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Abstract

We propose cloud motion as a natural scene cue that en-
ables geometric calibration of static outdoor cameras. This
work introduces several new methods that use observations
of an outdoor scene over days and weeks to estimate radial
distortion, focal length and geo-orientation. Cloud-based
cues provide strong constraints and are an important alter-
native to methods that require specific forms of static scene
geometry or clear sky conditions. Our method makes simple
assumptions about cloud motion and builds upon previous
work on motion-based and line-based calibration. We show
results on real scenes that highlight the effectiveness of our
proposed methods.

1. Introduction
Today, cameras are easy to deploy and connect to the In-

ternet. This has led to a profusion of outdoor webcams and

a glut of webcam imagery. This data has many promising

applications ranging from environmental monitoring [11] to

detecting abnormal events [5]. To maximize the value of

webcams for such applications, we need to know the loca-

tion, orientation, focal length and, more generally, the cal-

ibration of each camera. This is challenging because often

we only have time-stamped imagery from the camera and

therefore traditional calibration approaches that rely on cal-

ibration targets or multiple views are not appropriate.

Recent interest in webcam imagery has sparked numer-

ous methods for the unattended camera calibration prob-

lem, which rely on a variety of cues including sun posi-

tion [8], time-varying scene appearance [13], moving shad-

ows cast by static scene elements [6], shadows cast by mov-

ing clouds [10], sky appearance [12, 15], photometric im-

age formation [20, 14] and dynamic textures [19]. Each of

these methods makes assumptions about the scene and then

solves for the camera calibration parameters that best fit the

observed image data. We take the same approach.

We propose cloud motion as a new cue for static camera

calibration. We assume cloud motion is generally a hor-

izontal translation and show how to use video of moving

input: outdoor video(s) and known wind velocity 

output: geo-calibration using  
cloud motion 

Figure 1: We propose to use natural cues provided by cloud

motion to calibrate static outdoor cameras. This will sup-

port expanded use of uncalibrated imagery sources, such as

webcams, in applications ranging from environmental mon-

itoring to security.

clouds to estimate the radial distortion, horizon line, focal

length and geo-orientation of the camera (see Fig. 1). The

cloud motion cue is suitable for scenes in which a substan-

tial amount of sky is visible, but does not require any par-

ticular static scene structure or direct camera access. We

view the cloud motion cue as complementary to previous

work that explored other geometric calibration cues. We

provide evaluation on real scenes to highlight the strengths

and weaknesses of this cue and our methods.

Overview of Approach We begin with a set of videos,

each captured from the same static outdoor camera, ideally

viewing a significant portion of the sky. We assume that

we are given a sky mask, either manually constructed or

automatically estimated [16]. We aggregate motion statis-

tics separately for sky regions in each video (Sec. 2). If ra-

dial distortion estimation is necessary, we estimate per-pixel

flow vectors, fit streamlines, and use existing line-based

techniques to estimate distortion parameters (Sec. 2.1). For
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each video, we estimate the vanishing point of the cloud

motion in a collection of videos captured on different days

(Sec. 2.2). We then combine these individual wind esti-

mates in various ways to estimate camera calibration pa-

rameters. Given multiple days of video, with different

wind directions, we can estimate the horizon line (Sec. 3.1).

When the camera location and time-stamp is known for

each video, we use publicly available wind velocity data

to estimate the focal length of the camera and the pan, tilt

and roll of the camera in geographic coordinates (Sec. 3.2).

2. Robustly Estimating Cloud Motion
Key to our method is computing estimates of the motion

of the clouds. We explored both sparse and dense methods

that compare consecutive frames and found them simulta-

neously unreliable and slow. Instead, we aggregate infor-

mation over the entire video before estimating motion. In

this section, we provide background on how we aggregate

motion information and describe our methods for estimat-

ing the radial distortion and the vanishing point of the cloud

motion.

We begin with the brightness constancy constraint equa-

tion, Ixxp+Iyyp+It = 0, which leads to an ill-posed prob-

lem with a single constraint and two unknowns per pixel,

p. To overcome this, one typically assumes locally con-

stant motion; to estimate the motion, you spatially aggre-

gate the spatio-temporal derivatives and solve for the mo-

tion as [xp, yp]
T
= A−1

p bp, where the structure tensor, A,

and the gradient-weighted residual vector, b, are defined as

follows:

Ap =

[ ∑
I2x

∑
IxIy∑

IxIy
∑

I2y

]
bp =

[ ∑
IxIt∑
IyIt

]
.

