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Abstract

Hyperspectral reflectance data allows for highly accu-
rate spectral relighting under arbitrary illumination, which
is invaluable to applications ranging from archiving cul-
tural e-heritage to consumer product design. Past methods
for capturing the spectral reflectance of scenes has proven
successful in relighting but they all share a common as-
sumption. All the methods do not consider the effects of
fluorescence despite fluorescence being found in many ev-
eryday objects. In this paper, we describe the very different
ways that reflectance and fluorescence interact with illumi-
nants and show the need to explicitly consider fluorescence
in the relighting problem. We then propose a robust method
based on well established theories of reflectance and fluo-
rescence for imaging each of these components. Finally, we
show that we can relight real scenes of reflective-fluorescent
surfaces with much higher accuracy in comparison to only
considering the reflective component.

1. Introduction
Hyperspectral reflectance data has been used for highly

accurate spectral relighting of scenes under arbitrary illu-

mination and has benefited many applications ranging from

archiving for cultural e-heritage to the design of consumer

products. In fact, previous research has demonstrated the

necessity of using spectral reflectance for accurate relight-

ing [7, 16, 24]. Thus there have been many methods for

imaging the spectral reflectance of scenes [3, 4, 10, 14, 21].

While previous methods for measuring spectral re-

flectance have been successful in accurately predicting the

color of objects under arbitrary illumination, they all make

the same assumption that fluorescence is absent from the

scene. This is despite the fact that fluorescence is a common

phenomenon observed in many objects. In fact, Barnard

showed through intensive studies on color constancy algo-

rithms, that fluorescent surfaces are common and present

in 20% of randomly constructed scenes [2]. In addition,

Johnson and Fairchild also showed how the appearance of a

(a) Office Light (b) Blue Light

Figure 1: Scene under two illuminantions. Fluorescence

has a wavelength shifting property that can cause orange to

appear under blue light.

composite object with both fluorescent and reflective com-

ponents dramatically changes under different illumination

in computer graphics [7].

More importantly, reflective and fluorescent components

interact with illuminants differently. Reflective surfaces

emit light at the same wavelength as the light source but

fluorescent surfaces will first absorb incident light and then

emit at longer wavelengths–a phenomenon known as Stokes

shift [17, 19]. Fig. 1 illustrates this wavelength shifting phe-

nomenon where under blue light, orange can be observed.

In this paper, we present a new relighting method where

we focus on the issues of accurately modeling and predict-

ing the color of a scene in the presence of fluorescence. We

start by detailing exactly how reflectance and fluorescence

are different. We then present our method for capturing var-

ious spectral domain characteristics of reflective-fluorescent

scenes for accurate relighting. Specifically, we devise an

imaging process that first extracts the reflectance only com-

ponent of a scene. Then using the reflectance data, we ex-

tract two components of fluorescence called the emission

and excitation which are crucial for accurate modeling and

relighting of fluorescent surfaces. Essentially, the excitation

models how incoming light is absorbed and the emission

models how light is emitted. Relighting under arbitrary illu-

mination can then be done based on the recovered reflective

and fluorescent components.
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We also note that to our knowledge, we are the first to

introduce a method for modeling and relighting of scenes

with both reflective and fluorescent components based on

well established theories and observations of the physical

behaviors of said components. Our consideration of flu-

orescence provides much better predictions of how colors

appear when relighted in comparison to only considering

the reflective component.

The main contributions of this paper are that we

1. Introduce the very different behaviors between re-

flectance and fluorescence and show the need for ex-

plicit joint modeling of the two phenomenon.

2. Propose a robust method for estimating the three spec-

tral components of reflective-fluorescent scenes using

sparsely captured band images.

3. Show that fluorescent components can be modeled us-

ing sets of spectral basis vectors that well represent the

excitation and emission of fluorescent materials.

4. Demonstrate that our models allow for correct synthe-

sis of real scene appearances under novel lighting.

1.1. Related Work

Past methods have been effective for estimating the spec-

tral reflectance of scenes. For example, Maloney and Wan-

dell used a three-channel camera for spectral reflectance re-

covery under ambient light [10]. Tominaga later introduced

the use of a multi-channel camera for spectral reflectance il-

luminant recovery by sequentially placing band-pass filters

in front of a monochromatic camera [21]. Another popu-

lar alternative is the use of tunable filters to obtain multi-

spectral images [5].

