is not limited to pla-

nar motion, but for practical reasons, the experiment was

carried on the ground plane. Fig. 4d shows a set of images

captured by the system during the experiment. The motion

ground truth was: t = (-0.1736, 0, 0.9848)T×1.5mm/frame
and w = (0, -1 ,0)T×0.15◦/frame. Normal flows were calcu-

lated by (6). To ease the differentiation process, each image

frame was smoothed by 2D Gaussian filter. The spatial and

temporal derivatives were calculated using the second order

approximation (stencil 1
12 [1 -8 0 8 -1]). Same amount of

normal flows was used as the simulation.

We compared the performance of our method against the

the state-of-the-art algorithms:

1. 8-pt RANSAC – A 8-point algorithm utilizes feature

correspondences in a RANSAC framework [13].

2. spher-5-pt RANSAC – A 5-point algorithm utilizes

feature correspondences in RANSAC to estimate mo-

tion from an approximate spherical camera [19].

3. TV-L1-NL+LM – A linear method utilizes optical

flows to estimate camera motion [33]. Optical flow

field was recovered using a TV-L1 energy minimiza-

tion with weighted median filtering [36].

4. TV-L1-NL+LQP – A linear quasi-parallax method

[17] uses optical flows [36] from pairs of anti-parallel

visual rays.

5. AFD+AFM – A two-stage direct method utilizes nor-

mal flows to estimate motion of monocular camera

[18]. Instead of non-uniform sampling of the motion

space, we used uniform sampling.

We used Scale Invariant Feature Transform (SIFT) [27]

for features detection in 8-pt RANSAC and spher-5-pt

Figure 4. (a) An approximate spherical eye constructed from 4

cameras. (b) Schematic of the vision system. (c) Experimental

setup. (d) An image set obtained from the vision system.

Figure 5. Results for the real-image experiment.

RANSAC due to its outstanding performance and availabil-

ity of the code. We also used the Matlab functions from

[22]. In the evaluation, all programs were written in Mat-

Lab and they ran on a WinXP PC with 3GHz Pentium D

CPU and 2GB RAM. It should be noticed that SIFT was

written in C++ and then complied to form a MEX-function

for Matlab. The comparison in computation speed is indeed

biased to the methods using SIFT.

Figure 5 shows the results of the experiment. Only the

motion estimations from frame 3 to frame 13 are shown as

we used 5-point image derivative. For feature-based meth-

ods, we were required to skip three frames for every esti-

mate (so comparison ends at frame 12) to make the esti-

mation result more stable. The averaged angular errors of

the proposed method AFS+AFM are 2.741◦ for translation

and 1.850◦ for rotation, with magnitude error 14.83%. We

achieved similar motion accuracy as TV-L1-NL+LQP. Our

average runtime is 5.989 sec/frame. This is 4.375 times

227122712273



faster than spher-5-pt RANSAC and 59.81 times faster

than TV-L1-NL+LQP.

7. Conclusion

We have proposed two constraints that allow normal

flows to be used directly for motion recovery, which are

readily usable with the availability of wide field-of-view

imaging system. The first constraint separates the direc-

tions of translation and rotation components from general

motion. The second constraint refines the solution set fur-

ther and recovers the magnitude of rotation.

The proposed direct method has the advantage that it has

tight constraint on the motion parameters. It requires neither

distinctly trackable features in the video, piecewise smooth

scene, nor interpolating the flow field. Synthetic experiment

shows that the proposed method is robust against noise.

Real image experiment reveals that the proposed method

has similar motion accuracy as the state-of-the-art methods

but having lower computational complexity.
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