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Abstract

We present a joint estimation technique of event local-

ization and role assignment when the target video event is

described by a scenario. Specifically, to detect multi-agent

events from video, our algorithm identifies agents involved

in an event and assigns roles to the participating agents.

Instead of iterating through all possible agent-role combi-

nations, we formulate the joint optimization problem as two

efficient subproblems—quadratic programming for role as-

signment followed by linear programming for event local-

ization. Additionally, we reduce the computational com-

plexity significantly by applying role-specific event detec-

tors to each agent independently. We test the performance

of our algorithm in natural videos, which contain multiple

target events and nonparticipating agents.

1. Introduction

Event detection—identification of a predefined event in

videos—typically suffers from an enormous combinatorial

complexity. It is aggravated by additional challenges such

as the agents’ unknown roles and the extra agents who do

not participate in the event. We are interested in such chal-

lenging problem, event localization and role assignment,

which refers to identifying the target event and recognizing

its participants in the presence of non-participants, while

estimating the roles of the participants automatically at the

same time. Although computer vision community has broad

interest in the problems related to event detection, the joint

estimation of event localization and role assignment has

rarely been studied before. This is particularly due to the

computational complexity induced by various factors, for

example, multiple agent participation in an event, temporal-

logical variations of an event or potential activities irrele-

vant to the target event.

In this paper, we introduce a novel algorithm for video

event understanding, where the event localization problem
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is solved jointly with the role assignment by formulating the

problem as an optimization framework. Our algorithm in-

corporates [10] to describe and detect a target event based

on a scenario. A naı̈ve extension of [10] for event local-

ization and role assignment however requires the consider-

ation of all possible agent-role combinations, which may be

intractable computationally. In this work, we attempt to re-

duce the search space dramatically by removing infeasible

agent-role combinations and construct a mathematical for-

mulation for solving the problem efficiently.

For this purpose, we first generate agent groups, each of

which is composed of agents potentially having mutual in-

teractions defined in a scenario. The confidence and time

interval of each role are estimated for each agent by role-

specific event detection. The event localization and role as-

signment are solved by assigning roles to agents optimally

per group and selecting groups whose role assignments are

feasible. The contribution of this paper is three-fold. 1) The

event localization and role assignment problems are jointly

managed in a single optimization framework. 2) Our frame-

work handles some challenging situations in event detection

in a principled way, e.g., presence of nonparticipants and

multiple occurrences of the same event. 3) Our algorithm is

efficient due to the significantly reduced search space.

The rest of the paper is organized as follows. Sec. 2

reviews previous work closely related to multi-agent event

detection. After we discuss the event detection framework

based on the constraint flow in Sec. 3, our multi-agent event

localization and role assignment algorithm is presented in

Sec. 4. We illustrate experimental results in Sec. 5.

2. Related work

The simplest tasks related to event detection include

atomic action detection (e.g., [21]) and abnormality detec-

tion (e.g., [9]) in videos. An atomic action is a short-term

event generated by a single agent, and abnormality detec-

tion is a binary decision with respect to video contents;

both approaches are insufficient to deduce semantic inter-

pretations from videos. In this paper, we consider an event

as a composition of atomic actions, which we call primi-

tives, under a temporal-logical structure. The structure of
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the event is described by a scenario.

Video events have been detected by stochastic gram-

mars [8, 14] or graphical models including hidden Markov

models (HMMs) [2], variants of the basic HMM [5] and dy-

namic Bayesian networks of given structures [12,19]. How-

ever, they have limitations in describing events; grammar-

based approaches cannot cover concurrent streams of primi-

tives, and graphical models represent scenarios only by tem-

poral orders between primitives. Recently, scenarios are of-

ten described by logic such as temporal interval algebra [1]

and event logic [20] to represent various aspects of events

more fluently. Logic-based scenarios have been adopted

by various event detection algorithms including hierarchical

constraint satisfaction [17], multithread parsing [24], ran-

domized stochastic local search [4], and probabilistic infer-

ence on constraint flow [10] and Markov logic network [15,

22]. However, most of these approaches have focused on

events with a single agent only [2, 12, 14, 19], or events that

can be detected without role identification [4, 5, 15]. Oth-

erwise, roles should be initialized by prior information or

human intervention [8, 10, 17, 24].