Other researchers proposed the use of active illumination

for spectral reflectance recovery. Park et al. used multi-

plexed illumination emitted by sets of LEDs for fast spectral

imaging of dynamic scenes [14]. In Chi et al. [3], optimized

wide band filtered illumination allowed a conventional cam-

era to obtain spectral information of a scene in the presence

of unknown ambient illumination. Ultimately, these meth-

ods have their own strengths but none consider the effects

of fluorescence.

Considering fluorescence does add a layer of complexity.

One notable paper aimed to overcome the complexity by ap-

proximating fluorescent effects through a data driven sim-

plified model for relighting [2]. However, their model does

not properly account for exactly how reflectance and fluo-

rescence would interact with incoming light. On the other

hand, research in fluorometry details proper procedures for

measuring the color of fluorescent materials in the spectral

domain using optical devices [20]. For example, bispec-

tral methods are well established approaches to measuring

the spectral distribution of the fluorescence as a function of

incident and outgoing wavelengths for a single point. Un-

fortunately, measuring all points in a scene is a difficult task

(a) Excitation and Emission (b) Emission Illuminated with

Different Lights

Figure 2: Sample Excitation and Emission Spectra

that would require densely sampling in both the spectral and

spatial domains. We will overcome this difficulty by the

use of real-world statistics that allow for full recovery of all

spectra in a scene using sparsely captured band images.

It is notable that Hullin et al. acquire bispectral bidi-

rectional reflectance and reradiation distribution functions

(BRRDF) of fluorescent objects using a sampling strategy

on spheres with fluorescent paint [6]. They demonstrated

the effectiveness of modeling and rendering fluorescent ob-

jects but their method requires precise bispectral and bidi-

rectional measurements of object appearance, and is thus

not suitable for modeling and relighting an entire scene.

Regarding the separation of reflective and fluorescent

components, Alterman et al. proposed separating the ap-

pearance of each fluorescent dye from a mixture by unmix-

ing multiplexed images [1]. In Zhang and Sato [26], a de-

tailed model for reflectance and fluorescence was presented

and used to accurately separate reflective and fluorescent

components from scenes. These methods successfully sep-

arate fluorescent components, but do not fully model the

reflective and fluorescent components of a scene and so can-

not be used for spectral relighting. Recently, Tominaga et
al. proposed a method for estimating the emission spectra

of fluorescence using multi-spectral images taken under two

ordinary light sources. However, they assume that fluores-

cent emission is constant for all excitation wavelengths and

thus cannot accurately predict the brightness of fluorescent

components under varying illumination [22].

2. Reflectance and Fluorescence
As discussed, illuminated reflective surfaces emit light

at the same wavelength as the light source while fluorescent

surfaces absorb incident light and then emit at longer wave-

lengths. Despite the very different natures of reflectance

and fluorescence, many materials contain both components.

Thus accurate relighting of such surfaces requires a model

that jointly considers both effects. We begin by consider-

ing such a model in its most general form. The appearance

of a reflective-fluorescent surface point at wavelength λo

illuminated at wavelength λi can be expressed as a linear
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combination of the reflective and fluorescent components.

P (λo, λi) = PR(λo, λi) + PF (λo, λi) (1)

where PR(λo, λi) and PF (λo, λi) are the reflective and flu-

orescent terms computed from information on the surface

point’s physical properties and illuminant I at wavelength

λi.

As mentioned, reflectance emits light at the same wave-

length as the illuminant so it’s model is expressed as

PR(λo, λi) = R(λo)I(λi)δ(λo − λi) (2)

where R(λo) is the reflectance at wavelength λo and I(λi)
is the illuminant at wavelength λi. δ(·) is the unit impulse

function where δ(0) = 1 and δ(x) = 0 for x �= 0.

The fluorescent term is more complex and is expressed

in terms of different functions for how incoming light “ex-

cites” the material and what light is “emitted.”