In our case, we assume a unique, constant motion for each

pixel for an entire video, therefore we integrate over time in-

stead of space [23]. The six numbers in Ap and bp summa-

rize the motion at each pixel, are very fast to compute and

form the foundation for all of our calibration methods. To

estimate the average per-pixel optical flow for a single video

sequence we can use the equation defined above; we use this

for estimating radial distortion and visualization purposes.

2.1. Radial Distortion Estimation

We propose to estimate radial distortion of an outdoor

camera using our assumption of translational cloud mo-

tion. We compute per-pixel optical flow estimates using

the method described in the previous section and smooth

them using a Gaussian filter (σ = 7). We then use an off-

the-shelf technique to estimate streamlines [17], which are

curves that are tangent to the flow. If our assumption on

translational motion holds, this results in a set of image-

space curves that are the projection of straight lines in 3D

(Fig. 2). We use these in a standard line-based approach for

estimating radial distortion [18].

In image regions that violate our motion assumptions,

the advection process will often estimate streamlines that

are not the projection of 3D lines. To address this, we pro-

pose to filter out such lines by scoring each streamline and

only using the highest-scoring lines. We assume that the ra-

dial distortion is fairly mild; our score is the inverse of the

sum-of-squared differences from a quadratic approximation

of the streamline. To reduce the number of very short lines,

we normalize by the distance between the line endpoints.

This approach only requires a single video, but we can com-

bine streamlines from multiple days and use this method to

automatically select the best streamlines. We find that this

results in a more robust estimate of radial distortion. We

demonstrate the effectiveness of this method in Sec. 4.

2.2. Estimating the Cloud Motion Vanishing Point

Our remaining calibration methods require an estimate

of the vanishing point of the cloud motion. We found that

directly computing optical flow from the structure tensor, as

we did in the previous section, resulted in noisy vanishing

point estimates, despite attempting numerous approaches to

robust estimation. Instead, we adopt the “direct” approach,

in which we fit a constrained motion model directly to im-

age derivatives. This avoids the error prone intermediate

step of estimating optical flow.

We further constrain the motion at each pixel, p, to be

in the direction of the vanishing point such that [xp, yp]
T
=

αp(v − p). This results in the following objective func-

tion that depends on the vanishing point location, v, and the

scaled, local motion magnitudes, {αp}:

f(v, {αp}) =
∑
p

||αpAp(v − p) + bp||2 (1)

=
∑
p

α2
p(v − p)

T
A2
p(v − p)+

2αp(v − p)
T
Ap

Tbp + bp
Tbp.

To estimate the vanishing point for a scene, we mini-

mize (1) using a non-linear minimization approach similar

to [4], with the key difference being that the camera cal-

ibration is unknown. At each iteration we first solve for

the optimal value of αp for each pixel by setting the partial

derivative equal to zero:

∂f

∂αp
=2αp(v − p)

T
A2
p(v − p) + 2(v − p)

T
Ap

Tbp

α(t)
p =

−(v − p)
T
Ap

Tbp

(v − p)
T
A2
p(v − p)

(2)

Given that the motion magnitudes, {αp}, can be solved for

analytically we define f(v) = f(v, {α(t)
p }), where the un-
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(a) Example single-video streamlines (b) Filtered streamlines

Figure 2: Streamline estimation and filtering: (a) streamlines estimated from individual videos, color coded by the score

defined in Sec. 2.1. The blue (purple) lines are the higher (lower) scoring streamlines. (b) The highest ranking streamlines

across all videos with color representing the video of origin.

known magnitudes, {αp} are replaced with the optimal val-

ues at the corresponding v, subject to the constraint that

they result in flows that all point toward or away from the

vanishing point. For example, if the vanishing point is a

sink, which means the wind is blowing away from the cam-

era, we set αp = max(αp, 0).
We then update the vanishing point location, v, using the

gradient of (1):

∂f

∂v
=

∑
p

2(α(t)
p )2A2

p(v − p) + 2α(t)
p Apbp (3)

We optimize our objective function using gradient descent,

with initial conditions chosen by grid sampling the objec-

tive function. We find that the objective function is typically

very smooth and so the grid sampling can be fairly sparse.

Fig. 3 shows an example of the error surface and the result-

ing set of flows computed from a thirty minute video clip.

