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Abstract

Seven years ago, Szeliski et al. published an influential
study on energy minimization methods for Markov random
fields (MRF). This study provided valuable insights in choos-
ing the best optimization technique for certain classes of
problems.

While these insights remain generally useful today, the
phenominal success of random field models means that the
kinds of inference problems we solve have changed signifi-
cantly. Specifically, the models today often include higher
order interactions, flexible connectivity structures, large
label-spaces of different cardinalities, or learned energy ta-
bles. To reflect these changes, we provide a modernized and
enlarged study. We present an empirical comparison of 24
state-of-art techniques on a corpus of 2,300 energy minimiza-
tion instances from 20 diverse computer vision applications.
To ensure reproducibility, we evaluate all methods in the
OpenGM?2 framework and report extensive results regarding
runtime and solution quality. Key insights from our study
agree with the results of Szeliski et al. for the types of models
they studied. However, on new and challenging types of
models our findings disagree and suggest that polyhedral
methods and integer programming solvers are competitive
in terms of runtime and solution quality over a large range
of model types.

1. Introduction

Discrete energy minimization problems, in the form of
factor graphs, or equivalently Markov or Conditional Ran-
dom Field models (MRF/CRF) are a mainstay of computer
vision research. Their applications are diverse and range
from image denoising, segmentation, motion estimation, and
stereo, to object recognition and image editing. To give re-
searchers some guidance as to which optimization method
is best suited for their MRF model, Szeliski et al. [33] con-
ducted a comparative study on 4-connected MRF models.

1328

Along with the study, they provided a unifying software
framework that facilitates a fair comparison of optimization
techniques. The study was well-received in our community
and has now been cited more than 600 times.

Since 2006 when the study was published, the field has
made rapid progress. Modern vision problems involve more
complex models, involve larger datasets and use machine
learning techniques to train the model parameters and ener-
gies.

Taken together, these changes give rise to hard energy
minimization problems that are fundamentally different than
the ones considered by Szeliski et al. In particular, in [33]
the models were restricted to 4-connected grid graphs with
unary and pairwise factors only.

It is time to revisit the study of [33]. We provide a mod-
ernized comparison, updating both the problem instances
and the inference techniques.

Our models are different in the following four aspects: (1)
higher order models, e.g. factor order up to 300, (2) mod-
els on “regular” graphs with a denser connectivity structure,
e.g. 27-pixel neighborhood, or models on “irregular” graphs
with spatially non-uniform connectivity structure, (3) mod-
els based on superpixels with smaller number of variables,
and (4) image partitioning models without unary terms, an
unknown number of classes.

Inference methods have changed as well since 2006, often
as a response to cope with more challenging models. The
study [33] compared the performance of the state of the art
at the time, represented by primal move-making methods,
loopy belief propagation, a tree-reweighted belief propaga-
tion variant, and a set of more traditional local optimization
heuristics like iterated conditional modes (ICM). We aug-
ment this set with more recently developed methods from
these classes, e.g. recent move-making methods and local
optimization methods. Furthermore, we use new methods
which are applicable to more general, higher order mod-
els, and non-grid graph structures. In addition, we add a
new class of polyhedral methods, which solve an underlying
(Integer) Linear Programming formulation (LP/ILP).



Contributions We provide a modernized, follow-up study
of [33] with the following aspects: (i) A broad collection of
state-of-the-art models and inference methods. (ii) All mod-
els and inference techniques were wrapped into a uniform
software framework, OpenGM2 [2], for reproducible bench-
marking. They will be made publicly available on the project
webpage'. (iii) Comprehensive and comparative evaluation
of methods, along with a summary and discussion. (iv) We
enable researchers to experiment with recent state-of-the-art
inference methods on their own models.

Related Inference Studies Apart from the study [33], there
are many recent articles in computer vision which compare
inference techniques for a small specialized class of models,
such as [4, 27, 25]. Unfortunately, the models and/or infer-
ence techniques are often not publicly available. Even if they
were available, the lack of a flexible software-framework
which includes these models and optimization techniques
makes a fair comparison difficult. Closely related is the
smaller study [8] that uses the first and now deprecated ver-
sion of OpenGM. It compares several variants of message
passing and move making algorithms for higher order mod-
els. In contrast to this work, polyhedral inference methods
are not included and only a small number of synthetic models
are used.