PF (λo, λi) = Em(λo)Ex(λi)I(λi) (3)

where Em(λo), Ex(λi), and I(λi) are the emission, excita-

tion, and illuminant at their respective wavelengths. Fig. 2a

shows examples of excitation and emission spectra for one

fluorescent dye over the visible spectrum. Also, the emis-

sion being to the right of the excitation is an example of

Stokes shift.

Up to this point, we have only described reflectance and

fluorescence under narrowband illumination. In the case of

wideband illumination, the emitted light at wavelength λo

is expressed as a sum over all illumination wavelengths λi.

P (λo) =
∫
P (λo, λi)dλi

= R(λo)I(λo) + Em(λo)
∫
Ex(λi)I(λi)dλi

(4)

We now bring attention to an interesting and well known

phenomenon that was detailed in Zhang and Sato [26].

It can be seen from Eq. 4 that for a fixed illumination,∫
Ex(λi)I(λi)dλi is a constant that is independent of the

outgoing wavelength λo being observed. Thus in the ab-

sence of the reflective component R(λo)I(λo), the fluores-

cent emission spectrum would only be scaled by the amount

of energy from the light source and how it interacts with the

excitation. From this, the observed spectrum would have

the same distribution of values over all wavelengths regard-

less of the illuminant. See Fig. 2b for an example.

3. Overview of Reflectance and Fluorescence
Capture Process

In order to properly analyze the different components of

reflectance, emission, and excitation described earlier, we

need to be able to separate them. We accomplish this by

imaging the three components using various combinations

(a) Emission Capture (b) Excitation Capture at Different

Wavelengths

Figure 3: Capture of fluorescent components for a single

point. We extend these basic ideas to simultaneously cap-

ture the same components for all points in a scene and use

them to render relighting in RGB.

of illuminants and filters. To put our method into the proper

context, we first briefly discuss how imaging the three com-

ponents could be done for a single point.

Reflectance Capture: Due to Stokes shift, a fluorescent

point illuminated at wavelength λi will generally emit light

at longer wavelengths λo. This means that if we illuminate

a reflective-fluorescent point at λi and observe the point at

λo when λi = λo, we will observe only the reflective com-

ponent.

Emission Capture: The illuminant only changes the scal-

ing of the emission spectrum and so the shape of the emis-

sion is invariant to incident light. Thus if we fix an illumi-

nant at λi, the emission could be observed for any wave-

length λo > λi.
1 We would only need to vary λo to observe

the entire emission spectrum. For a reflective-fluorescent

point, no reflectance would be observed at λo since re-

flectance only emits at the same wavelength as the illumi-

nant. Fig. 3a shows an emission illuminated by a narrow-

band light.

Excitation Capture: We can observe the emission at a

wavelength λo while we varying the illuminant wavelength

λi for λi < λo. This would allow us to observe how

much different wavelengths of light would rescale the emis-

sion which by definition is the excitation spectrum. Fig. 3b

shows the observation of different scaled emissions to infer

excitation at the illuminant wavelength.

In general, a scene consists of multiple fluorescent mate-

rials so it is difficult to fix λi or λo to observe all fluorescent

spectra. We propose a solution to this issue in Secs. 4.2

and 4.3 by using wideband light and a wideband camera to

observe the scene.

4. Imaging the Reflective Component
As mentioned, due to Stokes shift, when the point is both

illuminated and observed at the same wavelength, we will

see only the reflective component. Thus if we use a nar-

1This fact has been used for shape recovery based on fluorescent com-

ponents [18, 23].
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rowband light source at wavelength λ and capture the scene

using a camera equipped with a narrowband filter that only

allows wavelength λ through, we can capture the reflectance

of the scene at λ. Specifically, the model of such a pro-

cess can be expressed as Mp = R(λ)I(λ)c(λ)f(λ) where

c(λ) and f(λ) are the camera and filter sensitivities at wave-

length λ. If we then divide out I(λ)c(λ)f(λ), we would

have reflectance R(λ). Provided this process is repeated

for all wavelengths, the full reflectance spectra could be ob-

tained. However, this would be labor intensive and time

consuming since high exposure times are typically needed

to reduce noise. In the next subsection, we derive a method

that can make use of real-world statistics on spectra to ac-

curately estimate a full spectrum given only a few sparse

values of the spectrum at different wavelengths.