Related Work on Constrained Motion Estimation The

vanishing point estimation step of our work can be seen as

a egomotion problem, except with the camera as the inertial

reference frame instead of the scene. Many approaches have

been proposed for ego-motion estimation, see [21] for a

comparison of several correspondence-based methods. Our

vanishing point estimation approach is most similar to work

on direct motion estimation [9, 4], which estimates motion

directly from image derivatives. In Sec. 3.1, we extend this

work to estimate multiple discrete vanishing points, each

constrained to the same horizon line. More recently, Sheikh

et al. [19] propose two methods for horizon line estima-

tion for translational dynamic textures. The first method

assumes planar motion; our method extends this to consider

3D translational motion. The second method assumes that

the pattern is a weak-sense stationary space-time process;

we attempted to aggregate motion statistics across all videos

for a single scene and found that this assumption was rarely

satisfied. We believe this is due to biases introduced by pre-

vailing wind directions.

(a) unconstrained flow vectors (b) constrained flow vectors

(c) error surface (sink) (d) error surface (source)

Figure 3: Estimated cloud motions: (a) flow vectors esti-

mated independently at each pixel and (b) our globally con-

strained direct estimation approach. The dot (red) is the es-

timated vanishing point location. (c,d) For the same scene,

false color images (with original image outlined in blue for

reference) in which intensity corresponds to the value of our

error function (1) for different vanishing points (dark values

correspond to low error). In (c) the vanishing point is con-

sidered a sink, and in (d) it is considered a source. These

error surfaces show that the vanishing point is a source lo-

cated on the left side of the image.

3. Geometric Calibration Using Cloud Motion

Our assumption that cloud motion is largely translational

and horizontal enables us to solve a broad range of camera

calibration problems. We begin with an approach for esti-

mating the horizon line.
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3.1. Horizon Line Estimation

We jointly estimate image-space vanishing points, V̄,

that are consistent with our assumption of horizontal cloud

motion. We start with the set of vanishing points estimated

on individual days, V, and estimate an optimal set of van-

ishing points that are constrained to the horizon line, V̄.

Since individual vanishing points may be incorrect, we need

a principled means of combining vanishing points. At a

minimum, we need 2 videos with independent wind direc-

tions (not in the same or opposite directions), however, as

usual, more videos results in a more reliable horizon line

estimate.

We propose to extend our method for single-day van-

ishing point estimation to multiple days. We jointly opti-

mize over the single-day objective function (1) using gra-

dient descent, subject to the constraint that all points lie

on a line. We experimented with various forms of line

fitting, both unweighted and with various forms of confi-

dence weighting, and found that re-using our optimization

framework is more accurate and more robust to days that

violate our assumptions. Directly fitting a line to the esti-

mated vanishing points ignores the relative confidences as-

sociated with each vanishing point due to differing cloud

conditions. This means that fitting a line directly to the set

of vanishing points often fails to find an accurate horizon

line, which leads to a cascade of errors in the remaining

calibration steps.

We formulate the joint optimization problem as follows:

V̄∗ = argmin
V

F (V) =
∑
vi∈V

f(vi). (4)

subject to the constraint that the vanishing points are

collinear. We convert this constrained optimization prob-

lem into an unconstrained problem. We use two variables

that represent the height of the horizon line at the left and

right edge of the image, hl, hr, and represent the vanishing

points by their distance from the center of the image along

the horizon line, φi. This results in the objective function,

F (hr, hl,Φ) = argmin
{hr,hl,Φ}

∑
vi∈V

f(v(hr, hl, φi)), (5)

which we optimize to solve for {h∗r , h∗l ,Φ∗}.
We optimize the objective function using gradient de-

scent with initial conditions determined by a line fit directly

to the vanishing points, V. The gradient of the vanishing

point location, φi, is computed by projecting the uncon-

strained vanishing point on to the horizon line, as follows:

∂F

∂φi
=

(hr − hl)

||hr − hl||
T
∂F

∂vi
(6)

where (hr−hl) is a vector along the horizon line. We com-

pute the gradients of the horizon line points by aggregating

the normal components of the unconstrained gradients, ∂f
∂vi

.

We compute the new line parameters that would result if we

performed the updates specified by the gradients and use

the difference from the new line and the current line as the

gradient.

