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Abstract

We propose a novel linear method to match cuboids in
indoor scenes using RGBD images from Kinect. Beyond
depth maps, these cuboids reveal important structures of a
scene. Instead of directly fitting cuboids to 3D data, we
first construct cuboid candidates using superpixel pairs on
a RGBD image, and then we optimize the configuration
of the cuboids to satisfy the global structure constraints.
The optimal configuration has low local matching costs,
small object intersection and occlusion, and the cuboids
tend to project to a large region in the image; the number
of cuboids is optimized simultaneously. We formulate the
multiple cuboid matching problem as a mixed integer linear
program and solve the optimization efficiently with a branch
and bound method. The optimization guarantees the global
optimal solution. Our experiments on the Kinect RGBD im-
ages of a variety of indoor scenes show that our proposed
method is efficient, accurate and robust against object ap-
pearance variations, occlusions and strong clutter.

1. Introduction

Finding three-dimensional structures and shapes from

images is a key task in computer vision. Nowadays, we can

obtain reliable depth map using low cost RGBD cameras

from the digital consumer market, e.g. Microsoft Kinect,
Asus Xtion and Primesense. Just like digital cameras that

capture raw RGB data, these devices capture raw depth

maps along with RGB color images. RGBD images pro-

vide a pointwise representation of a 3D space. We would

like to extract structures from such data.

Recently, there are a few heroic efforts in extracting

structures in RGBD images, e.g. [14, 13]. However, most
of these approaches group pixels into surface segments, i.e.
the counterpart of image segmentation for RGB images. Al-

though some noteworthy studies [10] infer support relations

in scenes, there is still very little volumetric reasoning used

in the 3D space, which should be even more important as the

depth is available, than pure image information with which

volumetric reasoning is well studied [12, 6, 15, 3, 2].

(a) (b)

(c) (d)

Figure 1. Given a color image and depth map we match cuboid-

shaped objects in the scene. (a) and (b): The color image and

aligned depth map from Kinect. (c): The cuboids detected by

the proposed method and projected onto the color image. (d):

The cuboids in the scene viewed from another perspective. These

cuboids reveal important structures of the scene.

In this paper, we design an efficient algorithm to match

cuboid structures in an indoor scene using the RGBD im-

ages, as illustrated in Fig. 1. A cuboid detector has many

important applications. It is a key technique to enable a

robot to manipulate box objects [5]. Cuboids also often ap-

pear in man-made structures [15]. A cuboid detector thus

facilitates finding these structures. Detecting cuboids from

RGBD images is challenging due to heavy object occlusion,

missing data and strong clutter. We propose an efficient and

reliable linear method to make a first step towards solving

this problem.

Even though matching planes, spheres, cylinders and

cones in point clouds has been intensively studied [4], there

have been few methods that are able to match multiple

cuboids simultaneously in 3D data. RANSAC has been

combined with extra constraints to reconstruct geometrical

primitives on industry parts from relatively clean range data

[1]; this method assumes perfect geometric primitives. To
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recover cuboid-like objects in cluttered scenes, we need a

different method.

Local approaches have been proposed for fitting cuboids

to point clouds. In [7], shapes are modeled as superquadrat-

ics and detected in clutter-free range data. A gradient de-

scent method has been proposed in [5] to find multiple

cuboids. Due to high complexity, this method has been

used to find cuboids in simple scenes with clutter removed.

In contrast to these local methods, our proposed method is

able to work on cluttered scenes, does not need initializa-

tion and guarantees globally optimal result. Our method is

also much more efficient.

Cuboid detection has been intensively studied with 2D

images as the input. In [6], a method is proposed to reliably

extract cuboids in 2D images of indoor scenes. This method

assumes that all the cuboids are aligned to three dominant

orientations. In [12], spatial reasoning is used to under-

stand outdoor scenes in 2D images; object interactions are

modeled with a small set of 3D configurations. Sampling

method has been proposed in [18] to extract 3D layout in

2D indoor images. Recently, a method [15] is proposed to

detect cuboids with flexible poses in 2D images. Finding 3D

cuboids in 2D images requires different domain knowledge

to achieve reliable results. In contrast, our method directly

works on RGBD images and there is no restriction on the

cuboid configuration: cuboids may have arbitrary pose and

they can interact in complex ways. By using a branch and

bound global optimization, our method is able to give more

reliable results than 2D approaches.