Outside computer vision, the Probabilistic Inference Chal-
lenge (PIC) [3] covers a broad class of models used in ma-
chine learning. We include the leading optimization tech-
niques of PIC in our study.

Key Insights and Suggested Future Research In compari-
son with [33], perhaps the most important new insight is that
recent, advanced polyhedral LP and ILP solvers are relevant
for a wide range of problems in computer vision. For a con-
siderable number of instances, they are able to achieve global
optimality. For some problems they are even competitive in
terms of overall runtime. This is true for problems with a
small number of labels, variables and factors of low order
that have a simple form. But even for some problems with a
large number of variables or complex factor form, special-
ized ILP and LP solvers can be applied successfully. For
problems with many variables for which the LP relaxation
is not tight, polyhedral methods are not competitive. In this
regime, primal move-making methods typically achieve the
best results, which is consistent with the findings of [33].

Our new insights suggest two areas for future research
focus. First, in order to capitalize on existing ILP solvers
we could increase the use of “small” but expressive models,
e.g. superpixels or coarse-to-fine approaches. Second, our
findings suggest that further investigation in improving the
efficient and applicability of ILP and LP solvers is warranted.

Imttp://hci.iwr.uni-heidelberg.de/opengm2/
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2. Models

We assume that our discrete energy minimization problem
is given in the form of a factor graph G = (V, F,E), a
bipartite graph, with a set of variable nodes V/, a the set of
all factors I, and a set ¥ C V' x F' that defines the relation
between those [23]. The variable x, assigned to the variable
node a € V lives in a discrete label-space X, and each factor
J € F has an associated function ¢ : X,,c(5) — R, where
Xpe(s) are the variables in the neighborhood ne(f) := {v €
V : (v, f) € E} of the factor f, i.e. the set of variables in
the scope of the factor. We define the order of a factor by its
degree, e.g. pairwise factors have order 2, and the order of a
model by the maximal degree among all factors. The energy
function of the discrete labeling problem is then given as

J(%) =Y 05 (Xne()):

fer

where the assignment of the variable x is also known as
the labeling. For many applications the aim is to find a
labeling with minimal energy, i.e. X € arg min, J(x). This
labeling is a maximum-a-posteriori (MAP) solution of a
Gibbs distribution p(x) = 1/Z exp{—J(x)} defined by the
energy. Here, Z normalizes the distribution.

It is worth to note that we use factor graph models instead
of Markov Random Field models (MRFs), also known as
undirected graphical models. The reason is that factor graphs
represent the structure of the underlying problem in a more
precise and explicit way than MRFs can, c.f. [23].

2.1. Categorization of Models

One of the main attributes we use for our categorization is
the meaning of a variable, i.e. if the variable is associated
with a pixel, superpixel or something else. The number of
variables is typically related to this categorization.

Another modeling aspect is the number of labels the vari-
able can take. Note that the size of the label-space restricts
the number of methods that are applicable, e.g. QPBO or
MCBC can only be used for Boolean problems. We also
classify models by properties of the factor-graph, e.g. av-
erage numbers of factors per node, mean degree of factors,
or structure of the graph, e.g. grid structure. Finally, the
properties/type of the functions embodied by the factors
are of interest, since for some subclasses specialized opti-
mization methods exists, e.g. metric energies [33] or Potts
functions [19].

2.2. Benchmark Models

Table 1 gives an overview of the models summarized in
this study. Note, some models have a single instance, while
others have a larger set of instances which allows to derive
some statistics. We now give a brief overview of all models.
A detailed description of all models is available online and
in the supplementary material.



[ [modelname T #] variables [ labels [ order [ structure [ functiontype | ref |
mrf-stereo 3 ~ 100000 16-60 2 grid-N4 TLI, TL2 331
mrf-inpainting 2 ~ 50000 256 2 grid-N4 TL2 [331
mrf-photomontage 2 ~ 500000 5.7 2 grid-N4 explicit [331
color-seg-N4 9 76800 3,12 2 grid-N4 potts 291
inpainting-N4 2 14400 4 2 grid-N4 potts | [29]