3.2. Focal Length and Geo-Orientation Estimation

We use the constrained vanishing points, V̄, to estimate

the focal length and geo-orientation of the camera. Many

approaches have been proposed for using vanishing points

for camera calibration; they typically require mutually or-

thogonal vanishing points [7] or, more generally, known

angles [22]. In our approach, we consider vanishing points

as noisy observations of a translational motion with known

geo-orientation. We assume the rough geo-location of the

camera and the capture time of each video is known. Us-

ing this information, we query a weather database to obtain

an estimate of the wind velocity, wi, for each video. If the

camera is correctly calibrated, the cloud-motion vanishing

points will correspond with the true cloud motion which is

largely determined by the wind velocity. We define a mis-

alignment cost function and search for the calibration pa-

rameters.

Since we know the horizon line, there are only two un-

knowns, the camera azimuth, θ, and the focal length, f .

We compute the world direction that corresponds to a par-

ticular vanishing point, vi, as (R−1
θ R−1

φψK
−1v̄i), where

K = diag([f, f, 1]), Rφψ is a rotation matrix that encapsu-

lates camera roll and tilt and is computed directly from the

horizon line, and Rθ is the rotation matrix that defines the

camera azimuth.

We minimize the following error function using grid

search to estimate f and θ:

N∑
i=1

||wi|| −wi
T(R−1

θ R−1
φψK

−1v̄i). (7)

The intuition behind this error is that if the vanishing points

are perfectly aligned with the wind vectors, the error will

be zero, and if they are in exactly the wrong direction, the

error will be twice the total magnitude of the wind vectors.

Many alternative error metrics are possible; we tried several

and found performance to be roughly the same.

4. Evaluation
We evaluate the quantitative and qualitative performance

of our proposed calibration approaches and vanishing point

estimation method on video from seven outdoor scenes, in-

cluding six from the LOST dataset [2]. For each scene

we have videos captured over several months, with roughly

thirty minutes of video each day from each camera. For

high-framerate cameras, we resample the videos to 1Hz be-

fore computing motion aggregates to reduce numerical is-
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sues. Our implementation1, running on a standard desktop

PC, takes between 15 to 30 minutes to fully geo-calibrate

each scene.

4.1. Automated Video Filtering

On certain days, individual videos captured “in the wild”

may violate our assumption that cloud motion can be mod-

eled as a single translation. We define a metric that we find

reliably identifies such videos. This metric is the ratio of

two quantities: the numerator is the optimal value of the

vanishing point objective function (1) and the denominator

is the median of the same function on the grid of samples

defined in Sec. 2.2. The intuition behind this metric is that

a large improvement in this error ratio suggests that there is

a unique vanishing point. We use a threshold of 0.2 to fil-

ter out problematic videos and found it to work well in our

experiments. While it clearly depends on the local environ-

ment of the camera, we found that on average 35 percent of

the videos satisfy this criteria. Fig. 4 shows several videos

with different error ratio.

4.2. Automatic Radial Distortion Correction

We evaluated our cloud-based distortion estimation

method and found that it reliably estimated the distortion

on the scenes in our dataset (Fig. 5). Since we do not have

easy access to the cameras, we were unable to compare to

any ground truth. However, we did compare against man-

ually annotated lines. For each scene, we found five lines

in each scene which we believed to be straight and clicked

twenty points along each line. We found that the results

from our automatically selected lines were qualitatively bet-

ter than using manually selected lines as input to the same

line-based distortion estimation routine. We suspect that our

improved results are primarily due to difficulty in selecting

truly straight lines and accurately clicking on them.

To better understand the performance of our method,

we compare distortion estimates using different numbers

of videos to the final calibration result obtained using all

videos. For each scene, we compute a distortion estimate

based on the first video, then another on the first and sec-

ond, and so on. Each of these models is compared to the fi-

nal distortion estimate using the average difference in pixel

displacement between the two models. Results in Fig. 5

show that the distortion estimates typically converge in ten

videos.

4.3. Vanishing Point Estimation

Using all the pixels from the sky region to find the van-

ishing point is computationally expensive, so in practice we

subsample pixels. We performed an experiment to explore

the effect of changing the number of pixels on the resulting

1Available at http://cs.uky.edu/˜jacobs/projects/
clouds2calibration/
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Figure 5: Results of automatic radial distortion correction:

(left) Undistorted frames and automatically filtered stream-

lines, (right) as additional videos are added the distortion

estimates converge to the final estimate.

vanishing point. For each video in our dataset, we com-

puted the vanishing point for differing numbers of random

samples of pixels. We then computed the average error w.r.t.

the vanishing point computed using the largest sample size

across all videos with 15 random samples for each setting.