A few recent approaches discuss role assignment in

the detection of complex multi-agent events. In [11], an

MRF captures relationships between roles and performs

per-video event categorization; the extensions to handle

non-participants and localize events in spatio-temporal do-

main are not straightforward. An MCMC technique is in-

troduced to identify agents’ roles and detect an event at the

same time in [18]. However, it is a heuristic-based method

presenting results in videos with a single event occurrence

only. Our method is formulated in a more principled way

and can handle multiple occurrences of an event naturally.

3. Scenario-based event detection

Our framework incorporates [10] to describe and detect

target events based on scenarios. In this section, we briefly

review the scenario description method and event detection

procedure using constraint flow presented in [10].

3.1. Scenario description

A scenario describes a target event based on primitives

and their temporal-logical relationships. The relationships

constrain arrangements of time intervals of the primitives.

Let ρi and ρj be primitives organizing a target event. Four

temporal relationships define temporal orders between start-

ing and ending times of two primitives:

ρi < ρj ⇔ end(ρi) is earlier than start(ρj).

ρi ∼ ρj ⇔ start(ρi) is earlier than start(ρj).

ρi ∧ ρj ⇔ start(ρi) is earlier than start(ρj) and

end(ρj) is earlier than end(ρi).

ρi
+ ⇔ end(ρki ) is earlier than start(ρk+1

i ), ∀k ∈ N.

Condition Meaning (The primitive . . .) Change†

active (a) occurs currently. finished

ready (r) does not occur yet. active

finished (f ) ends its activation. (none)

waiting (w) waits for next activation. active

excluded (×) does not participate. (none)

† indicates possible changes from the original condition.

Table 1. The quinary conditions to specify flow vertices

The last unary relationship is to describe an unknown num-

ber of recurrences of a specified primitive; k is an index for

the number of recurrences. Two logical relationships are

denoted and defined as follows:

ρi&ρj ⇔ ρi and ρj occur;

they are independent temporally and logically.

ρi | ρj ⇔ only one of ρi and ρj occurs.

In principle, logical relationships take precedence over tem-

poral relationships, but we can use parentheses to override

the precedence of the relationships.

The following is the scenario of Delivery event that we

design by using the above description method:

Delivery[γdel, γrec]⇒

GetOff[γdel] < ComeClose[γrec] & HoldObj[γdel] < · · ·

(GetAway[γrec] ∧ HoldObj[γrec]) & GetInto[γdel],

where GetOff, ComeClose, HoldObj, GetAway, and GetInto

are primitives. γdel and γrec indicate two roles in Delivery,

deliverer and receiver, respectively. A role associated with

each primitive is specified in the attached bracket.

3.2. Constraint flow and event detection

Constraint flow is a state transition machine characteriz-

ing the organization of a target event. The state of a target

event at a time step is represented by a combination of con-

ditions of all primitives. The condition of a primitive is ac-

tive if the primitive occurs at the time step, and it is inactive

otherwise; the inactive condition is subdivided into four hy-

potheses (Table 1) so that various temporal-logical relation-

ships among primitives can be described. The constraint

flow is a directed graph, whose vertices are combinations

of quinary conditions of the primitives (Fig. 1(a)). When a

scenario is given, the corresponding constraint flow is gen-

erated automatically by the scenario parsing technique de-

scribed in Algorithm 1 of [10].

The objective of event detection is to find the best feasi-

ble interpretation of a given video. An interpretation is de-

fined as a configuration of time intervals of the primitives.

It is feasible if it satisfies all constraints in the scenario. Be-

cause a scenario and its constraint flow are equivalent rep-

resentations to describe an event, we can generate feasible
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Figure 1. An example of constraint flow. The scenario is “(A[γ1]∧
B[γ2] | C[γ2]) < D[γ1]”. (a) There are two initial vertices (red

boxes) and two final vertices (blue boxes) in the constraint flow.