4.1. Recovering Full Reflectance Spectra using
Sparse Wavelengths

It is well known reflectance spectra from various do-

mains such as Munsell colors and natural scenes can be

treated as vectors and represented compactly using 6-8

principal components derived from real world statistics

[8, 9, 11, 15]. Therefore spectral reflectance R(λ) can be

represented as a linear combination of orthonormal basis

vectors as R(λ) =
∑N

i=1 σnbn(λ) where bn(λ) is the nth

basis vector at wavelength λ, and σn is the coefficient asso-

ciated with basis bn.

If we consider the wavelengths λ to be discrete and re-

stricted to a fixed range, we can express the basis represen-

tation of R(λ) in matrix form as �r = B�σ where �r is a vector

of the R(λ) values for all λ, B is the orthonormal column

matrix of basis vectors, and �σ is the vector of coefficients.

We now describe how a sparse set of wavelength mea-

surements of spectrum R fits into our framework which

was inspired by [12] and [6] where they solved different

problems but used a similar analysis. Let �r′ be sparse mea-

surements whose entries are the same as �r for the observed

wavelengths and zeros elsewhere. If we project �r onto basis

B, we get coefficients �σ = BT�r while projecting �r′ onto

basis B would give coefficients �σ′ = BT �r′.
To see the connection between �σ and �σ′, we now de-

fine a matrix B′ as the sparse basis version of matrix B.

Specifically, the rows of B′ that correspond to the selected

wavelengths are the same as B while all other rows are zero.

It can then be shown that �σ′ = BT �r′ = (B′)T �r′ =
(B′)T�r = (B′)TB�σ. Which implies that �σ =

((B′)TB)+ �σ′ where “+” is the pseudoinverse. Thus given

sparse wavelengths �r′ we can compute �r as

�r = B((B′TB)+BT �r′ (5)

The full spectrum �r is accurately estimated through a selec-

tion of good sparse wavelengths to use.

The key to getting a good approximation of the full spec-

trum �r from sparse measurements is to select sparse wave-

lengths so that the pseudoinverse in Eq. 5 would be stable.

So if we select sparse wavelengths such that the condition

number of (B′)TB is close to 1, we will have a good ap-

proximation. An exhaustive search of the solution space

would be time consuming so we adapted the greedy ap-

proach described in Matusik et al. [12]. The procedure

operates as follows

1. Randomly select n wavelengths to be in set S. Place all

other wavelengths in set O.

2. Create a matrix B′ for the selected wavelengths S as

described earlier.

3. Evaluate the condition number of (B′)TB.

4. Randomly select one wavelength s ∈ S and one wave-

length o ∈ O and swap their set memberships.

5. Create matrix B′ again and evaluate the condition

number of (B′)TB.

6. If the newer condition number is greater than the pre-

vious condition number, swap s and o back to their

original sets.

7. Repeat from step 4 until the condition number does not

change.

While this procedure is greedy, we have found via com-

parison to exhaustive search that five random restarts of this

greedy procedure always yields the optimal results for n =

1 to 8 in the case of reflectance spectra.

4.2. Fluorescent Emission Capture

Let us start from the simplest case where a scene con-

sists of a homogeneous fluorescent material. As described

in Sec. 3, its emission spectrum can be easily obtained by il-

lumination at an appropriate narrowband wavelength λi and

capture of its emitted light for all wavelengths λo > λi. The

model for imaging based on this process can be expressed as

MF = Em(λo)Ex(λi)I(λi)c(λo)f(λo) where c(λo) and

f(λo) are the camera and filter responses at their respec-

tive wavelengths. If we then divide out I(λi), c(λo), and

f(λo), we obtain Em(λo)Ex(λi). If this imaging proce-

dure is repeated for all wavelengths by varying λo, we can

obtain Em up to scale Ex(λi).
Fortunately, the laborious capture of all wavelengths is

unnecessary because similar to the reflectance case, we have

found that emission spectra can also benefit from our sparse

wavelength algorithm described in Sec. 4.1. We have found

that a large collection of emission spectra from the McNa-

mara and Boswell Fluorescence Spectra Dataset [13] can

be well represented using 12 principal components. Specif-

ically, the top 12 eigenvectors can capture 99% of the vari-

ance in the McNamara and Boswell Dataset’s emission

spectra. In addition, we tested the 12 eigenvectors ability
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to reconstruct spectra obtained from a real fluorescent chart

with 17 colors using the following error metric

(∫
(a(λ)− b(λ))2dλ

)/∫
a(λ)2dλ (6)

where a and b are the ground truth and reconstructed spectra

respectively.