The proposed method is also related to 3D point cloud

segmentation. In [13] and [14], points in color point clouds

are classified into a small number of categories. Support-

ing relations between patches are further extracted in [10].

These point cloud or RGBD data segmentation and clas-

sification methods do not explicitly extract “volumes” of

objects. In [8], range data are pre-segmented and local

search is proposed to fit shape primitives. In [9], a greedy

scheme is proposed for spatial reasoning and segmenting

a 3D scene from stereo into object proposals enclosed in

bounding boxes. This method is currently applied to sim-

ple scenes and the result is dependent on the quality of ob-

ject level segmentation. In this paper, instead of trying to

segment a 3D scene into regions, we match cuboids to the

scene. Our method constructs reliable cuboid candidates

by using pairs of planar patches and globally optimizes the

cuboid configuration in a novel linear framework.

Finding cuboids in cluttered RGBD images is still un-

solved. No previous methods are able to globally optimize

the cuboid configuration when there is no restriction on the

poses and interactions among objects. In this paper, we pro-

pose a linear method that works on generic scenes. The pro-

posed method first partitions the 3D point cloud into groups

of piecewise linear patches using the graph method [11].

These patches are then used to generate a set of cuboid can-

didates, each of which has a cost. We globally optimize

the selection of the cuboids so that they have small total

cost and satisfy the global constraints. The optimal cuboid

configuration has small intersection, and we prefer a large

coverage of the cuboids. At the same time, we make sure

the cuboids satisfy the occlusion conditions. The optimiza-

tion is formulated as a mixed integer linear program and

efficiently solved by a branch and bound method.

Our contribution is a novel linear approach that effi-

ciently optimizes multiple cuboid matching in RGBD im-

ages. The proposed method works on cluttered scenes in

unconstrained settings. Our experiments on thousands of

images in the NYU Kinect dataset [10] and other images

show that the proposed method is efficient and reliable.

2. Method
2.1. Overview
We optimize the matching of multiple cuboids in a

RGBD image from Kinect. Our goal is to find a set of

cuboids that match the RGBD image and at the same time

satisfy the spatial interaction constraint. We construct a set

of cuboid candidates and select the optimal subset. The

cuboid configuration is denoted by x. We formulate cuboid
matching into the following optimization problem,

min
x
{U(x) + λP (x) + μN(x)− γA(x) + ξO(x)} (1)

s.t. Cuboid configuration x satisfies global constraints.

Here U(x) is the unary term that quantifies the local match-

ing costs of the cuboids, P (x) is a pairwise term that quan-

tifies the intersection between pairs of cuboids, N(x) is
the number of matched cuboids in the scene, A(x) quanti-
fies the covered area of the projected cuboids on the image

plane, and O penalizes the occlusions among the cuboids.

λ, μ, γ and ξ control the weight among different terms. In
this paper, μ = 0.1, λ = ξ = 0.02 and γ = 1. By mini-
mizing the objective, we prefer to find the multiple cuboid

matching that has low local matching cost, small object in-

tersection and occlusion, and covers a large area in the im-

age with a small number of cuboids. Besides the soft con-

straints specified by the objective function, we further en-

force that the optimal cuboid configuration x satisfies hard
constraints on cuboid intersection and occlusion. This opti-

mization is a combinatorial search problem. In the follow-

ing, we propose an efficient linear solution.

2.2. Cuboid candidates
We first construct a set of cuboid candidates using pairs

of superpixels in the RGBD image. Finding high quality

cuboid candidates is critical; we propose a new method as

follows.

Partition 3D points into groups: We first use the graph
method in [11] to find superpixels on the RGBD image.
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Figure 2. Row 1: From left to right are the color image, normal

image with the three channels containing the x, y and z compo-
nents, the superpixels by using both the color and normal images,

and the superpixels by using the normal image only. The two su-

perpixel maps are extracted with fixed parameters in this paper.