(b) A flow traverse (T13) becomes a feasible interpretation (I13)

by projecting quinary conditions to binary conditions; the pro-

jection is denoted by β. The time intervals of the primitives are

marked black. The time interval of the target event is obtained by

searching for the first and last activations in the interpretation; in

this example, the time interval of the target event is [2, 12].

interpretations by traversing the constraint flow (Fig. 1(b)).

Let Tt be a flow traverse up to time t and It = β(Tt) be the

feasible interpretation obtained by the binary projection of

Tt. Event detection is formulated by the maximum a poste-

riori (MAP) estimate of the optimal traverse T̂t as

T̂t = argmax
Tt

P (Tt|O1:t), (1)

where observation O indicates primitive detection, and the

optimal interpretation is the binary projection of T̂t, i.e.,

Ît = β(T̂t). The exact solution of Eq. (1) is obtained by

dynamic programming on the constraint flow. For the de-

tails for solving Eq. (1), refer to [10].

4. Multi-agent event localization

The event detector described in Sec. 3 assumes that roles

of all agents are given manually. We call a group of agents

involved in a target event with assigned roles a true lineup,

and there are typically many lineup candidates (i.e., agent-

role combinations) in a video. Let m be the number of

agents existing in a video, and n be the number of roles de-

fined in a scenario. We assume that an agent takes part in at

most one target event in a video and that the agents and the

roles are bijective in a target event. Then there exist m!
(m−n)!

lineup candidates for the target event. It is impractical to

apply event detection algorithm to all the candidates.

We introduce a technique that efficiently localizes multi-

agent events by identifying true lineups in an optimiza-

tion framework. Our method exploits role confidences and

time intervals of agents, which are obtained by role-specific

event detection per agent (Sec. 4.2), as criteria for lineup

evaluation. Despite a huge number of potential lineups, we

maintain efficiency by separating the event localization pro-

cedure into two steps: role estimation per group and group

selection (Sec. 4.4). These are solved by quadratic and lin-

ear programming, respectively.

4.1. Agent grouping

Suppose that there are n roles in a target event. We first

form groups with n agents, which are the candidates to be

applied to our event detection algorithm. An agent can be

associated with multiple groups at this stage. Note that there

exist l · n! lineup candidates, where l denotes the number

of groups1, because n! role configurations are available per

group; it may be infeasible to identify few true lineups from

such a large number of candidates.

The groups are represented by an m × l binary matrix

A, where [A]i,k = 1 if the i-th agent belongs to the k-

th group, and 0 otherwise. For simplicity of notation, we

define a function gk : {1, . . . , n} → {1, . . . ,m}, which

indicates the association between the members in the k-th

group and the agents. That is, gk(i
′) = i if the i-th agent is

the i′-th member in the k-th group.

4.2. Agent-wise role analysis

The role assignment is essential for multi-agent event de-

tection, but typically available after the completion of event

detection. To estimate the role of an agent, we evaluate how

appropriate the properties of the agent for each role are, and

also estimate potential time interval of each role. In other

words, we perform role-specific event detection for each

agent; it is done by role-specific constraint flows, each of

which focuses only on a single role. The role-specific con-

straint flow is constructed from the original constraint flow

by simply excluding primitives not associated with the tar-

get role and merging duplicate vertices, as shown in Fig. 2.

We additionally construct the null constraint flow, which is

generated by excluding all primitives (Fig. 2(d)) to handle

outsiders, agents that do not participate in any target events.

For each agent in a video, we apply the role-specific

event detectors to all primitive detections. For the i-th

1We should consider
(
m

n

)
groups in principle, but can reduce the search

space significantly in practice by integrating spatio-temporal or temporal-

logical proximity constraint between agents as described in Sec. 5.
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Figure 2. An example of generating role-specific constraint flows.