E object-seg 5 68160 4-8 2 grid-N4 potts [4]
A | color-seg-N8 9 76800 3,12 2 grid-N§ potts 291
inpainting-N8 2 14400 4 2 grid-N8 potts. 291
color-seg 3 21000, 34 2 grid-N8 potts. [41
424720
dtf-chinese-char 100 ~ 8000 2 2 sparse explicit 301
brain 5 | 400000-7000000 5 2| grid-3D-N6 potts [1]
scene-decomp 715 ~ 300 8 2 sparse explicit | [16]
geo-surf-seg-3 300 ~ 1000 3 3 sparse explicit | [15, 17]
E geo-surf-seg-7 300 ~ 1000 7 3 sparse explicit | [15, 17]
é correlation-clustering || 715 ~ 300 ~300 | ~300 sparse potts. 221
2 | image-seg 100 500-3000 | 500-3000 2 sparse potts. [61
!I=z 3d-neuron-seg 2 7958, 7958, 2 sparse potts | [9, 10]
101220 101220
5 | matching 4 ~ 20 ~20 2 | full or sparse explicit | [27]
g cell-tracking 1 41134 2 9 sparse explicit|  [21]

Table 1: List of datasets used in the benchmark.

Pixel-Based Models For many low-level vision problems
it is desirable to make each pixel a variable in the model.
For 2D images, where variables are associated to pixels in a
2D lattice, a simple form of a factor graph model connects
each pixel with its four nearest neighbors using a pairwise
energy. This simple form is popular and was the sole subject
of the study [33]. In our study we incorporated the models
mrf-stereo, mrf-inpainting, and mrf-photomontage from [33].
Additionally we used three models which have the same
4-connected structure, inpainting inpainting-N4 [29], color
segmentation color-seg-N4 [29]> and object segmentation
object-seg [4]. All sets have a small number of labels and use
Potts regularizers. In inpainting-N4 and color-seg-N4 this
regularizer is fixed for all factors. In object-seg, it depends on
the image-gradient. The unary terms measure the similarity
to predefined class-specific color models.

From a modeling point of view such models are restricted,
since they encode the assumption that each variable is con-
ditionally independent from all others given its immediate
neighbors. Hence important relations cannot be modeled by
a simple grid structure. For instance, better approximations
of the boundary regularization can be obtained by increas-
ing the neighborhood [12]. Therefore, models with denser
structures (both regular and irregular) as well as higher order
models have been introduced in the last decade. The datasets
inpainting-N8 and color-seg-N8 [29] include the same data-
term as inpainting-N4 and color-seg-N4 but approximate the
boundary length using an 8-neighborhood. Another dataset
with an 8-neighborhood and Potts terms depending on the
image-gradient is color-seg [4].

We also use a model with a 6-neighborhood connectivity
structure in a 3D-grid. It is based on simulated 3D MRI-
brain data [1], where each of the 5 labels represent color
modes of the underlying histogram and boundary length
regularisation [ 2] similar to color-seg-N4 in 2D.

2The inpainting-N4/8 and color-seg-N4/8-models were originally used
in variational approaches together with total variation regularisers [29]. A
comparison with variational models is beyond the scope of this study.
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(a) image (b) input (c) TRWS (d) MCBC
J =—-49768 J = —49839
100 sec. 562 sec.

Figure 1: Example for a pixel based model [

1.

(c) MCA

(a) image

(b) superpixels

Figure 2: Example for a superpixel partition model [6]: im-
age (left), superpixels (middle) and segmentation (right).

We also consider the task of in-painting in binary images
of Chinese characters, dtf-chinesechar [30]. The factors are
learned potentials from a decision tree field. Although each
variable has only two labels, their regional sparse neigh-
borhood structure makes the resulting inference problem
challenging, c.f. Fig. 1.

Superpixel-Based Models In these models, all pixels that
lie in the same superpixel are constrained to have the same
label. This reduces the number of variables in the model and
makes it attractive to add complex, higher order factors.

In the scene-decomposition-dataset [16] every super-

pixel has to be assigned to one of 8 classes. Pairwise
factors between neighboring superpixels enforces likely
label-neighborhoods. The datasets geo-surf-3 and geo-surf-
7 [15, 17] are similar but have additional third-order factors,
that enforce consistency of labels for three vertically neigh-
boring superpixels.
Superpixel-Based Partition Models Beyond classical su-
perpixel models, this study also considers a recent class of
superpixel models [22, ] which aim at partitioning
an image without any class-specific knowledge, i.e. the cor-
responding energy function is invariant to permutations of
the label set. Since the partition into isolated superpixels is a
feasible solution, the label space of each variable is equal to
the number of variables of the model, and therefore typically
very large, c.f. Tab. 1. State-of-the-art solvers for classical
models either are inapplicable or perform poorly on these
models [19]. Moreover, commonly used LP-relaxations suf-
fer from the interchangeability of the labels in the optimal
solution.
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Figure 3: Example output for a matching model [27]: Green
dots represent the variables of a fully connected graph. The
discrete label assigns a green dot to a red dot (shown with a
line).