Row 2: Left shows the cuboids constructed using neighboring pla-

nar patches and projected on the image; right shows the top 200

cuboid candidates. Row 3: 3D view of the cuboids in the color

image in row 2. The red and blue dots are the points from the

neighboring surface patches. Row 4: The normalized poses of

these cuboids with three edges parallel to the xyz axises.

With both color and surface normal images, we partition the

depth map into roughly piecewise planar patches. As shown

in row one of Fig. 2, we also use the superpixels from the

normal image itself; this helps find textured planar patches.

Constructing cuboids: We use each pair of neighbor-
ing 3D surface patches to construct a cuboid candidate. We

define that two surface patches are neighbors if their corre-

sponding superpixels in the color or normal image have a

distance less than a small threshold, e.g. 20 pixels. The dis-
tance of two superpixels is defined as the shortest distance

between their boundaries. To remove outliers, we fit a plane

to each 3D patch by RANSAC. In the following process, we

use only the inlier points.

We are ready to construct cuboid candidates from pairs

of patches. We select one of the two neighboring patches

and rotate the 3D points in them so that the normal vector

of the chosen one is aligned with the z axis. We then rotate
the 3D points again so that the projected normal vector of

the second 3D patch on the xy plane is aligned with y axis.
We then find two rectangles parallel to the xy and xz plane
to fit the points on the two 3D patches. The sizes of the two

rectangles can be obtained by finding the truncated bound-

aries of the point histograms in each axis direction. For the

first plane the z coordinate is the mean z of the points in the

3D patch, and for the second plane its y is the mean y of the
points.

The cuboid is the smallest one that encloses both of the

rectangles as shown in Fig. 2 and Fig. 4 (a). Fig. 2 rows 2-4

illustrate some of the cuboids reconstructed from neighbor-

ing superpixels. We change the red and blue channels of

the color image to show the neighboring superpixels. The

projection of these cuboids in Fig. 2 row 2 shows that the

3D cuboid estimation is accurate. Each candidate cuboid is

represented by the lower and upper bounds of x, y and z co-
ordinates in the normalized pose and a matrix T that trans-

forms the cuboid back to the original pose. We also keep

the inverse of T as F . Such a representation facilitates the
computation of cuboid space occupancy and intersection.

Local matching costs: The quality of the matching of a
cuboid to the 3D data is determined by three factors.

The first factor is the coverage area of the points in the
two contact cuboid faces. To simplify the computation, the

coverage area of the surface points on a cuboid face is deter-

mined by the tightest bounding box as shown in Fig. 4 (a).

We compute the ratio r of the bounding box area to the area
of the corresponding cuboid face. The smaller one of the

two ratios are used to quantify the cuboid local matching.

A perfect cuboid matching has the ratio r of 1.
The second factor is the solidness. We require that

cuboids should mostly be behind the 3D scene surface. To

measure the solidness of cuboids, as shown in Fig. 3 (a), we

quantize the space into voxels, whose centers are located on

the rays starting from the origin point and passing through

each image pixel. The space of interest is bounded in 1 to 10

meters from the camera. In the bounded space, 200 points

are uniformly selected along each ray. The points behind

the scene surface have z coordinates less than the surface
z coordinates. To compute the solidness of cuboid i, we
transform the points using the cuboid matrix Fi defined be-

fore to bring the cuboid to the normalized position. We do

not need to transform all the points but only the points in-

side the bounding box of the cuboid in the original pose;

other points are irrelevant. The solidness is approximated

by ns/na, where ns is the number of solid space points

in the cuboid and na is the number of all the transformed

points falling in the cuboid. We keep only the cuboid can-

didates whose solidness is greater than 0.5.

The third factor is the cuboid boundary matching cost.
When we project each cuboid candidate to the target image,

the candidate’s projection silhouette should match the im-

age edges. We find the average distance between the projec-

tion silhouette boundary and the edge pixels, which can be

computed efficiently using the distance transform of the im-

age edge map. We keep only the cuboid candidates whose

silhouettes to edge average distance is less than 10 pixels.