The reconstruction errors can be seen in Table 1. It

can be seen that both the McNamra and Boswell Dataset

(used to derive the basis) and the fluorescent chart show

low errors. Thus our observed emission spectrum can be

well represented as a linear combination of basis vectors by

setting Ex(λi)Em(λo) = Ex(λi)
∑N

i=1 σnbn(λo) where

bn(λo) is the nth basis vector at wavelength λo and σn is

the coefficient associated with basis bn. Similar to the re-

flectance case, we could then find a small condition num-

ber for (B′)TB using the algorithm in Sec. 4.1 to utilize

our method for recovering full emission spectra using only

sparsely captured wavelengths.

When imaging a real scene though, materials could con-

tain both reflectance and fluorescence. Furthermore, not all

fluorescent materials necessarily excite at the same wave-

length. To overcome these difficulties, we first subtract

out reflectance and then propose an alternative imaging ap-

proach for emission capture. We utilize wideband light in-

stead so that all emission spectra in the scene can be si-

multaneously excited by the same illuminant. In addition,

a wideband illuminant provides another advantage that it

would make emissions stronger than those illuminated at

narrowbands.

Let us consider Eq. 4 which describes the appear-

ance of a surface point at wavelength λo illuminated by

wideband light I . Since we know the R component,

we can first subtract out the reflectance term to obtain

pure fluorescence. As a result, it is possible to image

Em(λo)
∫
Ex(λi)I(λi)dλi = kexEm(λo) since the light-

ing and excitation are constant. Varying the value of λo

would give us the emission spectrum. Note that although

we obtain the emission up to a scaling factor kex, the con-

stant kex will be canceled during relighting as described in

Sec. 5.

Our sparse wavelength method can also be applied in

this case. This is because similar to the homogeneous flu-

orescent scene, we can estimate Em(λo) up to the scal-

ing factor kex by representing Em(λo) using a basis. So

kexEm(λo) = kex
∑N

i=1 σnbn(λo).

4.3. Fluorescent Excitation Capture

Like in Sec. 4.2, let us first consider the simple case of a

homogeneous fluorescent material. In Sec. 4.2, we showed

that it was possible to compute Em(λo)Ex(λi) from an

imaging process. To observe Em, we varied λo while fix-

ing the value of λi. To observe Ex, we would vary λi

McNamara & Boswell Fluorescent Chart

Emission 0.009 0.005

Excitation 0.009 0.006

Table 1: Average Reconstruction Errors using Emission and

Excitation Spectrum Bases on Different Datasets

while fixing the value of λo instead. Also, similar to the

emission case, we have found that 12 principal components

can represent 99% of the energy in excitation spectra from

the MacNamara and Boswell Fluorescence Spectra Dataset

well. We also show in Table 1 that reconstruction errors

on the both the McNamara and Boswell Dataset and the

fluorescent color chart were low. So we can express the

observed excitation as a linear combination of basis vec-

tors Ex(λi)Em(λo) = Em(λo)
∑N

i=1 σnbn(λo) and use

sparse wavelengths derived from a large excitation dataset

to estimate Ex scaled by Em(λo).

Unfortunately, a scene can still contain many different

emission spectra that may not even overlap meaning that

we cannot obtain all excitation spectra from the scene by

observing only one wavelength λo.

Fortunately, there is a workaround that avoids this issue.