The scenario and its original constraint flow are the same with

those of Fig. 1. (a–b) Procedure for generating γ1-specific con-

straint flow: We first exclude primitives irrelevant to the role we

currently focus on (red); some vertices become identical after the

exclusion. The role-specific constraint flow is obtained by merging

the duplicate vertices. (c) γ2-specific constraint flow is obtained in

the same manner. (d) We additionally construct the null constraint

flow to handle outsiders.

agent, we obtain the MAP traverses T̂ i,1
end , . . . , T̂

i,n
end for the n

roles in the scenario, and T̂ i,0
end for the outsider role. Then we

evaluate how appropriate the i-th agent is for the j-th role

based on the corresponding maximum log-posterior proba-

bility; the normalized confidence is given by

ci,j = logP (T̂ i,j
end |O

i
1:end)− log

n∑
k=0

P (T̂ i,k
end |O

i
1:end). (2)

Also, the time interval where the i-th agent plays the j-

th role is obtained by searching for the first and last acti-

vations in β(T̂ i,j
end ) as shown in Fig. 1(b); the starting and

ending time of the interval are denoted by si,j and ei,j ,

respectively. Note that we do not consider the time in-

tervals for the outsiders because every element of T̂ i,0
end is

excluded. Finally, the agent-wise role information is sum-

marized by ci = [ci,1, . . . , ci,n]�, si = [si,1, . . . , si,n]�,

and ei = [ei,1, . . . , ei,n]� for all i = 1, . . . ,m. Also,

the confidences for the outsider role are concatenated to

c0 = [c1,0, . . . , cm,0]�.

In our framework, a lineup candidate is evaluated in

terms of the role confidences and time intervals of the cor-

responding agent-role combination, which are precomputed

in this role-specific event detection and can be reused to

evaluate different lineup candidates. The reuse of role-

specific evidences makes the two-step optimization possi-

ble. Also, lineup candidates with different lengths of occur-

rence (i.e., different number of observations) can be evalu-

ated fairly at the role level because role confidences are not

affected by the length of occurrence due to the agent-wise

normalization in Eq. (2).

The agent-wise role analysis is significantly faster than

the naı̈ve extension of the original event detection be-

cause role-specific event detection evaluates each role of

each agent independently. However, interactions between

roles are ignored in this step, which may result in erro-

neous lineup evaluations. Therefore, we adopt a post-

processing to reject misidentified lineups, which is de-

scribed in Sec. 4.5.

4.3. Evaluating role assignment per group

For each group, we evaluate the feasibility of the role

assignment by considering how appropriate the agents in a

group are for the assigned roles and how well their role-

specific time intervals satisfy the scenario constraints. The

evaluation measure for the k-th group is formulated by a

quadratic function, which is given by

fk(xk) =
1

2
x�k Lkxk + c�k xk. (3)

In this function, xk = [x1
k

�
, . . . ,xn

k
�]� is a role assign-

ment variable, where xi
k = [xi,1

k , . . . , x
i,n
k ]� indicates the

role assignment of the i-th member in a binary form, i.e.,

x
i,j
k = 1 if the j-th role is assigned to the i-th member of the

k-th group. ck = [cgk(1)
�
, . . . , cgk(n)

�
]� is a coefficient

vector of role confidences corresponding to the members

for n roles. Lk is an n2 × n2 coefficient matrix to measure

the fidelity of the time intervals of the assigned roles to the

scenario constraints:

Lk =

⎡
⎢⎢⎢⎣
−∞n×n L

1,2
k · · · L

1,n
k

L
2,1
k −∞n×n · · · L

2,n
k

...
...

. . .
...

L
n,1
k L

n,2
k . . . −∞n×n

⎤
⎥⎥⎥⎦ , (4)

where ∞n×n is an n × n matrix whose elements are all

infinities. L
i1,i2
k is an n × n penalty matrix defined by

the temporal relationship between the pairs of members

in the k-th group. Specifically, the element of the ma-

trix, [Li1,i2
k ]j1,j2 , is negatively proportional to the length of

partial time-intervals violating the scenario constraints, be-

tween the j1-th role of the i1-th member and the j2-th role

of the i2-th member, which is given by

L
i1,i2
k = −α ·

{
max

[
0n×n, Si1 ◦Rss + S�i2 ◦R

�
ss

]
+

max
[
0n×n, Ei1 ◦Ree +E�i2 ◦R

�
ee

]
+

max
[
0n×n, Si1 ◦Rse −E�i2 ◦Rse

]
· 2

}
,

(5)