The hyper-graph image segmentation dataset correlation-
clustering [22] includes higher order terms that favor equal
labels for superpixels in their scope if those are visually sim-
ilar. The probabilistic image partition dataset image-seg [0]
contains factors between pairs of superpixels. Two models
for 3d neuron segmentation 3d-neuron-seg [10] give exam-
ples for applications in large scale data.

Other Models Our benchmark includes two models in
which neither pixels nor superpixels are used. The firstis a
non-rigid point matching problem [27], see Fig. 3. In this
case the models include no unary terms, whereas the pair-
wise terms penalize the geometric distortion between pairs
of points. The second model is a cell tracking model [21].
Variables correspond to tracks of cells in a video sequence.
Since a track can either be active or dormant, the variables
are binary. Higher order factors are used to model the likeli-
hood of a “splitting” and “dieing” event of a cell.

3. Inference Methods

We consider more than 24 different inference methods
for evaluation. The selection of methods is representative of
the state of the art in the field. We now give a brief overview
of these methods. As for the model instances, we provide a
more detailed description along with parameter settings in
the supplementary material.

Polyhedral and Combinatorial Methods A large class of
algorithms solves a linear programming relaxation (LP) of
the discrete energy minimization problem. Perhaps the most
commonly used relaxation is the LP relaxation over the
local polytope. For small instances this can be done by
standard LP-solvers e.g. ogm-LP-LP [5]. For large prob-
lems this is no longer possible and special solvers have been
proposed that optimize a dual formulation of the problem.
A famous example is the block-coordinate-ascent method
TRWS [24], which, however, can get stuck in local fix points.
In contrast, subgradient methods (ogm-SUBGRAD-A) [18]
and bundle methods [18] with adaptive (ogm-BUNDLE-
A) or heuristic (ogm-BUNDLE-H) stepsize are guaranteed
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to converge to the optimum of the relaxed dual®. In both
cases primal integer solutions are reconstructed from the
subgradients. Related to polyhedral methods are Integer
Linear Programs (ILPs). These include additional integer
constraints and guarantee global optimality, contrary to the
methods based on LP-relaxations. Solutions of ILPs are
found by solving a sequence of LPs and either adding addi-
tional constraints to the polytope (cutting plane techniques),
or branching the polytope into several polytopes (branch-
and-bound techniques). We evaluate three state-of-the-art
ILP solvers: IBM CPLEX wrapped by OpenGM?2 [5] (ogm-
ILP), the current best performing method in the PIC called
breath-rotating and/or branch-and-bound [31] (BRAOBB),
and the AStar-Method (ogm-ASTAR) [11]. To reduce the
large memory requirements which come along with the vec-
torization of the objective for the LP, we also consider the
multicut-representation introduced by Kappes et al. [19].
This multicut solver (MCA) can only be applied for func-
tions which includes terms that are either invariant under
label permutations or of first-order. Additionally, we tested
a variant that only add facet-defining constraints during the
cutting plane procedure, called MCA-fdo. We also consider
a relaxed multicut version [22] (MCR) only applicable to
partition problems, and a max-cut solver (MCBC) for pair-
wise binary problems.*

Message Passing Methods Message passing methods are
simple to implement and can be easily parallelized, mak-
ing them a popular choice in practise. Polyhedral methods
can often be reformulated as a message passing method,
e.g. TRWS [24]. Also its non-sequential version TRBP [34]
can be written as a message passing algorithm. TRBP can
be applied to higher order models but has no convergence
guarantees. Practically it works well if sufficient message
damping [34] is used. Maybe the most popular message
passing algorithm is loopy belief propagation (LBP). While
LBP converges to the global optima for acyclic models, it
is only a heuristic for general graphs, which turns out to
perform reasonably well in practise. We evaluate the paral-
lel (LBP) and sequential (BPS) versions from [33], as well
the general higher order implementation using parallel up-
dates (ogm-LBP) from [5]. For parallel methods we use
message damping.