If we image using a wideband monochrome camera with

response c and subtract out reflectance, the appearance of

the surface point under narrowband light at λi is Mf =∫
Em(λo)c(λ)dλoEx(λi)I(λi) = kemEx(λi)I(λi) since∫
Em(λo)c(λo)dλo is a constant. λi could again be varied

to observe the entire spectrum Ex scaled by kem. Note that

the scale factor kem will be canceled out in Sec. 5. Also,

similar to emission spectra we can express excitation as a

linear combination of basis vectors. So that kemEx(λi) =

kem
∑N

i=1 σnbn(λi). Therefore, our sparse wavelength al-

gorithm could be employed to capture the full excitation

spectra from images captured at only a few wavelengths.

5. Using the Spectra to Relight for RGB

We now present the relighting procedure for RGB im-

ages. We start by considering how a spectrum of light ap-

pears as pixel values in the red channel of a RGB camera.

Rp =
∫
P (λo)cR(λo)dλo

=
∫
R(λo)I(λo)cR(λo)dλo

+
∫
Em(λo)cR(λo)dλo

∫
Ex(λi)I(λi)dλi

(7)

where cR(λo) is the camera’s response in the red channel

at wavelength λo. We have the reflectance R, so that could

simply be plugged into Eq. 7 to determine the reflectance

component in the red channel.

Using the emission Em and excitation Ex terms is not

immediately obvious. This is because we captured both Em
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and Ex up to different scale factors. For the purposes of

rendering RGB images we overcome this issue as follows:

1. Compute normalized spectra Em′ and Ex′ such that∫
Em′(λo)dλo = 1 and

∫
Ex′(λi)dλi = 1.

2. Compute k so that the imaged emission from Sec. 4.2

kexEm(λo) = k(Em′(λo))
∫
Ex′(λi)I(λi)dλi.

where I is the illuminant used to image kexEm.

To relight, we can compute the appearance of a surface

point under any new lighting I ′ for the red channel by

Rp =
∫
R(λo)I

′(λo)cR(λo)dλo

+ k
∫
Em′(λo)cR(λo)dλo

∫
Ex′(λi)I

′(λi)dλi

(8)

Similar equations are used for relighting the green and blue

channels.

6. Experiments
In our experiments, we capture all images using a Hama-

matsu ORCA Flash 2.8 monochrome camera. For observ-

ing narrowband light, we used a CRi VariSpec filter which

allows for selectively allowing any narrowband light in the

visible spectrum through to the camera. In cases where we

needed to image wideband light, we simply removed the

filter from the camera. For our light sources, we used a

Nikon Equalized Light Source to produce all narrowband

and wideband illuminants.

In our results, we first show that our method for estimat-

ing a full spectrum using sparse measurements at key wave-

lengths is accurate by comparing against brute force cap-

ture of all wavelengths. We then show that our estimated

R, Em, and Ex spectra from sparse wavelength imaging

yields highly accurate color relighting of scenes.

6.1. Estimating Full Spectra using Sparse Wave-
lengths

To compute a reflectance basis, we looked to the CAVE

Multispectral Database [25]. PCA was then used to deter-

mine six top basis vectors characteristic of spectra in the

database.2 The algorithm in Sec. 4.1 was then used to

find six sparse wavelengths for accurate recovery of full re-

flectance spectra. Recall that ideally, (B′)TB should have

a condition number of 1. We were able to find a (B′)TB
matrix with a condition number of 1.5 by selecting sparse

wavelengths at 440, 490, 530, 580, 620, and 680 nm. For

emission, we found that wavelengths at 420, 440, 460, 480,

500, 520, 550, 570, 590, 620, 660, and 690 nm resulted in a

condition number of 3.8. For excitation, wavelengths 420,

430, 440, 460, 470, 490, 510, 530, 560, 570, 610, and 660

nm yielded a condition number of 6.3.

2The choice of six top eigenvectors is in agreement with studies on

spectra in the literature as mentioned in Sec. 4.1.

Reflectance Emission Excitation

0.004 0.045 0.064

Mean Errors

Best Case Worst Case

Figure 4: Brute force versus sparse wavelength imaging of

spectra on color charts. Despite the worst case having a

poorly estimated Ex we found that the error had little effect

on relighting performance. The mean errors between sparse

wavelength and brute force imaging are shown at the top.

Since we image from 420 nm to 700 nm in increments

of 10 nm, the brute force capture of all such wavelengths

would require 29 images each for capturing R, Em, and

Ex. In other words, a total of 87 images would be needed.