where α is a constant, 0n×n is an n × n matrix whose el-

ements are all 0’s, and ◦ is the Hadamard (elementwise)
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product. Si and Ei are n × n matrices whose columns

are composed of sgk(i) and egk(i), respectively, i.e., Si =
[sgk(i), . . . , sgk(i)] and Ei = [egk(i), . . . , egk(i)]. Rss, Ree,

and Rse are n × n matrices for temporal relationships be-

tween roles, which are given respectively by

[Rss]j1,j2 =

⎧⎪⎪⎨
⎪⎪⎩
∞, if j1 = j2,

1, else if Start(γj1) < Start(γj2),
−1, else if Start(γj1) > Start(γj2),
0, otherwise,

(6)

[Ree]j1,j2 =

⎧⎪⎪⎨
⎪⎪⎩
∞, if j1 = j2,

1, else if End(γj1) < End(γj2),
−1, else if End(γj1) > End(γj2),
0, otherwise,

(7)

[Rse]j1,j2 =

⎧⎪⎪⎨
⎪⎪⎩
∞, if j1 = j2,

1, else if Start(γj1) < End(γj2),
−1, else if Start(γj1) > End(γj2),
0, otherwise,

(8)

where Start(γj) is the starting time of the j-th role, and

End(γj) is the ending time of the j-th role. When the j-

th role involves multiple primitives in an event, Start(γj)
means the starting time of its earliest primitive and End(γj)
is the ending time of its latest primitive. Note that the val-

ues in Rss, Ree, and Rse depend on the scenario and are

determined during scenario parsing.

4.4. Event localization through lineup estimation

We identify target event lineups by maximizing the sum

of lineup evaluation scores and outsider confidences. This

problem involves a joint estimation of group selection and

role configuration within the selected groups, which is for-

mulated by an optimization problem with the set-packing

constraint [6]. Formally, the objective function of this con-

strained optimization problem is defined by

max
y,x1,...,xl

f(x1, . . . ,xl)
�y + c�0 (1m −Ay)

s.t. Ay ≤ 1m,
(9)

where y is an l-dimensional binary vector reflecting the

group selection, and xk is a role assignment variable for the

k-th group. f(x1, . . . ,xl)
� is a vector function, which re-

turns a vector of the evaluation scores of the estimated line-

ups, i.e., [f1(x1), . . . , fl(xl)]
�. 1m is an m-dimensional

vector whose values are all 1’s, so (1m − Ay) is a binary

vector indicating the estimated outsiders.

Solving the joint optimization Eq. (9) is time-consuming

as its search space is prohibitively large, O(2l·n!). Instead,

we employ a two-step optimization technique for lineup es-

timation, which is equivalent to the original problem.2 In

the first step, we find the best role configuration per group;

2The proof about the equivalence is given in the supplementary file.

the best role assignment to the members of the k-th group

can be obtained by maximizing Eq. (3) as

x̂k = argmax
xk

fk(xk) s.t. Uxk = 1, Vxk = 1, (10)

where U is an n×n2 binary matrix constraining each mem-

ber to play only one role and V is an n× n2 binary matrix

constraining each role to be assigned to only one member,

which are given respectively by

[U]i,j =

{
1, if n(i− 1) + 1 ≤ j ≤ ni,

0, otherwise,
(11)

[V]i,j =

{
1, if i ≡ j mod n,

0, otherwise.
(12)

The second step is for group selection given the best role

configurations of all groups, which is given by

max
y

f̂
�

y + c�0 (1m −Ay) s.t. Ay ≤ 1m, (13)

where f̂ is the collection of the best lineup evaluation scores

that are obtained from the objective function in Eq. (10),

i.e., f̂ = [f1(x̂1), . . . , fl(x̂l)]
�.

In summary, for joint event localization and role assign-

ment, we first generate groups, identify the best lineup can-

didate per group by quadratic programming, and then fi-

nally select the best lineup candidates by linear program-

ming. The optimization procedures are modeled and solved

by YALMIP [13].