Max-Flow and Move-Making Methods In some cases
network flow algorithms exist that are equivalent to LP-
relaxations. These converge in finite time and are usually
much faster. For submodular second-order binary models
min s-t cut is such an example. For general second-order
binary models, QPBO [32] solves the LP relaxation over the
local polytope and provides a persistence certificate. An-

3Here we consider spanning trees as subproblems such that the relax-
ation is equivalent to the local polytope relaxation.

4The latter two methods are not publicly available and results were
kindly provided by the authors.



other class of common methods applies a greedy minimiza-
tion over the label space by solving a sequence of max-flow
problems. Three members of this class are a-Expansion (EX-
PANSION), a-G-Swap (SWAP) [13, 26] and FastPD [28].
We also consider a generalization of a-Expansion for gen-
eral problems and higher order factors known as a-Fusion
(FUSION), which fusion-moves and the order-reduction of
Fix et al. [14]. The Lazy Flipper [7] algorithm is similar in
that it iteratively applies a greedy search over local subsets.
It converges to a configuration which is optimal within a
Hamming distance in label space, without using max-flow
methods. The Lazy Flipper relies heavily on initialization,
for which we use standard methods.

4. Experimental Setup

Our benchmark builds on the success of the OpenGM?2
framework [2, 5], which provides custom implementations
and wrappers to existing implementations, for several state-
of-art techniques. In the following, we use prefixes in
method names to indicate the source of the implementation.
Prefixes ogm and mrf are used to denote methods whose
source implementation is [5] and [33] respectively. Lack
of a prefix in some method names indicates that we used
available code from the corresponding authors and wrote
OpenGM2 wrappers. This is always possible because in con-
trast to other graphical-model libraries, OpenGM2 imposes
no restrictions on the class of allowed functions or topology
of the models. Furthermore, the use of a common platform
provides a uniform representation of models, as well as a
file format that is sufficiently general to store all models
in this study with affordable file sizes. All models used in
this study will be made available in the OpenGM?2 file for-
mat. All experiments were conducted on a Xeon W3550
machine with 3.07GHz CPU and 12 GB RAM. In an attempt
to perform a fair comparison, each solver was allowed to use
only one thread, and only 3 of the 4 cores were used. The
evaluation of the parallelizability of the methods is beyond
the scope of this comparison. Furthermore, in order to keep
computational resources in check, we stop bundle, subgradi-
ent and message passing methods after 1000 iterations and
other polyhedral and combinatorial methods, which do not
have an applicable stopping criteria based on iteration, after
1 hour, if they have not yet converged.

Some evaluated algorithms do not use the OpenGM?2
data structures and rather convert the instance into their own
internal data structures. In order to evaluate runtime, we
do not measure the time taken for an initial setup of mem-
ory buffers. During optimization we store the value of the
current integer solution and the lower bound after each iter-
ation, if applicable. The runtime of the algorithm does not
include the overhead for computing and maintaining such
intermediate statistics. Consequently, we can compare up-
per and lower bounds of the algorithms at various runtimes.
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It is important to note that comparing algorithms solely in
terms of runtime has the effect of favoring implementation
efficiency over algorithmic efficiency. For instance, a gen-
eral implementation of the same algorithm will typically be
significantly slower than a specialized implementation that
makes assumptions about the problem structure (e.g. only
pairwise terms). In fact, our benchmark does include highly
optimized implementations for special problem-subclasses,
e.g. those from [33], as well as general, less optimized re-
search code. We observe a speed-up factor of 10 — 100 for
an optimized implementation compared to a general imple-
mentation.

Clearly, not all methods can be used for all types of mod-
els. We made our best effort to apply methods to as many
models as possible. The supplementary material provides
detailed information about the data structures used by each
algorithm, specific restrictions on problem-classes and other
considerations.

5. Evaluation

Due to lack of space, we only provide a brief summary of
the benchmark results here. Detailed results for all instances,
including plots of energy values and bounds versus runtime,
are provided in the supplemental material and will be made
publicly available on the project webpage®.

It is important to note that in contrast to [33], our compar-
ison includes techniques with significantly different internal
data structures and underlying motivations. Specifically,
some solvers are specialized implementations for a certain
class of problems (e.g. grids with Potts functions), while
others make no assumptions about the problem and tackle
the general case (i.e. arbitrary functions and order). While
both paradigms have merit, it becomes challenging to quan-
tify their relative performance in a fair manner. Due to the
algorithmic complexity we expect a speedup of ~ 100 for
specialized implementations of methods with prefix ogm, all
other methods should be comparable.