We choose the top M cuboids ranked by the surface

matching ratio r with the solidness and average boundary
error in specific ranges, e.g., solidness greater than 0.5 and
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Figure 3. (a): We compute the solidness of a cuboid by discretizing

the space in front of and behind the scene surface into voxels. (b):

We encourage cuboids to cover large area of superpixels on an

image.
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Figure 4. (a): The cuboid matching ratio r is min(A/B,C/D),
whereA,B, C,D are the areas of the rectangular regions. (b) and

(c): The projection of cuboids and their depth order determine the

occlusion. Cuboid A and B may coexist, but C andD cannot.

boundary error less than 10 pixels in this paper. The costs

of cuboids are ci = 1−ri, i = 1..M . In this paper, we keep

at most top 200 cuboid candidates.

2.3. Formulation

Local matching is not enough to determine the optimal

set of cuboids. Since their matching costs are nonnegative,

we would obtain a trivial all-zero solution if we simply min-

imize the unary term. One method is to specify the number

of objects to be included in the scene. However, in prac-

tice, the number of cuboids is usually unknown. Another

method is to train an SVM cuboid classifier based on the

features and the classification result would have positive

and negative values. Our experiment shows that the cuboid

classifier has quite low classification rate and the top 200

candidates are almost always classified into the same cate-

gory. We need to incorporate more global constraints and

estimate the number of the cuboid objects and their poses

at the same time. We propose a linear formulation of the

optimization in Eq. (1).

2.3.1 Unary term
We define a binary variable xi to indicate whether cuboid

candidate i is selected. If candidate i is selected, xi = 1,
and otherwise xi = 0. The unary term U is the overall

local cuboid matching cost, U =
∑

i cixi, where nonnega-

tive coefficient ci is the cost of choosing cuboid candidate
i; ci is defined in section 2.2. There is a guarantee that all
the cuboid candidates are at least 50% solid and have pro-

jection silhouettes with the average distance of less than 10

pixels to the image edges. Directly minimizing U would

give trivial all-zero results. We need extra constraints.

2.3.2 Volume exclusion

Since each cuboid is solid, they tend to occupy non-

overlapping space in the scene. However, completely pro-

hibiting the cuboid intersection is too strong a condition due

to the unavoidable errors in candidate pose estimation. We

set a tolerance value t for the cuboid intersection and in this
paper t = 0.1, which means cuboids may have up to 10%
intersection. Here the intersection ratio of two cuboids is

defined as the ratio of the volume intersection to the vol-

ume of the smaller cuboid. If one cuboid contains the other,

the ratio is 1. The intersection ratio from cuboid i to j
is computed by projecting the regularly sampled points in

cuboid i in the normalized pose back to the original pose
using cuboid matrix Ti and then projecting to cuboid j’s
normalized pose by using matrix Fj and finally computing

the ratio of the inside points to all these projected points.

The intersection ratio between cuboid i and j is denoted as
ei,j , which is the larger one of the two possible intersection
ratios.

The volume exclusion term has two parts, the first part

is soft and the other is a hard constraint. If two cuboid can-

didates have intersection less than t, we have the soft term
in the objective function, P =

∑
{{i,j}: 0<ei,j<t} ei,jxixj .

When optimizing the objective function, we try to minimize

the intersection between cuboids. We linearize the quadratic

term xixj by introducing an auxiliary variable zi,j and let-
ting zi,j ≤ xi, zi,j ≤ xj , zi,j ≥ 0, and zi,j ≥ xi+xj−1. It
can be verified that zi,j is indeed the product of xi and xj .

Apart from the soft term, we prohibit any two cuboids

from having intersection ratio that is greater than or equals

t. The hard constraint is thus xi + xj ≤ 1 for each pair
of cuboid candidates i and j that have volume intersection
ei,j ≥ t. The hard constraint ensures that cuboid candi-
dates whose intersection ratio is at least t do not coexist;
the corresponding soft intersection penalty in the objective

function is zero.

2.3.3 Surface coverage

The volume exclusion constraint ensures the correct space

occupancy of the selected cuboids. However, it still does not

solve the trivial all-zero solution problem, i.e., if we simply
minimize the unary and pairwise terms no cuboids will be

selected. To solve the problem, we introduce a surface cov-

erage term to encourage the selected cuboids to cover large

surface area. We define that a cuboid covers the surface

patches by which we construct the cuboid. And, we say a

cuboid covers a superpixel in an image, if it covers the cor-

responding 3D scene patch, as illustrated in Fig. 3 (b). We

define a variable yk, which is 1 if superpixel k is covered by
a selected cuboid, and otherwise 0. The surface coverage

term is A =
∑

k akyk, where ak is the area of superpixel
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k. As we minimize the objective function, a large coverage
area is preferred.