Using our sparse wavelength approach reduces the required

number of images to 30 for capturing all three components.

For our quantitative analysis, we used a standard Mac-

Beth color checker and a color chart containing reflective-

fluorescent paints. We then computed errors between brute

force captured spectra from the charts and sparsely captured

ones using Eq. 6 where a and b from the equation are the

brute force and sparsely imaged spectra respectively.

Fig. 4 shows mean errors for the different spectra on the

color charts. Reflectance spectra are very accurately esti-

mated. Accurate reflectance estimation is crucial for our

method because subsequent steps in capturing the fluores-

cent components depend on accurately subtracting out re-

flectance. Fig. 4 also shows best and worst case estimates

from sparse wavelength measurements. The main source

of error comes from estimating Ex and in the worst case,

we encountered a peculiar Ex that was difficult to estimate.

Fortunately, despite the error, Ex in this case was still accu-

rate enough for relighting under a large number of wideband

illuminants.

6.2. Relighting Scenes

We continue our quantitative analysis on the color chart

scene by relighting it under three illuminants and show that

the predicted colors are very close to ground truth images.
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Reflective-Fluorescent Chart Macbeth Chart
R+F R Only R+F R Only

Blue Light 0.017 0.170 0.008 0.001

Green Light 0.012 0.069 0.005 0.007

D250 Light 0.003 0.056 0.002 0.003

Table 2: Mean Euclidean distances between predicted xy

chromaticity and ground truth. The “R+F” means re-

flectance and fluorescence were considered. “R Only”

means only reflectance was considered. The Macbeth chart

is virtually pure reflectance so errors are small in both

columns.

Blue Light Green Light

D250 Light

Figure 5: Reflective-fluorescent chart xy chromaticities

plotted. Blue diamonds are ground truth, red considers both

reflectance and fluorescence, and green is relighting only

with reflectance. Reflectance only relighting is incorrect in

many cases.

Specifically, we rendered RGB images under blue, green,

and the CIE D250 light. To measure our relighting’s color

accuracy, we computed xy chromaticity values from the

rendered RGB values for each color on the chart and com-

puted Euclidean distances to the ground truth. The same

analysis was also done for the reflectance only component

case. Table 2 shows the mean distances of our predicted col-

ors from ground truth images. In the case of the Macbeth

chart, since the colors are virtually pure reflectance, there is

little difference between our method and considering only

reflectance. For the reflective-fluorescent chart, we see that

considering fluorescence reduces the error. The advantage

is even more apparent in Fig. 5 which shows the chromatic-

Ground Truth Under Different Lighting

Relighted with Fluorescence Relighted Reflectance Only

Figure 6: Relighting results for color chart under blue,

green, and D250 lights.

Ground Truth Relighted Relighted

with Fluorescence Reflectance Only

Figure 7: Relighting results for a scene with fluorescent and

non-fluorescent objects under blue, green, and D250 lights.

ities plotted.

Fig. 6 shows relighting results from our color charts.

When illuminated with blue light, relighting the scene us-

ing only the reflective component results in many fluores-

cent colors appearing as black. Using our proposed process,

the missing colors in the reflectance only image are restored

and match the ground truth very accurately. In the D250 il-

luminated images, the reflectance only case is darker due to

the lack of fluorescent emission.

In Fig. 7, we show a scene consisting of a mix of flu-
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orescent and non-fluorescent objects. Note that in all the

images, the non-fluorescent red and yellow blocks at the

top appear the same regardless of whether we consider flu-

orescence. The fluorescent objects on the other hand, show

obvious improvement with our method.

7. Conclusion
We detailed the very different ways reflectance and flu-

orescence behave concerning emission of light and showed

the need for explicit consideration of fluorescence. We also

proposed a sparse wavelength imaging method that was suc-

cessfully applied to the capture of the reflective, emission

and excitation components of entire scenes. By applying

sparse wavelength imaging to fluorescence, we also showed

that fluorescent spectra can be characterized by basis vec-

tors. Finally, we are, to the best of our knowledge, the

first to model all aspects of relighting reflective-fluorescent

scenes using established theories on the physical behavior

of reflectance and fluorescence.
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