Over all our experiments, we found that FastPD is typ-
ically the fastest method, on problems where it is applica-
ble. Even though it only provides approximate solutions,
they are often of high quality. For difficult models like dtf-
chinesechar and matching, the exact solution is significantly
better than approximate ones, both in terms of energy and
quality. For some models, surprisingly, the exact methods
are faster than currently reported state-of-the-art methods.
Solutions from these exact methods are used for evaluating
the sub-optimality of the approximate solutions.

We also mention that even when they are not the fastest,
message passing, polyhedral, and exact polyhedral methods
often provide very good results quickly, and then spend
most of the time to verify optimality or achieve a stopping
criterion.

Shttp ://hci.iwr.uni-heidelberg.de/opengm?2/



The tables below give a snapshot of the best performing
methods for various models. We report runtime (mean run-
time), objective value achieved by the final integer solution
(mean value), and lower bound achieved (mean bound).
All three quantities are averaged over all instances for a
model. Furthermore, we report how often (in terms of per-
centage) an algorithm returned the best® (not necessary opti-
mal) integer solution among all results (best) and how often
the method was able to “verify optimality” by achieving a rel-
ative integrality gap smaller than 10~% (ver. opt). Note that
for some instances, no method was able to verify optimality.

Second-Order Models Table 2 summarizes the results for
the stereo labeling problems from [33]. For instances of this
problem, methods like ogm-BUNDLE-A that solve the LP-
relaxation perform best. The mrf-TRWS method from [33]
produces the best solution on average, but does not solve the
LP-relaxation optimally, since the average lower bound is
not the tightest. Applying Lazy Flipper on top (TRWS-LF2)
improves the solution further.

Table 2: mrf-stereo (3 instances)

algorithm mean run time mean value mean bound best ver. opt
FastPD 4.47 sec 1614255.00 —oo  0.00 0.00
FastPD-LF2 296.38 sec 1611484.33 —oo  0.00 0.00
mrf-EXPANSION 13.04 sec 1614353.00 —oo 33.33 0.00
mrf-TRWS 296.22 sec 1587928.67 1584746.53 0.00 0.00
ogm-BUNDLE-A 8458.49 sec 1610985.00 1584776.15 33.33  33.33
ogm-SUBGRAD-A  8533.41 sec 1752958.00 1578421.00 33.33  33.33
TRWS-LF2 668.47 sec 1587040.00 1584746.53 33.33 0.00

In contrast to the previous case, primal move-making
methods outperform LP-relaxation methods for the mrf-
photomontage model, also from [33]. Table 3 provides the
details. We believe this is because some unary terms have
infinite values. As observed in [33], mrf-EXPANSION is
both the fastest and achieves the best results on average.
The same behavior can be seen for the synthetic inpainting
instances inpainting-N4/8. The instance “inverse” is con-
structed such that the LP-relaxation over the local polytope
is not tight. In this case pure primal move-making methods
are superior, since they do not face the rounding problem
(see supplementary material for details).

Table 3: mrf-photomontage (2 instances)

algorithm mean run time mean value mean bound  best ver. opt
mrf-EXPANSION 8.54 sec  168220.00 —oo 100.00  0.00
mrf-SWAP 11.35sec  180345.00 —oo  0.00  0.00
mrf-TRWS 253.20 sec 1243144.00 166827.07 0.00  0.00
ogm-BUNDLE-H 4771.35sec  599206.00 11110035 0.00  0.00
ogm-SUBGRAD-A  4734.20 sec 3846787.00 2600524  0.00  0.00
TRWS-LF2 431.34sec  735193.00 166827.12  0.00  0.00

%For numerical reasons, a solution is considered to be “best” if its value
deviates by less than 108 from the best value.

In Table 4, we analyze the color-seg-4 model that has fewer
variables and a simpler Potts regularization. In this case,
we are able to calculate the globally optimal solution us-
ing MCA. This is also true for other models with similar
characteristics, e.g. color-seg, object-seg, color-seg-n8, and
brain. Even the complex pfau-instance could be solved to
optimality in 3 hours. In this case, LP-based methods are su-
perior in terms of objective values, but EXPANSION, SWAP
and FastPD converged to somewhat worse but reasonable
solutions very quickly.