4.5. Multi-agent event detection

In our framework, role confidences of each agent are es-

timated by marginalizing event structure over roles as de-

scribed in Sec. 4.2. Such marginalization is useful to avoid

a combinatorial explosion of the complexity, but it ignores

interactions among roles. This may affect the accuracy of

event detection, particularly increasing false alarms. There-

fore, we finally verify the identified lineups obtained from

Eq. (9) by applying the event detector in Sec. 3 to them.

Each identified lineup is validated by counting how many

hallucinations exist in its video interpretation, where a hal-

lucination is a time interval whose length is too short; the

lineup will be rejected if the number of hallucinations in its

interpretation is too big. Note that hallucinations found in

the verification process come from unnatural role configura-

tion, which is not observed in the optimization step because

role confidences of an agent are marginalized.

5. Experiments

We demonstrate our framework on surveillance se-

quence from [10], two sequences from VIRAT dataset [16],

and five fieldgoal sequences downloaded from YouTube. All
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tested sequences contain many agents and unknown number

of target events whose starting and ending times are arbi-

trary. Our framework accurately and efficiently localizes

and detects target events in the sequences.

5.1. Surveillance sequence

In surveillance sequence, there are 16 agents with no

outsiders and 8 Transaction events, which consist of two

roles, customer and cashier.3 We first grouped 2 agents

whose occurrences temporally overlap and obtained 8

groups; the number of lineup candidates is 16 because 2

role assignments are available per group. Our framework

correctly identifies 8 lineups out of the 16 candidates and

detects 8 true target events.

To test robustness of our algorithm, we performed a

simulation by gradually increasing the number of virtual

agents—increasing observation noise for lineup estimation.

Virtual agents were generated by sampling role confidences

and time interval lengths from a Dirichlet distribution and a

Gaussian distribution, respectively. Both distributions were

estimated from the 16 real agents. Also, starting times of

virtual agents were uniformly distributed over the entire se-

quence. Performance in the presence of the virtual agents is

illustrated in Fig. 3. According to the simulation, the recall

rates are consistently high regardless of the number of vir-

tual agents (Fig. 3(a)) while only a small number of proba-

ble lineups are maintained among an exponentially increas-

ing number of candidates (Fig. 3(c)); it is because infeasi-

ble lineup candidates are penalized by the marginalized sce-

nario constraints (Eq. (6–8)) and ignored by the set-packing

constraint in Eq. (9).

5.2. VIRAT sequences

We validate our framework with two sequences, VIRAT1

(S 000101) and VIRAT2 (S 000102), from VIRAT dataset;

the target event in the sequences is Delivery, whose scenario

is described in Sec. 3.1. Because fragments of tracks, which

we call tracklets, are given for the sequences, we track mov-

ing objects by associating the tracklets [7]. Each agent

group in the sequences is made up of 2 agents that are spa-

tially adjacent at a sufficiently long time interval. The prim-

itives of Delivery are detected with respect to each agent by

measuring spatial relationships between the agent and other

objects (e.g., cars and boxes).

Then, our framework is applied to automatically localize

and detect the target event; there are three Delivery events

in VIRAT1 and one Delivery is in VIRAT2. Also, our algo-

rithm is compared with a naı̈ve approach, which attempts

to detect the event from all lineup candidates. The perfor-

mance is summarized in Table 2. Note that there are a large

3We used the dataset, scenario, and code available at http://cv.

postech.ac.kr/research/constflow/.

Agents Groups Events (Ours) Events (Naı̈ve)

VIRAT1 21 23 3 (1.0/1.0) 4 (0.75/1.0)

VIRAT2 47 97 1 (1.0/1.0) 1 (1.0/1.0)

Table 2. Results in VIRAT sequences. Precision and recall of event

detections are given in parentheses (precision/recall). Performance

by the naı̈ve approach is also given for comparison.