Superpixel indicator variable yk and the cuboid indicator
variable are correlated by

yk ≤
∑

cuboid i covers superpixel k

xi, 0 ≤ yk ≤ 1.

If all the cuboids that cover superpixel k are not selected,
yk = 0. If at least one cuboid that covers superpixel k is
selected, yk = 1 and the term A is maximized. Therefore,

when the objective is optimized, A is the covered area of

the selected cuboids in the image.

Since cuboids may come from color-normal superpix-

els or normal superpixels, the superpixels may overlap. We

construct fine-grained superpixels, each of which is a sub-

region of a superpixel from the two superpixel sets. Vari-

ables yk correspond to these fine-grained superpixels. The
surface coverage term thus encourages the selection of a set

of cuboids that not only have low local matching cost but

also cover a large region in an image.

2.3.4 Smaller number of cuboids
We prefer to use a small number of cuboids to explain the

scene. The number of cuboids, N =
∑

i xi, is introduced

into the objective function. With the surface coverage term,

the small number heuristic indicates that we tend to choose

few large cuboids instead of many small ones. The cuboid

number term and the unary term are merged in the objective

function in Eq. (2).

2.3.5 Occlusion constraints
The selected cuboids should have small occlusion among

each other from the camera view. If a cuboid is completely

occluded by another cuboid from the camera view, one of

them has to be a false detection. Apart from complete oc-

clusion, partial occlusion may indeed happen. We there-

fore introduce a soft termO to penalize the partial occlusion

among the chosen cuboids, and we use hard constraints to

prohibit the complete occlusion.

Occlusion happens if two cuboids’ projection regions on

the image plane overlap. The occlusion can thus be defined

asA(H ∩Q)/A(Q), whereH is the projected region of the

closer cuboid and Q is the projected region of the farther

cuboid, H ∩ Q is the intersection of the two projection re-

gions, and A(.) extracts the area of a region. To test which
cuboid is closer, we first find the cuboid surface points cor-

responding to the common projected region of both cuboids

and then we compare their average distances to the camera

center. To count for the estimation errors, we define that

there is a partial occlusion if the overlap ratio is less than

u, e.g. 0.75 in this paper, and otherwise there is a complete
occlusion. The occlusion ratio between cuboid i and j is de-
noted as qi,j . The occlusion reasoning is illustrated in Fig. 4
(b) and (c).

We introduce pairwise variable wi,j for cuboid can-

didates i and j that are partially occluded. We penal-

ize the partial occlusion in the objective function, O =∑
{{i,j}: 0<qi,j<u} qi,jwi,j , where qi,j is the occlusion ra-

tio. Similarly to the pairwise cuboid intersection penalty

term, we let wi,j = xixj . In an equivalent linear format,

wi,j ≤ xi, wi,j ≤ xj , wi,j ≥ 0, and wi,j ≥ xi + xj − 1.
If there is a complete occlusion between cuboid candidates

i and j, they cannot coexist. We thus let xi + xj ≤ 1, if
qi,j ≥ u.

2.4. Optimization

By combining these terms, we have a complete mixed

integer linear optimization:

min{
∑

i

(ci + μ)xi + λ
∑

{i,j}
ei,jzi,j − γ

∑

k

akyk+

ξ
∑

{i,j}
qi,jwi,j} (2)

s.t. zi,j ≤ xi, zi,j ≤ xj , zi,j ≥ xi + xj − 1,

∀{i, j} that 0 < ei,j < t

yk ≤
∑

cuboid i covers superpixel k

xi, yk ≤ 1, ∀ superpixel k

wi,j ≤ xi, wi,j ≤ xj , wi,j ≥ xi + xj − 1,

∀{i, j} that 0 < qi,j < u

xi + xi ≤ 1, ∀{i, j} that ei,j ≥ t or qi,j ≥ u

xi = 0 or 1. All variables are nonnegative.