Table 4: color-seg-n4 (9 instances)

algorithm mean run time mean value mean bound  best ver. opt
FastPD 0.35sec  20034.80 —oco  0.00 0.00
FastPD-LF2 13.61 sec  20033.21 —oo  0.00 0.00
mrf-EXPANSION 1.24sec  20031.81 —oco  0.00 0.00
mrf-SWAP 0.86 sec  20049.90 —oo  0.00 0.00
mrf-TRWS 33.15sec  20012.18  20012.14 88.89 77.78
ogm-BUNDLE-A 692.39sec  20024.78  20012.01 77.78 77.78
ogm-BUNDLE-H 1212.24 sec  20012.44  20012.13 77.78 2222
ogm-SUBGRAD-A  1179.62sec  20027.98  20011.57 66.67 11.11
MCA 982.36 sec  20527.37 19973.25 88.89  88.89
MCA-6h 124430 sec  20012.14  20012.14 100.00 100.00

All models so far consisted of truncated convex pairwise
terms. Arbitrary pairwise terms can lead to optimization
problems that are significantly harder to solve, as we found
in dtf-chinesechar in Table 5. In this case, the pairwise terms
are learned and happen to be a mix of attractive and repulsive
terms. Although these are medium sized binary problems,
the relaxations over the local polytope are no longer as tight.
Only the advanced polyhedral method (MCBC) [20] was
able to solve some (56) instances to optimality.

Table 5: dtf-chinesechar (100 instances)

algorithm  mean run time mean value mean bound best ver. opt
BPS 72.85sec  -49537.08 —oo 19.00  0.00
MCBC 2053.89 sec  -49550.10  -49612.38 91.00  56.00
ogm-ILP 3580.93 sec  -49536.59 -50106.17 8.00  0.00
QPBO 0.16 sec  -49501.95 -50119.38 0.00  0.00
SA [30] nfa  -49533.02 —oo 13.00  0.00
TRWS 100.13 sec  -49496.84  -50119.41 2.00  0.00
TRWS-LF2 106.94 sec  -49519.44  -50119.41 11.00  0.00

The matching problems in Table 6 have very few vari-
ables, which is ideal for sophisticated ILP solvers. In-
deed, we observe that pure branch-and-bound algorithms
like BRAOBB or ogm-ASTAR can achieve global optimal-
ity relatively quickly. Again, standard LP-solvers do not
perform well, since the relaxation is not very tight. Lazy flip-
ping, as a post-processing step, can help significantly in these
situations, c.f. Fig. 3. Fusion moves with a-proposals does
not work well for matching instances. Generating problem-
specific proposals might overcome this problem.
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Table 6: matching (4 instances)

algorithm mean run time mean value mean bound  best ver. opt
BPS 0.17 sec 40.26 —oo 25.00  0.00
BRAOBB 3.50 sec 21.22 21.22 100.00 100.00
FUSION 0.02 sec 1465000000000.00 —oo  0.00  0.00
ogm-ASTAR 8.78 sec 21.22 21.22 100.00 100.00
ogm-BUNDLE-H 5.58 sec 7500000055.96 1591 0.00  0.00
ogm-ILP 1287.07 sec 23.04 20.44 75.00 75.00
ogm-ILP-6h 1694.34 sec 21.22 21.22 100.00 100.00
ogm-LP-LP 33.17 sec  102500000036.76 1635 0.00  0.00
TRWS 0.17 sec 64.29 1522 0.00  0.00
TRWS-LF2 0.76 sec 32.38 1522 0.00  0.00

Second-Order Models - Superpixel Models based on su-
perpixels differ from pixel-based models in two important
ways. First, they have a small number of variables and
second, they often have very strong unary data-terms that
make local polytope relaxations often tight. Consequently,
ILP-solvers become not only feasible, they outperform state-
of-the-art methods in terms of runtime. One example of this
behavior is the scene-decomposition model where ogm-ILP
performs best. Table 7 shows the results.