Role anal. Lineup est. Event det. Overall

VIRAT1
Ours 50.6 6.6 14.5 71.8

Naı̈ve - - 507.7 507.8

VIRAT2
Ours 150.2 9.0 136.7 295.9

Naı̈ve - - 6939.5 6939.5

Table 3. Comparison of execution times in seconds in VIRAT1

and VIRAT2 sequences; the execution times for agent grouping

are omitted since they are too short (≤ 0.1 sec).

number of lineup candidates and some outsiders act like re-

ceivers near cars in both sequences; it is not straightforward

to detect and localize true target events with correct role as-

signments. Our framework identifies all true lineups, and

misidentified lineups are successfully removed by the vali-

dation step (see Fig. 5); the final event detection results are

illustrated in Fig. 4. Note that our framework achieves per-

fect accuracy whereas the naı̈ve approach has a false alarm

in VIRAT1 sequence. This is because our algorithm can pre-

vent conflicting lineups (e.g., lineups sharing at least one

agent) by using a single objective function while the naı̈ve

approach evaluates each lineup candidate independently.

Our framework is also significantly faster than the naı̈ve

method; according to our experiments, it is 7 and 23 times

faster than the naı̈ve approach in VIRAT1 and VIRAT2, re-

spectively. Note that VIRAT2 has more agent groups; the

relative speed is highly dependent on the number of groups

in the sequence. Table 3 presents the execution times of the

individual components in both algorithms. The computa-

tional complexity of the naı̈ve approach is O(l · n! · |L|),
where |L| is the number of edges in the constraint flow,

while our complexity is O(m · n · |L′|+C + l̂ · |L|), where

|L′| is the average number of edges in the role-specific con-

straint flows, C indicates the cost of lineup estimation, and

l̂ means the number of the estimated lineups. It is obvious

that O(l · n! · |L|)� O(m · n · |L′|+ l̂ · |L|).

5.3. Fieldgoal sequences

Each of the five fieldgoal sequences contains 20 or more

agents and one Fieldgoal event, which requires three roles:

holder, snapper, and kicker. Due to severe occlusions

and rapid appearance changes, agents in the sequences are

tracked by annotating key frames [23]. The pose of an

agent is described by a pyramid of histograms of oriented

gradients [3] and classified by a linear support vector ma-
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Figure 3. Simulation results by gradually adding up to 50 virtual agents. We controlled the ratio of virtual outsiders, whose outsider

confidences are larger than all other role confidences. (a) Our method shows good recalls; most of the true lineups were retrieved despite

a large number of virtual agents. (b) Precision gracefully degrades by increasing virtual agents due to lineups organized by virtual agents

only. (c) Our method identified few probable lineups while the number of lineup candidates exponentially increases.
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(a) Three Delivery events detected from VIRAT1 sequence
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Figure 4. Event detection results in (a) VIRAT1 and (b) VIRAT2. In each graph, the horizontal axis represents time indices and vertical

axis enumerates primitives of the target event. Primitive detection responses are represented by gray, where darker shade means higher

response. Deliverers and receivers are denoted by green and purple, respectively, for both of the intervals on the graphs and bounding boxes

in images; outsiders are indicated by white boxes in the images. In the sequences, outsiders often act like receivers near cars (e.g., 2080,

16530, and 17420 of (a)), or they are spatially correlated with true deliverers and receivers (e.g., 3000 of (a) and 24580 of (b)).

chine. Also, we extract motion context descriptors [21]

from agents and recognize their actions by a nearest neigh-

bor classifier. Then the primitives of Fieldgoal event are

detected from the pose, action and relative positions of each

agent. Despite a large number of groups, 1140 or more in

total, and imperfect primitive detections, we successfully

localize and detect the true target events in all the sequences

as illustrated in Fig. 6.
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Figure 5. A misidentified lineup in VIRAT1 sequence. Note that agent 28 acted like a receiver. This lineup was removed effectively by our

verification process.
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Figure 6. Results in two fieldgoal sequences. Holder, snapper, and kicker are denoted by purple, cyan, and orange, respectively while

outsiders are denoted by white boxes. Additional results in other fieldgoal sequences are included in the supplementary file.

6. Conclusion

We presented a novel framework to automatically and

efficiently detect unknown number of target events by iden-

tifying agents involved in events while simultaneously as-

signing roles to these agents. Our framework is formulated

by a constrained optimization problem, which is solved by

quadratic programming followed by linear programming.

We demonstrated the performance of our framework on sev-

eral challenging sequences in complex environments, and

illustrated that it successfully localized and detected target

events even when many agents including outsiders and mul-

tiple target events occur in videos.
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