We solve the mixed integer linear program efficiently by

branch and bound. We use the linear program relaxation

that discards the integer constraints to obtain the lower

bound. The upper bound is initialized by sequentially pick-

ing up low cost cuboids that do not have space or occlu-

sion conflict with previous selections. A branch and bound

search tree is expanded at the branch with the lowest ac-

tive lower bound on variable x whose value is the closest
to 0.5. In the two new branches, we set the chosen x to 0
and 1 respectively. We update the lowest upper bound and

the lowest active lower bound in each step. A branch is

pruned if there is no solution or if the lower bound by linear

programming is greater than the current upper bound. The

lower bound can be efficiently computed using dual simplex

method since only one variable changes the value. The pro-

cedure converges quickly. With 200 cuboid candidates and

a tolerance gap of 0.01, the optimization takes less than 1

second in a 2.8GHz machine. There is in fact no need to set

a tight tolerance gap between the upper and lower bounds;

a large gap such as 0.5 gives little performance degradation

comparing to a small one such as 0.01 and enables even

faster convergence.
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Figure 5. Top 200 cuboid candidates and the cuboids matched by

the proposed method and projected on the color images.

Figure 6. Sample cuboid matching results with the proposed

method on our captured data.

Figure 7. Comparison with 2D cuboid detection method [15]. The

proposed method’s result (Row 1) is more reliable than the result

from 2D images only (Row 2).

3. Experiments
3.1. Qualitative evaluation

Fig. 5 shows two examples of the cuboid matching re-

sults from the proposed method. More results on our cap-

tured data are shown in Fig. 6. We further apply the pro-

posed method to finding cuboids in the 1449 RGBD images

from the NYU Kinect dataset [10]. Sample results of the

proposed method on the NYU dataset are shown in Fig. 9.

Comparing with a method [15] that uses only color im-

ages for cuboid detection, as shown in Fig. 7, the proposed

method gives more reliable results. The proposed method

is able to handle concave objects, objects with or without

texture, large objects such as tables and small ones such as

books. It works well on cluttered scenes.

3.2. Quantitative evaluation

We compare the proposed method with its variation and

competing methods using the NYU dataset. We labeled 215

images from the 1449 images. These images are from dif-

ferent scene categories. Sample images with the ground

truth projection overlaid are shown in Fig. 8. We extract

Figure 8. Sample images with ground truth cuboid labeling. The

saliency of the labeled cuboids are denoted by the color: the

warmer the color, the more salient the object is. There are 215

ground truth images and totally 476 labeled 3D cuboids.

the 3D corner coordinates of the cuboids in images using a

semi-automatic method. We choose two vertical planes of

a cuboid by marking the regions on the color image. The

two-plane cuboid reconstruction method is used to extract

the 8 corner coordinates of the cuboid. Note that we do not

need to mark a complete rectangular region in each cuboid

face. Instead, we just need a patch that extends to the face’s

width and height. The two-plane method reconstructs the

cuboid automatically. Such a process sometimes needs to

iterate for a few times to obtain a satisfactory 3D labeling.

During the labeling, we also specify the sequence of the

saliency of labeled cuboids. The object with label one is the

most salient and usually it is the biggest cuboid object in

the scene. Ties of saliency are broken randomly. Note that

even though ground truth 2D segmentations are available

for the NYU Kinect dataset, they cannot be used directly

for the evaluation because our task is to match cuboids in

the images.

Comparison with greedy method: We compare the

proposed method with a greedy method that chooses the

top 20 cuboids with the smallest local matching costs. Our

method detects less than 20 objects and 6 on average per

image in the ground truth test. To evaluate the matching

performance, we compute the average corner distance from

each ground truth cuboid to all the detections and find the

minimum distance. There is no predefined order for the

8 corners; we use bipartite matching to compute the best

matching configuration for each pair of cuboids. We further

normalize the average distance by the longest diagonal of

the ground truth cuboid. We use the detection rate curve to

quantify the performance. The curves are shown in Fig. 10,

which illustrate the detection rate for top saliency, top two,

top three and top ten objects in each image. The proposed

method has much higher detection rate than the greedy ap-

proach. Local matching costs themselves are not reliable.