The results of this experiment (Fig. 6) demonstrate that ten

thousand pixels results in average vanishing point estima-
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Figure 4: (left) All videos from a single scene sorted by the error ratio defined in Section 4.1. (right) For the six highlighted

videos, we show images overlaid with per-pixel optical flow vectors computed from the corresponding video. The top row

shows scenes with high error ratios; notice the diversity of optical flow vectors which contrasts with the flows in the bottom

row (low error ratio).
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Figure 6: Increasing the number of pixels included in the

vanishing point estimation process (Sec. 2.2) increases ro-

bustness, but we reach the point of diminishing returns at

around ten thousand pixels.

tion error of approximately 3 pixels.

4.4. Horizon Line Estimation

We use the method defined in Sec. 3.1 to estimate the

horizon line and a set of constrained vanishing points. The

results in Fig. 7 show that even when some of the initial

vanishing points are not close to the horizon, our method

is able to combine all of the days of data and estimate an

accurate horizon line.

4.5. (Geo)-Calibration of Real Scenes

For each of the scenes we consider, we know the geo-

graphic location and we manually estimate the orientation

and field of view by matching image points to world points

using ProjectLive3D [1]. For each video, we know the time-

stamp; if possible we use the location and time-stamp to

archive upper-level wind data from the FAA2; otherwise we

use ground-level wind data from Weather Underground3.

2http://aviationweather.gov/products/nws/winds/
3http://wunderground.com

Table 1: Quantitative Geo-calibration results.

Scene FOV (gt, est) Heading (gt,est)

LOST 26 68.2◦, 71.7◦ 64.1◦, 58.2◦

LOST 22 54.6◦, 60.6◦ −99.3◦,−109.1◦
MARK 1 54.9◦, 86.9◦ 0.1◦,−10.9◦
LOST 21 74.7◦, 44.6◦ −138.7◦,−141.8◦
LOST 2 76.0◦, 118.5◦ −102.9◦,−116.4◦
LOST 6 68.4◦, 11.4◦ −164.0◦, 160.0◦

For the FAA data, we linearly interpolate between the pro-

vided times and location for each elevation and then average

across elevations to obtain a single wind velocity estimate

for each video. For the Weather Underground data, we re-

move null values and linearly interpolate in time.

Results of our automated geo-calibration approach are

shown visually in Fig. 7 and numerically in Tbl. 1. Based on

these results and visual inspection of the error function (7),

the cloud motion cue provides a stronger constraint on the

camera orientation than on the focal length. For most scenes

we have a very good estimate for the heading of the camera,

but the focal length of the optimal solution is less reliable.

We believe this is largely due to errors in the wind data.

Based on manual inspection we see many cases in which

the estimated wind data does not agree with the observed

motion of the clouds. We believe that including more days

of data will minimize this source of error.

5. Conclusion
We have shown that cloud motion provides geometric

cues that enable camera calibration. We introduced auto-

mated methods for estimating the radial distortion, horizon

line, focal length and geo-orientation of a static outdoor

camera from video captured over many days. These meth-
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ods enable calibration in scenes which do not contain suffi-

cient static geometric information for more traditional cali-

bration techniques, such as orthogonal vanishing points [3]

or registration with known geometry [1].

Our work is based on several assumptions about cloud

motion that are not always satisfied. We assume clouds

move as a 3D translation. To handle such violations, for

example when the wind direction changes or two layers of

clouds are moving in different directions, we propose to

filter out videos based on the uniqueness of the vanishing

point. We further assume that cloud motion is in the hori-

zontal plane. While this assumption may be consistently vi-

olated in mountainous regions, it was not a significant prob-

lem in our dataset.
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Figure 7: Intrinsic and geo-orientation calibration results on six scenes. (left) For each scene we show a sample image overlaid

with the single-video vanishing points (red dots), the estimated horizon line (green) and the final constrained vanishing points

(connected to the original by a red line). (middle) We show a visualization of the resulting geo-calibration, viewed from zenith

with the camera in the center of a circle labeled with the cardinal directions. Each filled triangle corresponds to either the

ground truth (red) or the optimal estimated (green) view frustum. The lines emanating from the center are the world-space

rays that correspond to the estimated vanishing points. The lines outside the compass ring represent the wind velocities used

for calibration. (right) An alternative view of the calibration results shown in the middle column.
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