Table 7: scene-decomposition (715 instances)

algorithm mean run time mean value mean bound  best ver. opt
BPS 0.17 sec -866.73 —oo  79.16  0.00
BRAOBB 28.31 sec -866.93 —oo 100.00 99.86
FUSION 0.07 sec -866.85 —oo 8210  0.00
ogm-BUNDLE-H 0.91 sec -866.93 -866.93 100.00 94.13
ogm-ILP 0.11 sec -866.93 -866.93 100.00 100.00
ogm-LP-LP 0.09 sec -866.92 -866.93 99.58  99.58
TRWS 0.17 sec -866.92 -866.93 99.58  99.58

Higher Order Models Higher order superpixel models
exhibit similar behavior as the second-order superpixel mod-
els. As long as the number of labels and the order of factors
is small, the linear objective is small and ILP-solvers outper-
form alternative methods. Table 8 shows an example, where
again ogm-ILP is the best and only FUSION converge faster,
but not always to optimal solutions.

Table 8: geo-surf-7 (300 instances)

algorithm mean run time mean value mean bound best ver. opt
BRAOBB 1031.34 sec 478.96 —oo 82,67 7433
FUSION 0.28 sec 477.83 —oo  85.67 0.00
ogm-BUNDLE-H 97.91 sec 476.95 476.86 99.67  60.00
ogm-SUBGRAD-A 129.24 sec 479.26 473.16 53.33 4.00
ogm-ILP 0.87 sec 476.95 476.95 100.00 100.00
ogm-LBP 3.51 sec 498.45 —oo  22.00 0.00
ogm-LP-LP 2.27 sec 476.95 47694 99.67 99.67

For the cell tracking instance, shown in Table 9, ILP-
methods clearly outperform all the alternatives. Only the LP-
solver manages to find a solution that satisfies the constraints,
included as soft-constraint in the model. Applying the Lazy
Flipper as a post-processing can overcome this problem, as
shown for LBP.
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Table 9: cell-tracking (1 instances)

algorithm mean run time mean value mean bound  best ver. opt
ogm-LBP-LF2 308.83sec  7515575.61 —oo  0.00 0.00
FUSION 11.12sec  34335812.82 —oco  0.00 0.00
ogm-BUNDLE-H  1068.11 sec 107553778.57 7501875.98  0.00 0.00
ogm-ILP 32.77sec  7514421.21 7514421.21 100.00 100.00
ogm-LBP 30.47 sec 407520058.41 —oo  0.00 0.00
ogm-LP-LP 3.26sec  7516359.61 7513851.52  0.00 0.00
Partition Models Partition models, shown in [19], are

challenging for classical MRF techniques, because any la-
bel permutation of an optimal solution is also an optimal
solution. An efficient way to solve these problems is by
transforming them into a multicut problem. We apply the
solver suggested in [19, 6] and also apply a variant that
only considers facet defining constraints (-fdo). For the
correlation-clustering dataset, which contains terms of or-
der up to 300, we also report the original results obtained
by an outer relaxation (MCR) [22]. Table 10 shows that
the approximate method is a factor of 3-times faster than
exact methods but can verify optimality only in 10% of the
cases. We observe for all partition models using only the
facet-defining constraints yields better runtimes. Overall, we
have optimal solutions for 3 different structured partition
models, c.f. Tab. 1.

Table 10: correlation-clustering (715 instances)

algorithm mean run time mean value mean bound  best ver. opt

MCR 0.38 sec -624.35 -629.03 1636 10.21
MCA 1.14 sec -628.16 -628.16 100.00 100.00
MCA-fdo 1.04 sec -628.16 -628.16 100.00 100.00

6. Conclusions

We presented a large set of discrete energy minimization
problems for computer vision applications whose variety
reflects progress of the field concerning both modelling and
MRF-based inference during the last decade.

For small and moderate problem sizes, advanced integer
programming methods using cutting-plane and branch-and-
bound techniques not only provide a global optimality certifi-
cate, but also tend to outperform alternative approximative
methods in terms of speed.

This is not the case yet for large-scale problems. In such
cases, whenever move making methods like a-expansion or
FastPD can be applied, they often efficiently provide solu-
tions that are accurate enough for many applications. Oth-
erwise, dedicated methods based on LP-relaxation provide
lower bounds on minimal energies and in turn reasonable
integer-valued solutions. Finally, for sophisticated models
LP-relaxations may not be tight enough. In these cases, pure
primal move making methods are faster and return better
solutions.



This work also includes a unifom and flexible software
framework that offers a broad range of inference algorithms
to researchers in computer vision. The project website pro-
vides all models and methods considered and gives the oppor-
tunity to add models and results of other inference methods
online. We hope this will encourage researchers to construct
more complex models and in turn novel optimization meth-
ods beyond second-order metric grid models.
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