We need to globally optimize all the cuboid matching to-

gether to achieve a reliable result.

Comparison with local search method [5] and
MCMC [16]: These local search methods need to initialize
the cuboid location, size and orientation. We randomly ini-

tialize these parameters. For each test image, we detect 50

cuboids with these competing methods. Color is not used by

these methods. As shown in Fig. 10, the proposed method

has much higher detection rate than these local methods.

The complexity of the proposed method is also lower than
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Figure 9. Randomly sampled results of the proposed method on the 1449 images from the NYU Kinect dataset [10]. We show the projected

cuboids in the images. Our method gives reliable result in cluttered scenes.

these competing methods.

Comparing with bottom-up approaches: The above
competing methods are top-down. We would like to com-

pare with potential bottom-up competing methods. The

segmentation method in [9] also generates object bound-

ing boxes and thus can potentially be used to find cuboids

in RGBD images. This method relies on hierarchical su-

perpixels. If the object level segment is not available, the

corresponding object cannot be detected. Assuming that we

can recover a cuboid perfectly from a superpixel, the chance

that the segmentation forms a complete object sets an upper

bound that a bottom-up method can achieve when finding

cuboids. We compare the proposed method with this upper

bound.

Here we use the region overlap ratio to quantify the qual-

ity of a detection. To obtain a cuboid region in the target im-

age for the proposed method, we project the cuboid’s cor-

ners to the image plane and find the convex hull. We use the

method in [9] to obtain a large set of superpixels using dif-

ferent parameters followed by merging neighbors progres-

sively based on the color similarity and coplanar degree. We

check how the superpixels and our cuboid projection over-
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Figure 10. Comparing with greedy, local search [5] and MCMC

[16] methods. We show the rate of finding objects when the dis-

tance error threshold changes for (a) top one, (b) top two, (c) top

three and (d) top ten salient cuboids in each image.
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Figure 11. Detection rate comparison with bottom-up methods.

We detect (a) the most salient object, (b) the top two, (c) the top

three, and (d) the top ten objects in each image. The 0.7 thresh-
old, above which the detection is visually correct, is marked with

a vertical blue line.

lap with the ground truth object foreground. The region

overlap is quantified by the ratio of the region intersection

to the region union. We plot the overlap ratio threshold vs.
detection rate curve in Fig. 11. The proposed method gives

better results than the superpixel based approach. This is

not a surprise. The hierarchical superpixel method is not al-

ways able to merge two faces of a cuboid if they have very

different color and texture.

Another method to generate object level regions is by ob-

ject class independent proposals [17]. The original region

proposal method is for color images only. For fair compari-

son, we include the 3D point coordinates into the superpixel

detection. We adjust the weight between the rgb and xyz
vectors to achieve the best performance. The proposal re-

gions are more likely to match the cuboid objects than the

superpixels as shown in Fig. 11. However, the region pro-

posal method also has a hard time to find many cuboid ob-

jects especially large objects with complex textures. Above

the region overlap threshold 70%, the detection rate of the
proposed method is always higher than that of the region

proposal method. The object independent proposal method

has higher detection rate if the region overlap threshold is

less than 0.6 because it uses many more region detections

– several thousand, comparing to less than 20 detections of

the proposed method. In fact, the low threshold detection

rate is not important because a detection that has less than

60% overlap with the ground truth is most likely wrong and

it will be hard to recover the 3D cuboid object using such

segments. The bottom-up region based method is also more

complex. There are often 5000 region candidates and it

takes 5-10 minutes to find them in a 2.8GHz machine. Our

proposed method uses many fewer cuboid candidates; it is

more efficient. The optimization takes less than one second

with the same machine. The whole process that includes

extracting candidates, computing intersection and occlusion

takes less than one minute per image.

4. Conclusion
We propose a novel method to match cuboids in RGBD

images. The proposed linear method guarantees the global

optimization of cuboid matching. It also automatically de-

termines the number of cuboids in the scene. Our experi-

ments on thousands of RGBD images of a variety of scenes

show that the proposed method is accurate and it is robust

against strong clutter. We believe that this method is a use-

ful component to help 3D scene understanding.
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